JP2000119114A - Disinfection of plant raising solution and disinfection system - Google Patents

Disinfection of plant raising solution and disinfection system

Info

Publication number
JP2000119114A
JP2000119114A JP10300421A JP30042198A JP2000119114A JP 2000119114 A JP2000119114 A JP 2000119114A JP 10300421 A JP10300421 A JP 10300421A JP 30042198 A JP30042198 A JP 30042198A JP 2000119114 A JP2000119114 A JP 2000119114A
Authority
JP
Japan
Prior art keywords
solution
ozone
gas
sterilizing
plant cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10300421A
Other languages
Japanese (ja)
Inventor
Yoichi Kobayashi
洋一 小林
Masakimi Yamauchi
正公 山内
Makoto Iwane
真 岩根
Hideo Maki
秀郎 眞木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Oriented Technology Research Advancement Institution
Sasaki Co Ltd
Toshiba Plant Construction Corp
Original Assignee
Bio Oriented Technology Research Advancement Institution
Sasaki Co Ltd
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Oriented Technology Research Advancement Institution, Sasaki Co Ltd, Toshiba Plant Construction Corp filed Critical Bio Oriented Technology Research Advancement Institution
Priority to JP10300421A priority Critical patent/JP2000119114A/en
Publication of JP2000119114A publication Critical patent/JP2000119114A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a disinfection system designed to efficiently kill harmful microorganisms or the like contaminating a plant raising solution with ozone gas. SOLUTION: This disinfection system works as follows: a fertilizer component-contg. solution returned from raising beds is first subjected to temperature rise to 20-28 deg.C in a recovery tank 1; the resulting solution and ozone gas afforded by an ozonizer 38 are mixed together in an ozone mixer 8 and then brought into a bubble disperse unit 17 where the mixture is made into a solution dispersed with ozone microbubbles, and the solution is subsequently agitated in a gas-liquid contact unit 18 to effect killing microorganisms or the like in the solution by the aid of gas-liquid contact; the resulting solution thus disinfected is allowed to flow, via a gas-liquid separation unit 21, into a fertilizer component replenishing tank 26 where the solution is regulated with fertilizer components and then fed, through a discharge pump 33, to the raising beds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は植物の養液栽培ベッ
ドなどに循環使用される栽培用溶液の殺菌方法および殺
菌装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for disinfecting a cultivating solution circulated in a hydroponic bed for plants.

【0002】[0002]

【従来の技術】従来から、肥料成分を含む溶液を栽培床
に循環させて野菜などの植物を効率よく栽培する、いわ
ゆる養液栽培法が広く普及している。使用される溶液に
は窒素、燐酸、カリの3主要成分の他に、カルシウム、
マグネシウムや鉄分等のミネラル成分およびその他の植
物に必須な成分が所望の量比で含有される。しかしこの
ように溶液を循環使用すると、種々の病原菌が溶液中に
増加し、病害により植物が生育不良を起こしたり枯死し
たりする。このような植物に対する悪影響を未然に防止
するためは、循環する溶液を殺菌することが有効であ
る。
2. Description of the Related Art Conventionally, a so-called hydroponic method for cultivating plants such as vegetables efficiently by circulating a solution containing a fertilizer component through a cultivation bed has been widely used. In addition to the three main components of nitrogen, phosphoric acid and potassium, the solution used is calcium,
Mineral components such as magnesium and iron and other components essential for plants are contained in desired ratios. However, when the solution is circulated in this manner, various pathogens increase in the solution, and the disease causes the plants to grow poorly or die. In order to prevent such adverse effects on plants, it is effective to sterilize the circulating solution.

【0003】一方、従来から簡便な殺菌方法としてオゾ
ンの強い酸化力を利用したオゾン殺菌法が知られてい
る。従来のオゾン殺菌法は、空気に高電圧放電をして酸
素をオゾンに変換するオゾン発生装置を使用し、発生し
たオゾンを含む空気(以下このようなオゾンを含む空気
をオゾンガスという)を処理溶液に溶解させて殺菌する
ものである。溶解状態のオゾンにより殺菌を行う場合に
は、殺菌力が比較的低いため、空気中のオゾン濃度を1
000ppm以上とした高濃度のオゾンガスを使用して
溶液中のオゾン濃度を高める必要がある。その際、でき
るだけ多くのオゾンガスを水に溶解させるために、水温
をかなり低い(通常10℃以下)状態に維持することが
重要になる。
[0003] On the other hand, an ozone sterilization method utilizing the strong oxidizing power of ozone is conventionally known as a simple sterilization method. The conventional ozone sterilization method uses an ozone generator that converts oxygen into ozone by discharging a high voltage to air, and converts the air containing generated ozone (hereinafter, such air containing ozone is referred to as ozone gas) into a processing solution. To be sterilized. When sterilizing with ozone in a dissolved state, the sterilizing power is relatively low.
It is necessary to increase the ozone concentration in the solution by using a high concentration ozone gas of 000 ppm or more. At that time, in order to dissolve as much ozone gas as possible in water, it is important to maintain the water temperature at a considerably low (usually 10 ° C. or lower) state.

【0004】[0004]

【発明が解決しようとする課題】しかし上記のように高
濃度のオゾンガスを使用すると、例えば殺菌装置を栽培
用温室内に設けた場合に大量のオゾンガスが温室内に放
散し、植物葉が酸化障害を起こしたり、作業者に悪影響
を及ぼすという問題があった。また殺菌後の溶液中にも
大量のオゾン成分が残留する傾向にあり、それによる植
物根の酸化障害が生じることもある。しかも高濃度もし
くは容量の大きいオゾン発生装置を必要とするので、コ
スト高になるという問題もあった。そこで本発明は、こ
のような問題を解決する植物栽培用溶液の殺菌方法およ
び殺菌装置を提供することを課題とするものである。
However, when high-concentration ozone gas is used as described above, a large amount of ozone gas is diffused into the greenhouse, for example, when a sterilizer is installed in the greenhouse for cultivation, and the leaves of the plant are oxidized. Or cause adverse effects on workers. Also, large amounts of ozone components tend to remain in the solution after sterilization, which may cause oxidative damage to plant roots. In addition, since an ozone generator having a high concentration or a large capacity is required, there is a problem that the cost is increased. Accordingly, an object of the present invention is to provide a method and an apparatus for disinfecting a solution for plant cultivation that solve such problems.

【0005】[0005]

【課題を解決するための手段】前記課題を解決する請求
項1に記載の発明は、植物栽培用の溶液を殺菌する方法
において、ポンプを用いて、その負圧側よりオゾンガス
を吸引して、加圧状態で溶液にそれを溶解し、ついでそ
の溶液を大気圧下に減圧することにより、溶解するオゾ
ンを溶液中に微細なオゾン気泡に変換して分散混入し、
気液接触により溶液中の微生物を殺菌することを特徴と
する植物栽培用溶液の殺菌方法である。
According to a first aspect of the present invention, there is provided a method of sterilizing a solution for plant cultivation, wherein ozone gas is suctioned from a negative pressure side of the solution using a pump. By dissolving it in a solution under pressure, and then reducing the solution to atmospheric pressure, the dissolved ozone is converted into fine ozone bubbles in the solution and dispersed and mixed,
A method for sterilizing a plant cultivation solution, which comprises sterilizing microorganisms in the solution by gas-liquid contact.

【0006】上記殺菌方法は、気体状のオゾンを圧力に
より、溶液に溶解し、ついで減圧して溶解オゾンを微細
な気泡に変換するようにしたので、結果として溶液中に
多数分散混入された微細なオゾン気泡と溶液中の微生物
が気液境界部分で接触することができる。実験によれ
ば、このような気液接触部でのオゾン殺菌効率は従来の
液体中での殺菌効率より高く、比較的低いオゾン濃度の
気泡でも迅速な殺菌が行えることが判った。そのため温
室内に放出されるオゾン濃度および殺菌後の溶液に含ま
れるオゾン濃度なども極めて低くできるので、植物の葉
や根に対する酸化障害も回避できる。またオゾン気泡中
のオゾン濃度を低くできるので、肥料などの有効成分の
変質等も抑制することができる。さらにオゾン発生装置
の容量等も小さくできる。
In the above sterilization method, gaseous ozone is dissolved in a solution by pressure, and then the pressure is reduced to convert dissolved ozone into fine bubbles. As a result, a large number of fine ozone dispersed and mixed in the solution are obtained. Ozone bubbles and microorganisms in the solution can come into contact at the gas-liquid boundary. According to experiments, it has been found that the ozone sterilization efficiency at such a gas-liquid contact portion is higher than the sterilization efficiency in a conventional liquid, and rapid sterilization can be performed even with bubbles having a relatively low ozone concentration. Therefore, the concentration of ozone released into the greenhouse and the concentration of ozone contained in the solution after sterilization can be extremely low, so that oxidation damage to the leaves and roots of the plant can be avoided. In addition, since the ozone concentration in the ozone bubbles can be reduced, alteration of active ingredients such as fertilizers can be suppressed. Further, the capacity of the ozone generator can be reduced.

【0007】請求項2に記載の発明は、請求項1に記載
の殺菌方法の好ましい実施の形態であって、オゾンガス
中のオゾン濃度を600ppm以下とすることを特徴と
するものである。このような範囲のオゾン濃度に維持す
ると、実験によればより安定且つ確実に植物の葉や根に
対する酸化障害を回避して殺菌作用を行わせることがで
き、さらに肥料などの有効成分の変質等もより確実に抑
制できる。請求項3に記載の発明は、請求項1または請
求項2に記載の殺菌方法などの好ましい実施の形態であ
って、溶液中に存在する塊状の固形分をフィルター装置
で除去した後に殺菌することを特徴とするものである。
塊状の固形分中の菌類はオゾン殺菌しにくいので、それ
を除去すると大気中の塵埃等の固形分が溶液に混入する
ような場合でも殺菌処理後の残留菌類を極めて少なくす
ることができる。前記課題を解決する請求項4に記載の
発明は、オゾンを実質的に溶解しない温度に維持して殺
菌する方法である。この発明によれば、気体状のオゾン
が溶液温度の上昇に伴い、水に溶解しにくい性質を利用
し、さらに溶解オゾンを微細な気泡に効率よく変換する
ことができる。
The invention according to claim 2 is a preferred embodiment of the sterilization method according to claim 1, wherein the ozone concentration in the ozone gas is set to 600 ppm or less. By maintaining the ozone concentration in such a range, according to the experiment, it is possible to more stably and reliably avoid the oxidative damage to the leaves and roots of the plant and perform the bactericidal action, and furthermore, to alter the active ingredients such as fertilizers. Can be suppressed more reliably. The invention according to claim 3 is a preferable embodiment of the sterilization method according to claim 1 or 2, wherein sterilization is performed after removing solid solids present in the solution with a filter device. It is characterized by the following.
Since the fungi in the solid mass are hardly ozone-sterilized, the removal of the fungi makes it possible to extremely reduce the residual fungi after the sterilization even if solids such as dust in the air are mixed in the solution. The invention according to claim 4 which solves the above-mentioned problem is a method of sterilizing by maintaining ozone at a temperature that does not substantially dissolve it. According to the present invention, the property that gaseous ozone hardly dissolves in water as the solution temperature rises is utilized, and the dissolved ozone can be efficiently converted into fine bubbles.

【0008】前記課題を解決する請求項5に記載の発明
は、植物栽培用の溶液を殺菌する装置であって、植物の
栽培床からの溶液を回収する回収槽と、該回収槽内の溶
液温度を調整する温度調整手段と、オゾン発生装置と、
回収槽内の溶液にオゾン発生装置からのオゾンガスを混
合して微細なオゾン気泡を溶液中に分散させるオゾンガ
ス混合装置と、該オゾンガス混合装置からのオゾン気泡
と溶液を気液接触させる出口側に設けた気液接触部を備
えていることを特徴とするものである。上記殺菌装置
は、実質的にオゾンが溶解しない温度に回収槽内の溶液
を調整することができ、さらにそのように温度調整した
溶液とオゾン発生装置からのオゾンガスをオゾンガス混
合装置で混合して多数の微細なオゾン気泡を溶液中に分
散して気液接触部で溶液中の菌類とオゾンを十分接触さ
せることができる。そのため温室内に放出されるオゾン
濃度および殺菌後の溶液に含まれるオゾン濃度を極めて
低くできるので、植物の葉や根に対する酸化障害も回避
できる。さらにオゾン発生装置の容量等も小さくでき
る。
According to a fifth aspect of the present invention, there is provided an apparatus for sterilizing a solution for plant cultivation, comprising: a collection tank for collecting a solution from a plant cultivation floor; and a solution in the collection tank. Temperature adjusting means for adjusting the temperature, an ozone generator,
An ozone gas mixing device that mixes ozone gas from an ozone generator into the solution in the recovery tank to disperse fine ozone bubbles in the solution, and an ozone bubble from the ozone gas mixing device is provided at an outlet side for bringing the solution into gas-liquid contact with the solution. And a gas-liquid contact portion. The sterilization apparatus can adjust the solution in the collection tank to a temperature at which ozone is not substantially dissolved, and further mixes the temperature-adjusted solution with the ozone gas from the ozone generator using an ozone gas mixing device. By dispersing the fine ozone bubbles in the solution, the bacteria in the solution can be sufficiently contacted with the ozone at the gas-liquid contact portion. Therefore, the concentration of ozone released into the greenhouse and the concentration of ozone contained in the solution after sterilization can be extremely reduced, so that oxidation damage to the leaves and roots of the plant can be avoided. Further, the capacity of the ozone generator can be reduced.

【0009】請求項6に記載の発明は、請求項5に記載
の殺菌装置の好ましい実施の形態であって、気液接触部
の出口側に肥料成分補給槽が設けられ、肥料成分補給槽
で不足する肥料成分を補給するようになされていること
を特徴とするものである。このような肥料成分補給槽を
設けることにより、植物栽培床へ常に所望の肥料成分濃
度の溶液を供給することができる。
The invention according to claim 6 is a preferred embodiment of the sterilization apparatus according to claim 5, wherein a fertilizer component supply tank is provided on the outlet side of the gas-liquid contact portion, and the fertilizer component supply tank is provided. It is characterized in that it is designed to replenish the insufficient fertilizer components. By providing such a fertilizer component replenishing tank, a solution having a desired fertilizer component concentration can always be supplied to the plant cultivation floor.

【0010】[0010]

【発明の実施の形態】次に、本発明を図面を参照して具
体的に説明する。図1および図2は本発明の殺菌方法を
実施する殺菌装置の1例を示すプロセスフロー図であ
る。先ず図1において、回収槽1には図示しない植物の
栽培床からの溶液を戻すための配管2および不足する水
を補給する配管3が接続される。回収槽1内には溶液温
度をオゾンが実質的に溶解しない温度、例えば20〜2
8℃、好ましくは25〜28℃の範囲に調整する温度調
整手段40が設けられる。この温度調整手段40はコイ
ル状の配管からなる熱交換部4と溶液温度を検出する温
度検出部5、さらに図示しない温度調節器により構成さ
れる。また回収槽1内には、溶液レベルの上限を検出す
る上限レベル検出部6と溶液レベルの下限を検出する下
限レベル検出部7が取り付けられる。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 and FIG. 2 are process flow diagrams showing an example of a sterilization apparatus for performing the sterilization method of the present invention. First, in FIG. 1, a pipe 2 for returning a solution from a plant cultivation bed (not shown) and a pipe 3 for replenishing insufficient water are connected to a recovery tank 1. In the recovery tank 1, the solution temperature is set to a temperature at which ozone is not substantially dissolved, for example, 20 to 2
A temperature adjusting means 40 for adjusting the temperature to 8 ° C., preferably 25 to 28 ° C. is provided. The temperature adjusting means 40 includes a heat exchanging section 4 composed of a coiled pipe, a temperature detecting section 5 for detecting a solution temperature, and a temperature controller (not shown). In the recovery tank 1, an upper limit level detector 6 for detecting the upper limit of the solution level and a lower limit level detector 7 for detecting the lower limit of the solution level are attached.

【0011】回収槽1の下部には気体混入式カスケード
ポンプなどのオゾンガス混合装置8に連通する配管9が
接続され、該配管9の溶液中に存在する塊状の固形分、
例えば粒径10μm以上の固形分を除去するワインドカ
−トリッジフィルター等のフィルター装置10、開閉弁
11およびオゾンガス混合装置8の吸入側の溶液圧力を
検出する連成計12が設けられる。さらにオゾンガス混
合装置8には後述するオゾン発生装置からのオゾンガス
を吸入する配管13が接続され、該配管13には逆流防
止用の電磁弁14が設けられる。なお電磁弁14の代わ
りに逆止弁を使用することもできる。
A pipe 9 communicating with an ozone gas mixing device 8 such as a gas mixing type cascade pump is connected to a lower portion of the recovery tank 1, and a solid content existing in a solution of the pipe 9 is removed.
For example, a filter device 10 such as a wind cartridge filter for removing solids having a particle diameter of 10 μm or more, an on-off valve 11 and a compound meter 12 for detecting the solution pressure on the suction side of the ozone gas mixing device 8 are provided. Further, a pipe 13 for sucking ozone gas from an ozone generator described later is connected to the ozone gas mixing device 8, and the pipe 13 is provided with a solenoid valve 14 for preventing backflow. It should be noted that a check valve may be used instead of the solenoid valve 14.

【0012】オゾンガス混合装置8の出口側に開閉弁1
5および圧力計15aが設けられ、開閉弁15の二次側
にテーパー部16を介して口径の拡大された筒状の気泡
分散部17が接続され、その気泡分散部17の下流側に
はそれと同径で筒状の気液接触部18が接続される。気
泡分散部17はオゾンガス混合装置8から吐出される溶
液の圧力を急激に低下させて微細な多数のオゾン気泡を
溶液中に十分に分散させる作用を有する。気液接触部1
8としては、例えば通過式混合ミキサーが用いられる。
ここで公的に使用される通過式混合ミキサーは、いわゆ
るスタティックミキサーであって、筒状の本体中の長手
方向に沿って左回り螺旋体と右回り螺旋体が交互に装着
され、溶液はそこを通過する間に螺旋体によって乱流状
態となり、分散された多数の微細なオゾン気泡が溶液と
攪拌されて十分に気液接触されるようになっている。さ
らにテーパー部16にはドレン配管19が接続され、該
ドレン管19に開閉弁20が設けられる。
An on-off valve 1 is provided on the outlet side of the ozone gas mixing device 8.
5 and a pressure gauge 15a are provided, and a cylindrical bubble dispersing portion 17 having an enlarged diameter is connected to a secondary side of the on-off valve 15 via a tapered portion 16, and a downstream side of the bubble dispersing portion 17 is connected thereto. A cylindrical gas-liquid contact portion 18 having the same diameter is connected. The bubble dispersing portion 17 has an action of rapidly reducing the pressure of the solution discharged from the ozone gas mixing device 8 to sufficiently disperse a large number of fine ozone bubbles in the solution. Gas-liquid contact part 1
For example, a passing type mixing mixer is used as 8.
The pass-type mixing mixer used publicly here is a so-called static mixer, in which a left-handed spiral and a right-handed spiral are alternately mounted along the longitudinal direction in a cylindrical main body, and the solution passes therethrough. During this time, a turbulent flow occurs due to the spiral, and a large number of dispersed fine ozone bubbles are agitated with the solution so as to be in sufficient gas-liquid contact. Further, a drain pipe 19 is connected to the tapered portion 16, and an on-off valve 20 is provided in the drain pipe 19.

【0013】気液接触部18の下流側には、それと同径
で筒状の気液分離部21が接続される。気液分離部21
の側部には傾斜板22を内部に設けた液出口部23が接
続され、上部には活性炭を収容した気体フィルタ部24
が接続されることがある。そして僅かに気体中に存在す
るオゾンガスは気体フィルタ部24で吸着除去されてか
ら放出される。なお液出口部23中の傾斜板22は、混
入する微細な気泡を気液分離部21に戻す作用をする。
液出口部23の下流側は連結配管25を介して肥料成分
補給槽26に接続される。肥料成分補給槽26には制御
装置を有する肥料成分補給部27が設けられ、該肥料成
分補給槽26内に肥料濃度変化を電気伝導度の変化とし
て検出する伝導度計(ECセンサー)28が設置され
る。
Downstream of the gas-liquid contact portion 18, a cylindrical gas-liquid separation portion 21 having the same diameter as the gas-liquid contact portion 18 is connected. Gas-liquid separation unit 21
Is connected to a liquid outlet 23 having an inclined plate 22 therein, and an upper portion is provided with a gas filter 24 containing activated carbon.
May be connected. Then, the ozone gas slightly present in the gas is released after being adsorbed and removed by the gas filter unit 24. Note that the inclined plate 22 in the liquid outlet 23 has a function of returning fine air bubbles mixed into the gas-liquid separator 21.
The downstream side of the liquid outlet 23 is connected to a fertilizer component supply tank 26 via a connection pipe 25. A fertilizer component replenishing unit 27 having a control device is provided in the fertilizer component replenishment tank 26, and a conductivity meter (EC sensor) 28 that detects a change in fertilizer concentration as a change in electric conductivity is installed in the fertilizer component replenishment tank 26. Is done.

【0014】肥料成分補給槽26の上部に2本の肥料成
分供給配管29、30が接続され、肥料成分補給部27
からの制御指令に基づきそれぞれの配管に設けた電磁弁
(図示せず)が開閉制御されて、異なる肥料成分が所定
割合で肥料成分補給槽26内に適宜供給される。なお、
肥料成分供給配管を3本以上接続してより多種の肥料を
供給きるようにすることができる。さらに肥料成分補給
槽26には、溶液レベルの上限を検出する上限レベル検
出部31と溶液レベルの下限を検出する下限レベル検出
部32が取り付けられる。肥料成分補給槽26の下部に
は図示しない植物の栽培床に殺菌済みの溶液を供給する
ために、排出ポンプ33を設けた配管33aが接続され
る。なおオゾンガス混合装置8は金属溶出等の腐食を防
止するために耐腐性の良いステンレス製などの材料を液
接触部に使用することが好ましく、配管9を含む溶液の
流通するそのほかの各機器は塩化ビニール樹脂などの樹
脂製とすることができる。
Two fertilizer component supply pipes 29 and 30 are connected to the upper part of the fertilizer component supply tank 26,
The electromagnetic valves (not shown) provided in the respective pipes are controlled to open and close based on the control command from, and different fertilizer components are appropriately supplied into the fertilizer component supply tank 26 at a predetermined ratio. In addition,
By connecting three or more fertilizer component supply pipes, more kinds of fertilizer can be supplied. Further, the fertilizer component replenishment tank 26 is provided with an upper limit level detector 31 for detecting the upper limit of the solution level and a lower limit level detector 32 for detecting the lower limit of the solution level. A pipe 33a provided with a discharge pump 33 is connected to a lower part of the fertilizer component supply tank 26 in order to supply a sterilized solution to a cultivation bed of a plant (not shown). It is preferable that the ozone gas mixing device 8 uses a material such as stainless steel having good corrosion resistance for the liquid contact portion in order to prevent corrosion such as metal elution, and other devices through which the solution including the pipe 9 flows are used. It can be made of resin such as vinyl chloride resin.

【0015】図2はオゾンガス混合装置8に接続される
オゾン発生装置28部分を詳細に示すもので、シリカゲ
ルなどを充填した気体乾燥装置34の入口側に開閉弁3
5を介して大気に開口する配管36が接続され、出口側
に配管37を介してオゾン発生装置38が接続される。
オゾン発生装置38の出口側から所定濃度のオゾンガス
を含む空気が配管13を経てオゾンガス混合装置8に供
給される。なおオゾンガスが流通する配管類は、耐食性
および簡便性から例えばシリコンチューブ等を使用する
ことが好ましい。
FIG. 2 shows the ozone generator 28 connected to the ozone gas mixing device 8 in detail. The opening / closing valve 3 is provided at the inlet side of a gas drying device 34 filled with silica gel or the like.
A pipe 36 that opens to the atmosphere is connected through the pipe 5, and an ozone generator 38 is connected to the outlet side through a pipe 37.
Air containing a predetermined concentration of ozone gas is supplied from the outlet side of the ozone generator 38 to the ozone gas mixing device 8 via the pipe 13. In addition, it is preferable to use, for example, a silicon tube for piping through which ozone gas flows, from the viewpoint of corrosion resistance and simplicity.

【0016】次に、上記装置を使用して植物栽培用溶液
を殺菌する方法を説明する。先ず植物の栽培床からの肥
料成分を含む溶液は配管2により回収槽1に戻される。
溶液レベルが下限レベル以下になると下限レベル検出部
7の信号により運転停止状態になる。なお回収槽1内へ
の配管2からの戻り溶液量が少ないときは、適宜配管3
から新しい水を回収槽1内に供給する。回収槽1内の溶
液は前述のように熱交換部4により予め設定された20
〜28℃の範囲に調整される。例えば設定した温度が2
5℃である場合、溶液温度が25℃より下降したとき
は、それを検出する温度検出部5の信号により図示しな
い温度制御器が設定値に復帰するように熱交換部4への
加熱源(例えば加熱用蒸気)の量を増加させる。逆に溶
液温度が25℃を越えて上昇したときは、加熱源の量を
減少させるように制御する。さらに溶液の温度が28℃
を越えると植物に悪影響を及ぼすおそれがあるので、熱
交換部4へ冷却水などを供給して温度を安全領域に急速
に戻すように制御する。
Next, a method for sterilizing a plant cultivation solution using the above apparatus will be described. First, the solution containing the fertilizer component from the plant cultivation bed is returned to the collection tank 1 by the pipe 2.
When the solution level falls below the lower limit level, the operation is stopped by a signal from the lower limit level detector 7. When the amount of the solution returned from the pipe 2 into the recovery tank 1 is small, the pipe 3
Supplies fresh water into the recovery tank 1 from the tank. As described above, the solution in the recovery tank 1 is set to 20
Adjusted to the range of ~ 28 ° C. For example, if the set temperature is 2
When the temperature is 5 ° C., when the temperature of the solution falls below 25 ° C., the heat source (not shown) to the heat exchange unit 4 is returned to a set value by a temperature controller (not shown) according to a signal from the temperature detecting unit 5 for detecting the temperature. For example, the amount of heating steam) is increased. Conversely, when the solution temperature rises above 25 ° C., control is performed to reduce the amount of the heating source. Further, the temperature of the solution is 28 ° C.
If the temperature exceeds the limit, the plant may be adversely affected. Therefore, cooling water or the like is supplied to the heat exchange unit 4 so that the temperature is controlled so as to quickly return to the safe area.

【0017】上記溶液温度の設定は、溶液へのオゾンの
溶解度と加熱に要するエネルギーコストのバランスから
最適値に設定される。因みにオゾンガス濃度が600p
pmのときの計算上の飽和水中オゾン濃度は、温度が1
5℃、20℃、28℃のとき、順に0.42mg/l,
0.37mg/l,0.31mg/lであり、温度が高
くなるほど溶解度は下がり、多くのオゾンを微小気泡状
態で殺菌に使用することができる。
The temperature of the solution is set to an optimum value in consideration of the balance between the solubility of ozone in the solution and the energy cost required for heating. By the way, ozone gas concentration is 600p
The calculated ozone concentration in saturated water at pm is 1
0.45 mg / l at 5 ° C., 20 ° C. and 28 ° C.
0.37 mg / l and 0.31 mg / l. The higher the temperature, the lower the solubility, and more ozone can be used for sterilization in the state of microbubbles.

【0018】溶液の送液開始の信号により、オゾン発生
装置38とオゾンガス混合装置8が始動する。すると回
収槽1の溶液が配管9を経てオゾンガス混合装置8に吸
入され、それと共に配管13のラインが負圧になり、大
気中の空気が配管36から吸い込まれて気体乾燥装置3
4で乾燥され、さらにオゾン発生装置38を通過する間
に空気の一部がオゾンに変換される。このオゾンガスは
オゾンガス混合装置8に吸入されて前記溶液と混合さ
れ、次いで出口側から吐出されて気泡分散部17で急激
に圧力低下して微細なオゾン気泡、例えば20〜80μ
m程度の粒径を有する多数のオゾン気泡として溶液中に
分散される。なお回収槽1の溶液レベルが下限レベル検
出部7の位置まで低下したときは、その信号によりオゾ
ン発生装置38とオゾンガス混合装置8が停止すると共
に、逆流防止用の電磁弁14が閉じる。この電磁弁14
が閉じることによりオゾンガス混合装置8の出口側ヘッ
ドによって溶液がオゾン発生装置38側に逆流すること
を防止する。
The ozone generator 38 and the ozone gas mixing device 8 are started by a signal for starting the solution feeding. Then, the solution in the recovery tank 1 is sucked into the ozone gas mixing device 8 via the pipe 9, and the line of the pipe 13 becomes negative pressure, and the air in the atmosphere is sucked from the pipe 36 and the gas drying device 3
At 4, a part of the air is converted to ozone while passing through the ozone generator 38. This ozone gas is sucked into the ozone gas mixing device 8 and mixed with the solution, then discharged from the outlet side, and the pressure is rapidly reduced in the bubble dispersing portion 17 to cause fine ozone bubbles, for example, 20 to 80 μm.
It is dispersed in the solution as a number of ozone bubbles having a particle size of about m. When the solution level in the recovery tank 1 has dropped to the position of the lower limit level detector 7, the signal stops the ozone generator 38 and the ozone gas mixer 8 and closes the backflow prevention electromagnetic valve 14. This solenoid valve 14
Closing prevents the solution from flowing back to the ozone generator 38 side by the outlet side head of the ozone gas mixing device 8.

【0019】オゾンガス混合装置8内では、例えば4K
g/cm2 G程度の圧力で溶液とオゾンガスが混合され
るが、その圧力は圧力計15aを監視しながら開閉弁1
5を調整することにより設定される。またオゾンガス混
合装置8への溶液吸入量は連成計12の圧力を監視しな
がら開閉弁11を調整することにより設定され、オゾン
ガス混合装置8へのオゾンガスの吸入量は開閉弁35を
調整することにより設定される。さらにオゾンガスの濃
度はオゾン発生装置38の濃度調整部(図示せず)によ
り設定される。微細なオゾン気泡を多数分散した気泡分
散部17の溶液は次に気液接触部18に入り、そこで溶
液中の菌類とオゾン気泡が十分に接触されて効率のよい
殺菌操作が行われる。そして殺菌された溶液は残留する
オゾン気泡と共に気液分離部21に流入し、そこで気体
成分と液体成分が分離され、気体成分は気体フィルタ部
24でオゾンガスが吸着除去されて放出される。そして
液体成分、すなわち溶液は液出口部23および連結配管
25を経て肥料成分補給槽26に流入する。なお、溶液
が液出口部23を通過する間に残存する僅かな気泡は、
傾斜板22により気液分離部21に戻される。
In the ozone gas mixing device 8, for example, 4K
The solution and the ozone gas are mixed at a pressure of about g / cm 2 G, and the pressure is monitored while monitoring the pressure gauge 15a.
5 is adjusted. The amount of solution sucked into the ozone gas mixing device 8 is set by adjusting the on-off valve 11 while monitoring the pressure of the compound meter 12, and the amount of ozone gas sucked into the ozone gas mixing device 8 is adjusted by adjusting the on-off valve 35. Is set by Further, the concentration of the ozone gas is set by a concentration adjusting section (not shown) of the ozone generator 38. The solution in the bubble dispersing section 17 in which a large number of fine ozone bubbles are dispersed then enters the gas-liquid contact section 18, where the bacteria in the solution and the ozone bubbles are sufficiently contacted, and an efficient sterilization operation is performed. Then, the sterilized solution flows into the gas-liquid separation unit 21 together with the remaining ozone bubbles, where the gas component and the liquid component are separated, and the gas component is adsorbed and removed by the gas filter unit 24 and released. The liquid component, that is, the solution, flows into the fertilizer component supply tank 26 via the liquid outlet 23 and the connection pipe 25. The slight bubbles remaining while the solution passes through the liquid outlet 23 are:
It is returned to the gas-liquid separation unit 21 by the inclined plate 22.

【0020】図3は気泡分散部17から気液接触部18
を経て気体分離部21に至る溶液中のオゾン気泡の状態
を模式的に示す図である。図から明らかなように、気泡
分散部17内では多数の微細なオゾン気泡が溶液中に均
一に分散されており、気液接触部18を通過する間に攪
拌されて微生物を殺菌しながら次第にオゾンが消費さ
れ、気泡径が減少すると共に見かけ上の気泡数も少なく
なっていく。そして気液接触部18から流出した溶液中
に残存するオゾン気泡は気体分離部21で分離され、さ
らに液出口部23に流出した溶液中に僅かに残留するオ
ゾン気泡は傾斜板22に捕捉されて上昇しながら気体分
離部21に戻される。肥料成分補給槽26に流入した溶
液中の肥料濃度は伝導度計28で測定され、もし所望の
値より濃度が低下したときは、肥料成分補給部27から
肥料補給指令が出され、肥料成分供給配管29、30か
ら肥料成分が肥料成分補給槽26内に供給される。
FIG. 3 is a view showing a state in which the bubble dispersing section 17 is connected to the gas-liquid contact section 18.
FIG. 4 is a diagram schematically showing a state of ozone bubbles in a solution reaching a gas separation unit 21 through the above. As is apparent from the figure, a number of fine ozone bubbles are uniformly dispersed in the solution in the bubble dispersing portion 17 and are stirred while passing through the gas-liquid contact portion 18 to gradually sterilize the microorganisms while disinfecting microorganisms. Is consumed, the bubble diameter decreases, and the apparent number of bubbles also decreases. The ozone bubbles remaining in the solution flowing out of the gas-liquid contact section 18 are separated by the gas separating section 21, and the ozone bubbles slightly remaining in the solution flowing out of the liquid outlet section 23 are captured by the inclined plate 22. It is returned to the gas separation unit 21 while rising. The concentration of the fertilizer in the solution flowing into the fertilizer component replenishing tank 26 is measured by a conductivity meter 28. If the concentration drops below a desired value, a fertilizer replenishment command is issued from the fertilizer component replenishment unit 27 and the fertilizer component supply is performed. Fertilizer components are supplied from the pipes 29 and 30 into the fertilizer component supply tank 26.

【0021】肥料成分補給槽26内の液レベルが上限レ
ベル検出部31の位置まで上昇したとき、排出ポンプ3
3が起動して殺菌された溶液が植物栽培床に供給され
る。なお溶液を貯蔵タンクに送り、そこから適宜各栽培
床に供給してもよい。排出運転することにより肥料成分
補給槽26内の液レベルが下限レベル検出部32の位置
まで下降したとき、排出ポンプ33を停止させる。以下
排出ポンプ33は同様な制御指令により起動停止を繰り
返す。なお、上記各機器の操作は図示しないコンピュー
タやシーケンサ等の制御手段により集中して行うことが
できる。また、上記肥料成分補給槽26を省略し、連結
配管25を直接栽培ベット給液管に接続してもよい。こ
の場合には、ポンプでもあるオゾンガス混合装置8が給
液ポンプを兼ねる。
When the liquid level in the fertilizer component replenishing tank 26 rises to the position of the upper limit level detecting section 31, the discharge pump 3
3 is activated and the sterilized solution is supplied to the plant growing bed. In addition, you may send a solution to a storage tank and supply it to each cultivation bed suitably from there. When the liquid level in the fertilizer component replenishing tank 26 drops to the position of the lower limit level detection unit 32 by performing the discharging operation, the discharging pump 33 is stopped. Hereinafter, the discharge pump 33 is repeatedly started and stopped by the same control command. The operation of each of the above-described devices can be centrally performed by control means such as a computer and a sequencer (not shown). Further, the fertilizer component supply tank 26 may be omitted, and the connection pipe 25 may be directly connected to the cultivation bed liquid supply pipe. In this case, the ozone gas mixing device 8 which is also a pump doubles as a liquid supply pump.

【0022】[0022]

【実施例】次に、本発明の実施例を説明する。図1の装
置を使用して植物栽培用の溶液の殺菌を行った。溶液中
にはトマト青枯れ病病源菌Pseudomos sol
anacearum(細菌)とトマト委ちょう病病源菌
Fussarium oxysorumレースJ3
(糸状菌)を使用した。細菌の場合は溶液中の初期濃度
が1ml中約211000個、糸状菌の場合は溶液中の
初期濃度が1ml中約6400個混入した。回収槽1内
の溶液温度を25℃に設定し、オゾンガス混合装置8に
吸入される溶液を毎分10リットル、濃度600ppm
のオゾンガスを毎分1リットルになるように開閉弁1
1、35、15を調整した。オゾンガス混合装置8から
流出し気泡分散部17で分散されたオゾン気泡は20〜
80μmの範囲であった。肥料成分補給槽26で菌の存
在を測定した結果、いずれの菌の場合でも検出されなか
った。また肥料成分補給槽26における残留オゾンガス
濃度は検出限界以下(0.02ppm以下)と少なく、
植物への影響を及ぼす値以下であった。なお溶液中の肥
料成分の減少は殆どなかったが、マンガンのみ若干低下
の傾向にあった。
Next, embodiments of the present invention will be described. The solution for plant cultivation was sterilized using the apparatus of FIG. Pseudomos sol in the solution contains the tomato bacterial wilt pathogen Pseudomos sol.
anacearum (bacteria) and Fusarium oxysorum race J3
(Filamentous fungus) was used. In the case of bacteria, the initial concentration in the solution was about 211,000 in 1 ml, and in the case of filamentous fungi, the initial concentration in the solution was about 6,400 in 1 ml. The temperature of the solution in the recovery tank 1 was set to 25 ° C., and the solution sucked into the ozone gas mixing device 8 was supplied at a rate of 10 liters per minute and a concentration of 600 ppm.
On-off valve 1 so that the ozone gas of the air becomes 1 liter per minute
1, 35 and 15 were adjusted. The ozone bubbles flowing out of the ozone gas mixing device 8 and dispersed in the bubble dispersing section 17 are 20 to
It was in the range of 80 μm. As a result of measuring the presence of bacteria in the fertilizer component replenishing tank 26, none of the bacteria was detected. In addition, the residual ozone gas concentration in the fertilizer component replenishing tank 26 is as low as the detection limit or less (0.02 ppm or less),
It was below the value that affects plants. The fertilizer component in the solution hardly decreased, but only manganese tended to slightly decrease.

【0023】比較のために溶液温度を15℃に下げ、そ
の他は上記と同様の条件で同じ菌の殺菌実験を行った。
肥料成分補給槽26で菌の存在を測定した結果、細菌の
場合は1ml中に5個、糸状菌の場合は1ml中に12
個存在した。また肥料成分補給槽26における残留オゾ
ンガス濃度は0.04ppm程度と高く、植物の根に対
する酸化障害のおそれがあるレベルであった。さらに溶
液中の肥料成分の減少は、マンガンの低下が著しく、直
ちに補給が必要なものでであった。なお、他の成分の減
少は認められなかった。
For comparison, the same bacteria were sterilized under the same conditions as above except that the solution temperature was lowered to 15 ° C.
As a result of measuring the presence of bacteria in the fertilizer component replenishment tank 26, 5 bacteria per 1 ml for bacteria and 12 bacteria per 1 ml for filamentous fungi.
Existed. The residual ozone gas concentration in the fertilizer component replenishing tank 26 was as high as about 0.04 ppm, which was a level that might cause oxidative damage to plant roots. Furthermore, the decrease in the fertilizer component in the solution was accompanied by a remarkable decrease in manganese, which required immediate replenishment. No decrease in other components was observed.

【0024】[0024]

【発明の効果】以上のように請求項1に記載の植物栽培
用溶液の殺菌方法は、ポンプを用いて、その負圧側より
オゾンガスを吸引して、加圧状態で溶液にそれを溶解
し、ついで、その溶液を大気圧下に減圧することによ
り、溶解するオゾンを溶液中に微細なオゾン気泡に変換
して分散混入し、気液接触により溶液中の微生物を殺菌
することを特徴としたので、気液接触部でのオゾン殺菌
効率は従来の液体中での殺菌効率より高く、比較的低い
オゾン濃度の気泡でも迅速な殺菌が行える。そのため温
室内に放出されるオゾン濃度および殺菌後の溶液に含ま
れるオゾン濃度を極めて低くでき、植物の葉や根に対す
る酸化障害を回避できる。またオゾン気泡中のオゾン濃
度を低くできるので、肥料などの有効成分の変質等も抑
制することができる。さらにオゾン発生装置の容量等も
小さくできる。
As described above, according to the method for sterilizing a plant cultivation solution according to claim 1, ozone gas is sucked from its negative pressure side using a pump, and the ozone gas is dissolved in the solution in a pressurized state. Then, by decompressing the solution under atmospheric pressure, the dissolved ozone is converted into fine ozone bubbles in the solution, dispersed and mixed, and the microorganisms in the solution are sterilized by gas-liquid contact. The sterilization efficiency of ozone at the gas-liquid contact portion is higher than that of conventional liquids, and rapid sterilization can be performed even with bubbles having a relatively low ozone concentration. Therefore, the concentration of ozone released into the greenhouse and the concentration of ozone contained in the solution after sterilization can be extremely reduced, and oxidative damage to the leaves and roots of the plant can be avoided. In addition, since the ozone concentration in the ozone bubbles can be reduced, alteration of active ingredients such as fertilizers can be suppressed. Further, the capacity of the ozone generator can be reduced.

【0025】また請求項2に記載の植物栽培用溶液の殺
菌方法は、オゾンガス中のオゾン濃度を600ppm以
下とすることを特徴とし、このような範囲のオゾン濃度
に維持すると、より安定且つ確実に植物の葉や根に対す
る酸化障害を回避して殺菌作用を行わせることができ、
さらに肥料などの有効成分の変質等もより確実に抑制で
きる。さらに請求項3に記載の植物栽培用溶液の殺菌方
法は、溶液中に存在する塊状の固形分をフィルター装置
で除去した後に殺菌することを特徴とし、塊状の固形分
中の菌類を除去すると、大気中の塵埃などの固形分が溶
液に混入するような場合でも、殺菌処理後の残留菌類を
極めて少なくすることができる。さらに請求項4に記載
の植物栽培用溶液の殺菌方法は、溶液の温度を、オゾン
が実質的に溶解しない程度に維持して殺菌するものであ
るから、少ないオゾン供給量で、液体中での殺菌効果を
高めることができる。
The method for disinfecting a solution for plant cultivation according to claim 2 is characterized in that the ozone concentration in the ozone gas is set to 600 ppm or less. It is possible to perform a bactericidal action by avoiding oxidative damage to plant leaves and roots,
Further, deterioration of active ingredients such as fertilizers can be suppressed more reliably. Furthermore, the method for sterilizing a plant cultivating solution according to claim 3 is characterized in that sterilization is performed after removing solid lumps present in the solution with a filter device, and when removing fungi in the solid lumps, Even in the case where solids such as dust in the air are mixed into the solution, residual bacteria after the sterilization treatment can be extremely reduced. Furthermore, in the method for sterilizing a plant cultivating solution according to claim 4, sterilization is performed by maintaining the temperature of the solution at a level at which ozone is not substantially dissolved. The bactericidal effect can be enhanced.

【0026】また請求項5に記載の植物栽培用溶液の殺
菌装置は、植物の栽培床からの溶液を回収する回収槽
と、該回収槽内の溶液温度を調整する温度調整手段と、
オゾン発生装置と、回収槽内の溶液にオゾン発生装置か
らのオゾンガスを混合して微細なオゾン気泡を分散させ
るオゾンガス混合装置と、該オゾンガス混合装置からの
オゾン気泡と溶液を気液接触させる気液接触部を備えて
いることを特徴とし、オゾンを実質的に溶解しない温度
に回収槽内の溶液温度に調整することができ、さらにそ
のように温度調整した溶液とオゾン発生装置からのオゾ
ンガスをオゾンガス混合装置で混合して多数の微細なオ
ゾン気泡を溶液中に分散して気液接触部で溶液中の菌類
とオゾンを十分接触させることができる。そのため温室
内に放出されるオゾン濃度および殺菌後の溶液に含まれ
るオゾン濃度を極めて低くできるので、植物の葉や根に
対する酸化障害も回避できる。さらにオゾン発生装置の
容量等も小さくできる。さらに請求項6に記載の植物栽
培用溶液の殺菌装置は、気液接触部の出口側に肥料成分
補給槽が設けられ、肥料成分補給槽で不足する肥料成分
を補給するようになされていることを特徴とし、植物栽
培床へ常に所望の肥料成分濃度の溶液を供給することが
できる。
According to a fifth aspect of the present invention, there is provided an apparatus for sterilizing a plant cultivating solution, comprising: a collecting tank for collecting a solution from a plant cultivation bed; a temperature adjusting means for adjusting the temperature of the solution in the collecting tank;
An ozone generator, an ozone gas mixing device for mixing ozone gas from the ozone generator into the solution in the recovery tank to disperse fine ozone bubbles, and a gas-liquid for bringing the ozone bubbles from the ozone gas mixing device into contact with the solution. It is characterized by having a contact portion, and can adjust the temperature of the solution in the recovery tank to a temperature at which ozone is not substantially dissolved, and further converts the temperature-adjusted solution and ozone gas from the ozone generator into ozone gas. By mixing with a mixing device, a large number of fine ozone bubbles are dispersed in the solution, and the bacteria in the solution can be sufficiently brought into contact with the ozone at the gas-liquid contact portion. Therefore, the concentration of ozone released into the greenhouse and the concentration of ozone contained in the solution after sterilization can be extremely reduced, so that oxidation damage to the leaves and roots of the plant can be avoided. Further, the capacity of the ozone generator can be reduced. Further, in the sterilizing apparatus for plant cultivation solution according to claim 6, a fertilizer component replenishing tank is provided on the outlet side of the gas-liquid contact part, and the fertilizer component replenishing tank replenishes the insufficient fertilizer component. It is possible to always supply a solution having a desired fertilizer component concentration to the plant cultivation bed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の殺菌方法を実施するための殺菌装置の
1例を示すプロセスフロー図。
FIG. 1 is a process flow diagram showing an example of a sterilization apparatus for performing a sterilization method of the present invention.

【図2】図1におけるオゾンガス混合装置8へのオゾン
ガス供給部分のプロセスフロー図。
FIG. 2 is a process flow chart of an ozone gas supply portion to the ozone gas mixing device 8 in FIG.

【図3】図1における気泡分散部17から気液接触部1
8を経て気体分離部21に至るオゾン気泡の状態を示す
模式的な図。
FIG. 3 is a diagram illustrating a gas-liquid contact portion 1 from a bubble dispersing portion 17 in FIG.
FIG. 8 is a schematic diagram showing a state of ozone bubbles reaching the gas separation unit 21 via 8.

【符号の説明】[Explanation of symbols]

1 回収槽 2 配管 3 配管 4 熱交換部 5 温度検出部 6 上限レベル検出部 7 下限レベル検出部 8 オゾンガス混合装置 9 配管 10 フィルター装置 11 開閉弁 12 連成計 13 配管 14 電磁弁 15 開閉弁 15a 圧力計 16 テーパー部 17 気泡分散部 18 気液接触部 19 ドレン配管 20 開閉弁 21 気液分離部 22 傾斜板 23 液出口部 24 気体フィルタ部 25 連結配管 26 肥料成分補給槽 27 肥料成分補給部 28 伝導度計 29 肥料成分供給配管 30 肥料成分供給配管 31 上限レベル検出部 32 下限レベル検出部 33 排出ポンプ 33a 配管 34 気体乾燥装置 35 開閉弁 36 配管 37 配管 38 オゾン発生装置 40 温度調整手段 REFERENCE SIGNS LIST 1 collection tank 2 pipe 3 pipe 4 heat exchange section 5 temperature detection section 6 upper limit level detection section 7 lower limit level detection section 8 ozone gas mixing device 9 pipe 10 filter device 11 on-off valve 12 compound gauge 13 pipe 14 solenoid valve 15 on-off valve 15a Pressure gauge 16 Taper section 17 Bubble dispersion section 18 Gas-liquid contact section 19 Drain pipe 20 On-off valve 21 Gas-liquid separation section 22 Inclined plate 23 Liquid outlet section 24 Gas filter section 25 Connecting pipe 26 Fertilizer component supply tank 27 Fertilizer component supply section 28 Conductivity meter 29 Fertilizer component supply pipe 30 Fertilizer component supply pipe 31 Upper limit level detector 32 Lower limit level detector 33 Discharge pump 33a Pipe 34 Gas dryer 35 Open / close valve 36 Pipe 37 Pipe 38 Ozone generator 40 Temperature control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 540 C02F 1/50 540A 550 550C // A01G 31/00 601 A01G 31/00 601A (72)発明者 山内 正公 東京都港区西新橋三丁目7番1号 東芝プ ラント建設株式会社内 (72)発明者 岩根 真 東京都港区西新橋三丁目7番1号 東芝プ ラント建設株式会社内 (72)発明者 眞木 秀郎 埼玉県大宮市日進町1−40−2 生物系特 定産業技術研究推進機構内 Fターム(参考) 2B314 MA17 MA48 ND30 PA03 PA13 PB24 PB44 PB55 PD43 4H011 AA01 AA02 DA22 DE10 DE11──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 540 C02F 1/50 540A 550 550C // A01G 31/00 601 A01G 31/00 601A (72) Inventor Masako Yamauchi 3-7-1 Nishishinbashi, Minato-ku, Tokyo Toshiba Plant Construction Co., Ltd. (72) Inventor Makoto Iwan 3-7-1 Nishishinbashi, Minato-ku, Tokyo Toshiba Plant Construction Co., Ltd. (72) Inventor Hideo Maki 1-40-2 Nisshin-cho, Omiya-shi, Saitama F-term in the Research Institute for Biological Sciences (Reference) 2B314 MA17 MA48 ND30 PA03 PA13 PB24 PB44 PB55 PD43 4H011 AA01 AA02 DA22 DE10 DE11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 植物栽培用の溶液を殺菌する方法におい
て、ポンプを用いて、その負圧側よりオゾンガスを吸引
して、加圧状態で溶液にそれを溶解し、ついで、その溶
液を大気圧下に減圧することにより、溶解するオゾンを
溶液中に微細なオゾン気泡に変換して分散混入し、気液
接触により溶液中の微生物を殺菌することを特徴とする
植物栽培用溶液の殺菌方法。
In a method for sterilizing a solution for plant cultivation, ozone gas is sucked from a negative pressure side of the solution using a pump to dissolve it in a pressurized state, and then the solution is subjected to atmospheric pressure. A method for disinfecting a plant cultivation solution, which comprises converting ozone to be dissolved into fine ozone bubbles in a solution by dispersing and dispersing the ozone into the solution, and sterilizing microorganisms in the solution by gas-liquid contact.
【請求項2】 オゾンガス中のオゾン濃度を600pp
m以下とする請求項1に記載の植物栽培用溶液の殺菌方
法。
2. An ozone concentration in ozone gas of 600 pp.
2. The method for sterilizing a plant cultivation solution according to claim 1, wherein m is equal to or less than m.
【請求項3】 溶液中に存在する塊状の固形分をフィル
ター装置で除去した後に殺菌する請求項1または請求項
2に記載の植物栽培用溶液の殺菌方法。
3. The method for sterilizing a solution for plant cultivation according to claim 1, wherein the solid matter present in the solution is removed by a filter device and then sterilized.
【請求項4】 オゾンを実質的に溶解しない温度に維持
して殺菌する請求項1に記載の植物栽培用溶液の殺菌方
法。
4. The method for sterilizing a solution for plant cultivation according to claim 1, wherein the sterilization is performed while maintaining a temperature at which ozone is not substantially dissolved.
【請求項5】 植物栽培用の溶液を殺菌する装置におい
て、植物の栽培床からの溶液を回収する回収槽1と、該
回収槽1内の溶液温度を調整する温度調整手段40と、
オゾン発生装置38と、回収槽1内の溶液にオゾン発生
装置38からのオゾンガスを混合して微細なオゾン気泡
を溶液中に分散させるオゾンガス混合装置8と、該オゾ
ンガス混合装置8からのオゾン気泡と溶液を気液接触さ
せる気液接触部18を備えていることを特徴とする植物
栽培用溶液の殺菌装置。
5. An apparatus for sterilizing a solution for plant cultivation, comprising: a collection tank 1 for collecting a solution from a plant cultivation bed; a temperature adjusting means 40 for adjusting the temperature of the solution in the collection tank 1;
An ozone generator 38, an ozone gas mixer 8 for mixing ozone gas from the ozone generator 38 into the solution in the recovery tank 1 to disperse fine ozone bubbles in the solution, and an ozone bubble from the ozone gas mixer 8. An apparatus for sterilizing a solution for plant cultivation, comprising a gas-liquid contact part 18 for bringing the solution into gas-liquid contact.
【請求項6】 気液接触部18の出口側に肥料成分補給
槽26が設けられ、該肥料成分補給槽26で不足する肥
料成分が補給されるようになされている請求項5に記載
の植物栽培用溶液の殺菌装置。
6. The plant according to claim 5, wherein a fertilizer component replenishing tank 26 is provided on an outlet side of the gas-liquid contact portion 18, and the fertilizer component replenishing tank 26 is replenished with the insufficient fertilizer component. Sterilizer for cultivation solution.
JP10300421A 1998-10-07 1998-10-07 Disinfection of plant raising solution and disinfection system Pending JP2000119114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300421A JP2000119114A (en) 1998-10-07 1998-10-07 Disinfection of plant raising solution and disinfection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10300421A JP2000119114A (en) 1998-10-07 1998-10-07 Disinfection of plant raising solution and disinfection system

Publications (1)

Publication Number Publication Date
JP2000119114A true JP2000119114A (en) 2000-04-25

Family

ID=17884607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300421A Pending JP2000119114A (en) 1998-10-07 1998-10-07 Disinfection of plant raising solution and disinfection system

Country Status (1)

Country Link
JP (1) JP2000119114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510802A (en) * 2005-07-08 2008-04-10 トン レ チョウ Inhibitors of diseases and pests in which fine bubbles composed of oxygen and ozone are dissolved, a method for producing the same, and a method for spraying the same
JP2015037776A (en) * 2013-08-19 2015-02-26 株式会社中西製作所 Rice washing method and rice washer
JP2018111098A (en) * 2018-04-06 2018-07-19 株式会社中西製作所 Rice washing method, rice washing device, and operational method of rice washing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510802A (en) * 2005-07-08 2008-04-10 トン レ チョウ Inhibitors of diseases and pests in which fine bubbles composed of oxygen and ozone are dissolved, a method for producing the same, and a method for spraying the same
JP2015037776A (en) * 2013-08-19 2015-02-26 株式会社中西製作所 Rice washing method and rice washer
JP2018111098A (en) * 2018-04-06 2018-07-19 株式会社中西製作所 Rice washing method, rice washing device, and operational method of rice washing device

Similar Documents

Publication Publication Date Title
KR101446838B1 (en) Reduced-pressure fermenting and drying apparatus
US6279882B1 (en) Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
TW482744B (en) Process for enriching a liquid with oxygen and apparatus for enriching a liquid with oxygen to an oxygen concentration of at least 40 mg/l.
US7493906B2 (en) Distribution/retention plate for minimizing off-gassing
US6568900B2 (en) Pressure swing contactor for the treatment of a liquid with a gas
JP2005312799A (en) Sterilization method
JP6877255B2 (en) Wastewater treatment system and wastewater treatment method
JPH06134467A (en) Vaporizing type heat exchanging system, method of controlling number of bacterial mass solid in recirculating water of said system, water treating method and fluid treating system and method
JP2000513649A (en) Microbial control method using ozone treatment in food processing equipment
KR101194310B1 (en) Reduction apparatus of radon in the groundwater having disinfection means
CA2693357C (en) Oxidation process
CN101558014A (en) A method and an apparatus for treatment of a substance having organic content
JP4305582B2 (en) Cooling tower ozone sterilizer
JP2000119114A (en) Disinfection of plant raising solution and disinfection system
US20140113819A1 (en) High pressure dissolved oxygen generation
JP4869122B2 (en) Cooling method and cooling device
JP2009066467A (en) Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof
CN2285285Y (en) Gas water mixed ozone water purifier
CN212188623U (en) Household efficient ozone nano-bubble water generation system
CN201006028Y (en) Medical appliance decontaminating apparatus
CN106957101A (en) The high-efficient treatment device and handling process of a kind of water body containing microorganism
CN113274899A (en) High concentration ozone water preparation system
AU2001280225A1 (en) A process for producing ozone-containing sterilizing water and an apparatus used therefor
WO2002014226A1 (en) A process for producing ozone-containing sterilizing water and an apparatus used therefor
CN111330468A (en) Household efficient ozone nano-bubble water generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118