JP2000118493A - Fish-tail-fin like propulsion unit - Google Patents

Fish-tail-fin like propulsion unit

Info

Publication number
JP2000118493A
JP2000118493A JP10331842A JP33184298A JP2000118493A JP 2000118493 A JP2000118493 A JP 2000118493A JP 10331842 A JP10331842 A JP 10331842A JP 33184298 A JP33184298 A JP 33184298A JP 2000118493 A JP2000118493 A JP 2000118493A
Authority
JP
Japan
Prior art keywords
fin
propulsion plate
base
shaped
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10331842A
Other languages
Japanese (ja)
Inventor
Hajime Honda
肇 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10331842A priority Critical patent/JP2000118493A/en
Publication of JP2000118493A publication Critical patent/JP2000118493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a propulsion unit to reduce incurring of an energy loss in water. SOLUTION: By studying the structure of the fin of a fish effecting evolution and completion after lapse of 60,000,000 years, a propulsion plate having structure approximately equal thereto and a drive device are provided. Outer edges opened obliquely rearward upward are interconnected through a soft film 11, the rear end of the film 11 is shorter than the tip of an outer edge, and cutting is effected in a shape similar to the tail fin of a fish swimming at a middle speed.

Description

【発明の詳細な説明】 @DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、舟を推進させ、或
いは水中に潜って泳ぐ場合に用いる推進板に関する。 @
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propulsion plate for propelling a boat or swimming underwater. @

【従来の技術】従来は舟を進めるのに、プロペラ、オー
ル等を用い、また潜る時はフィン等を用いた。プロペラ
は汎用されているが、船の走った跡にはプロペラに攪拌
された渦が数百メートルの白波となり、船が遥かに走り
去っているのに水が気泡と共に渦を巻いている。之はエ
ネルギーの浪費である。又オールで漕ぐ場合、オール面
に当たった水は後方にも送られるがオール面の上下方
向、オールの軸方向にも逃げて渦が巻き、推進に寄与し
ないエネルギーが浪費される。潜水した時のフィンも側
方に逃げる水が多く、推進力に較べてエネルギーのロス
が大きい。 @
2. Description of the Related Art Conventionally, propellers, oars and the like have been used for advancing a boat, and fins and the like have been used for diving. Although propellers are widely used, whirlpools agitated by the propellers turn into hundreds of meters of white waves on the track where the ship ran, and water swirls with air bubbles while the ship is far away. This is a waste of energy. In the case of rowing with an oar, water hitting the oar surface is also sent to the rear, but escapes in the vertical direction of the oar surface and in the axial direction of the oar, causing a swirl and wasting energy that does not contribute to propulsion. When diving, the fins also have a large amount of water escaping to the side, resulting in greater energy loss than propulsion. @

【発明が解決しようとする課題】魚をよく観察すると魚
の進んだ跡の水の乱れは極めて小さい。しいらは時速8
0キロで進み、遠距離を移動するが、回遊魚は人間の作
った推進方法よりも遥かに少ないエネルギーで泳ぐから
であろう。魚は6億年の歴史を経て現在の形に到達した
と言われるが、それぞれ最も合理的な推進方法を獲得し
たものと見られる。此の魚の形、鰭の動きを詳しく観察
したところ、非常にエネルギーのロスの少ない動きであ
ることを見付けた。魚の様な生物の細胞構造、構成を我
々人間が作る事は到底不可能で、現在の化学、機械工学
の知識では足もとにも及ばないが、現在我々が到達し得
た工業材料、構造で出来る限り魚を真似しようとしたの
が、本発明の出発点である。対象とした魚は海中の上、
中層を泳ぐ魚で、移動量の少ない底魚は除外した。図1
にボート(1)を漕ぐ場合を例示した。オール(2)を
矢印方向Aに漕ぐと舟は進むが、図2にオール(2)の
先端部を示し、ここで水がどのように押されるかを見
る。矢印方向Aにオール面が動くとオール前面の水はA
方向にも押されるが、上下方向B,Bにも、オール軸先
方向Cにも逃げて渦をつくる。B,B,C方向に逃げた
水は舟の推進には寄与せずエネルギーを消費するから、
人力の中で推進に寄与するエネルギーはかなり小さい。
一方、魚の尾鰭の状態を図3に示す。尾鰭がX−X軸の
周に側方に動く時、尾鰭の基部Pに近いQ点の水は、後
方向Cにも動くが、上下B,B方向にも動き始める。尾
鰭の外縁(3),(3)は先端程広く開き、上下方向
B,Bに鰭面に沿って動く水はB1,B1と斜め上下方
向に動き、更に後方上下の鰭に捕えられて後方に送られ
る。鰭の動き方は、上下外縁部(3),(3)の剛性が
大きくて、たわみ量が小さく、内側面(4)は薄くてた
わみ易いので外縁(3)よりも遅れて動き、あたかも鰭
面の水を掴んで其のまま後方に送る様に働くから、無駄
に上下に逃げる水は少ない。更に図3の鰭の上下先端部
P1−P2を結ぶ線の内側には膜の無い空間分(6)が
有り、此の部分の水は鰭で側方に送られる事は無いから
エネルギーの消費は無い。オールやフィンでは此の部分
も膜になっているから、水を無駄に移動させてエネルギ
ーを消費している。基部Pとそれに続く内側面(4)の
水は図4に示す様に、先に進む外縁部(3)に続く内側
面(4)のたわみに掴まれ、上下外縁部に沿って拡がり
乍ら後方に押されるから、極めてエネルギーロスが少な
い。図5に示す様に魚の尾鰭の内側面(4)の末端部
(5)は、更に一段と薄くなってよくたわみ、図6の矢
印方向に内側面(4)が動いて水を後方に押す時、末端
部(5)は図の様に遅れて大きくたわみ、水を後方に送
る分力を大きくしている。外縁部(3)は、剛性のある
骨状物質で構成され、内側面(4)には基部Pから後方
へ放射状に走る数十乃至数百本の弾性に富む組織のリブ
(10)と、その間をつなぐ可とうせいの膜(11)で
構成されている。外縁部(3)もリブ(10)も魚の筋
肉により、上下に開く角度を変えることが出来る。 @
When observing the fish, the turbulence of the water at the trace of the fish is extremely small. 8
Traveling at 0 km and traveling long distances, migratory fish will swim with far less energy than human-made propulsion methods. The fish are said to have reached their present form after 600 million years of history, each of which appears to have gained the most rational propulsion methods. A close look at the shape of this fish and the movement of the fins revealed that the movement was extremely low in energy loss. It is almost impossible for us to create the cellular structure and composition of living things such as fish, which is far from our current knowledge of chemistry and mechanical engineering, but can be made with the industrial materials and structures we have now reached It was the starting point of the present invention to try to imitate fish as far as possible. The target fish is under the sea,
Fish that swim in the middle class and bottom fish that move less are excluded. FIG.
The case where the boat (1) is rowed is illustrated. When the oar (2) is rowed in the direction of the arrow A, the boat advances. FIG. 2 shows the tip of the oar (2), and sees how the water is pushed. When the all surface moves in the direction of the arrow A, the water in front of the all surface becomes A
Although it is also pushed in the direction, it escapes in both the vertical direction B, B and the all-axis tip direction C to form a vortex. Water escaping in directions B, B and C does not contribute to the propulsion of the boat and consumes energy,
The energy that contributes to propulsion in human power is quite small.
On the other hand, the state of the caudal fin of the fish is shown in FIG. When the caudal fin moves laterally around the XX axis, the water at point Q near the base P of the caudal fin also moves in the backward direction C, but also starts moving in the up and down B and B directions. The outer edges (3) and (3) of the caudal fin open wider toward the tip, and water moving along the fin surface in the vertical direction B, B moves diagonally up and down as B1 and B1, and is further caught by the upper and lower fins and backward Sent to The way the fin moves is that the upper and lower outer edges (3) and (3) have high rigidity and a small amount of deflection, and the inner surface (4) is thin and easy to bend, so it moves later than the outer edge (3), as if it were a fin. Since it works to grab the water on the surface and send it back as it is, little water escapes up and down needlessly. Furthermore, there is a space (6) without a membrane inside the line connecting the upper and lower ends P1-P2 of the fin in FIG. 3, and the water in this part is not sent to the side by the fin, so energy is consumed. There is no. In oars and fins, this part is also a film, so water is wasted and energy is consumed. As shown in FIG. 4, the base P and the water on the inner surface (4) are caught by the deflection of the inner surface (4) following the outer edge (3), which advances, and spread along the upper and lower outer edges. Since it is pushed backward, there is very little energy loss. As shown in FIG. 5, the end (5) of the inner surface (4) of the caudal fin of the fish is further thinned and flexed, and when the inner surface (4) moves in the direction of the arrow in FIG. As shown in the figure, the end portion (5) bends largely with a delay, increasing the component force for sending water backward. The outer edge (3) is made of a rigid bone-like material, and the inner surface (4) has dozens to hundreds of elastic tissue-rich ribs (10) running radially backward from the base P, It is composed of a flexible film (11) that connects between them. Both the outer edge (3) and the rib (10) can change the opening angle up and down by the fish muscle. @

【課題を解決するための手段】本発明は現在入手できる
工業材料を用いて魚の尾鰭に誓い構造を真似るものであ
る。魚の尾鰭の長さは全長の14〜20%位であるか
ら、4〜5メートルのボートであれば約1メートルの長
さの推進鰭でよい。人の力は30分位連続して仕事をす
るとき、動力として約30ワット位より出せないから、
5メートル位の舟を1〜2人で動かすには、モーター出
力にして50〜100ワットあれば、此の推進板はオー
ルで漕ぐ以上の速度を出す事ができる。又、潜水用のフ
ィンに応用すれば、遥かに小さい力で同じ推進力を得ら
れる。又現在の太陽電池の出力は毎平方メートル当たり
約100ワット位あるから、舟のデッキに1平方米の太
陽電池を設けてモーターを駆動すれば、略人力位の推進
力が得られる。この推進板の応用分野は、釣船、救命
艇、遊覧ボート、フィン、スポーツ用舟艇、オール、か
い等であり、強い材料が得られれば、かなりの高速を得
る事が出来る。 @
SUMMARY OF THE INVENTION The present invention mimics the oath structure of fish caudal fins using currently available industrial materials. The length of the caudal fin of a fish is about 14 to 20% of the total length, so a boat with a length of 4 to 5 meters may use a propelling fin with a length of about 1 meter. When you work continuously for about 30 minutes, you can't get more than about 30 watts as power.
To drive a 5-meter boat by one or two people, if the motor power is 50 to 100 watts, this propulsion board can produce more speed than all-row. Also, when applied to diving fins, the same propulsion force can be obtained with much smaller force. The current output of solar cells is about 100 watts per square meter, so if one square-meter solar cell is provided on the boat deck and the motor is driven, almost human power can be obtained. The application fields of this propulsion board are fishing boats, lifeboats, pleasure boats, fins, sports boats, oars, paddles, etc. If a strong material is obtained, a considerably high speed can be obtained. @

【発明の実施の形態】魚の尾鰭に似た推進板及び其の駆
動装置を構成する。即ち図7に示す様に魚の尾鰭状の推
進板で、基部Pと、基部Pから上下斜め後方に拡がった
両外縁部3,3と其の間を連結する内側面(4)よりな
る推進板を人力或いは動力で左右に振り、船体又は人体
を推進させ、或いは必要に応じて推進板を水面に平行に
上下に振って駆動させる機構を取り付ける。オール、か
いの先端にはめ込んで使用し、或いは足首にフィットす
る空間を設けてフィンにする。即ち基本的には数十乃至
数百本のリブ(10)の一端を基部Pに纏め、略同一平
面内に於いて上下斜め後方に拡げて保持し、これらリブ
を薄い膜で連結する。此の場合、図7のX−X断面は図
8の様にリブ(10)を膜(11)で両側から包んでも
よいし、図9の様に膜(11)の両側にリブ(10)を
取り付けてもよいし、図10の様にリブ(10)と膜
(11)とを一体成形してもよい。上下の外縁部(3,
3)を構成するリブは、内側面(4)にあるリブよりも
剛性を大きくし、或いは内側面(4)と同じリブを数本
纏めてもよい。リブ(10)は基部Pから先端に行くほ
ど次第に細くして、たわみを大きくし、更に最先端の1
0〜20%を一段と細くしたほうが、推進板の振れた最
終段階で図6の様に、水を後方に押す分力が大きくな
る。又リブ(10)は同じ太さの棒財を図11の様に長
さと配列密度を変えて、基部P近い部分の補強と先端部
の柔軟なたわみを実現させるのもよい。前記何れの場合
もリブ(10)、膜(11)倶に繰り返し曲げの力を受
けるから、耐疲労強度が大きく、又両者がなじみよく接
着するものでなければならない。図12は、本発明の基
本的な推進板の側面図、図13は図12のY−Y断面を
示す。剛性の大きい外縁部(3,3)は先に進み、内側
面(4)は柔らかく動いて遅れ、内側面に当たる水は両
外縁の方に沿って拡がり乍ら殆ど後方に送られる。図1
4に示す様にかじき等の時速80キロメートル位で泳ぐ
魚は鰭を振る力が強く、上下(B,B)方向に流れる流
速は大きいから、鰭は幅は狭く、上下に大きく斜め後方
に伸び、空間部(6)も大きく、余分の水を押さないか
ら効率よく進む。図15は、いさぎ、鱒等の中速の魚の
尾鰭を示す。高速の繰返し曲げに耐える推進板を高速で
振れるならば図14の様に上下に長く奥行きの短い形が
よく、人力等でゆっくり進むならば図15の様に上下幅
に対して長さが比較的に大きい形が良い。図15で示し
た推進板の断面形状(Y−Y)は、内側面(4)に伸び
る余地を持たせる為に伸縮性のある材料で図16の様に
してもよいが図17の様に波型にしてもよい。 (実施例)図18は小船に推進板と駆動装置を取り付け
た平面図、図19は其の正面図、図20は其の側面図を
示す。図21に示す様に、推進板(20)の基部Pを弾
力性のある固定板(22,22)で両側から挟んで回転
軸(21)に固定する。軸(21)はフレーム(25)
の軸受け(26,26)にはめ、フレーム(25)は蝶
版(23)を介して船体(24)に取り付ける。軸(2
1)の上端部にプーリー(27)を固定し、ロープ(2
8)をプーリー(27)の(M)点で固定してプーリー
(27)の周縁に巻きつけ、ロープ(28)を交互に引
いてプーリー(27)を左右に回転させる。プーリー
(27)は中心線から左右各60度くらい振ればよい。
左右2本のロープ(28,28)は中間のガイド(2
9,29)を介してドライブプーリー(30)に取付け
る。舷側に固定したフレーム(33)に設けた軸受け
(34)と船底に設けた軸受け(35)によりドライブ
プーリー(30)の軸(31)を保持し、軸(31)の
下端部に設けた足台(38)に取り付けたペダル(3
7,37)を交互に踏んで推進板(20)を左右に振ら
せる。ロープ(28)を駆動用に用いたのは、錆ず、強
く、故障が少なく素人でも応急処置をとれるからであ
る。足台(38)は、かかとを痛めずにペダルを踏める
からである。ガイド(29)はロープ(28)が、体に
擦れるのを防止する。船底には推進板の振れによる船体
の振れを軽減するために安定板(40)を設ける。ペダ
ルを足で交互に踏めば舟は進む。水深の浅い処では推進
板を上げる為にフレーム(25)に取っ手(29)を設
けて、之を引くか或いは軸(21)の上部を長く伸ばし
ておいて、之を手前に引けば蝶番(23)により推進板
は持ち上がる。図22はボート、カヌー等のかいに応用
したものを示す。推進板(20)の基部Pにオール(4
2)の軸を結合、固定すれば、同じ力で、より速く、同
じ速さでより楽に推進出来る。図23は潜水用のフィン
に応用した例を示す。推進板(20)の基部Pに足首挿
入スペース(41)を設ける。推進板(20)の先端は
図の様に切り込んで空間部(6)を設け、内側面(4)
の先端部(5)は特に軟らかに構成する。此の場合フィ
ンの幅はあまり大きくとれないが、構成と効果は変わら
ない。いずれの場合を共通するのは推進板(20)の内
側面(4)の先端を切り込んで空間部(6)を設ける。
内側面先端部(5)を特に薄く柔軟に構成することは、
有効である。空間部(6)の面積は推進板(4)の面積
の10〜30%でよいが、高速用には50〜60%位も
設けるのがよい。尚、この発明は、うちわや扇子にも適
用出来るものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A propulsion plate resembling a caudal fin of a fish and its driving device are constructed. That is, as shown in FIG. 7, a propulsion plate of a caudal fin shape of a fish, comprising a base P, outer edges 3 and 3 extending obliquely rearward and rearward from the base P, and an inner surface (4) connecting therebetween. A mechanism is attached to drive the hull or human body by swinging the hull or human body to the left or right with human power or power, or swing the propulsion plate up and down parallel to the water surface as needed. Use it by fitting it into the tip of the oar or paddle, or make a fin with a space that fits the ankle. That is, basically, one end of several tens to several hundreds of ribs (10) are gathered at the base P, and are extended and held obliquely rearward in the substantially same plane, and these ribs are connected by a thin film. In this case, the cross section XX of FIG. 7 may cover the rib (10) with the film (11) from both sides as shown in FIG. 8 or the rib (10) on both sides of the film (11) as shown in FIG. May be attached, or the rib (10) and the film (11) may be integrally formed as shown in FIG. Upper and lower outer edges (3,
The ribs constituting 3) may have greater rigidity than the ribs on the inner surface (4), or several ribs identical to the inner surface (4) may be combined. The rib (10) is gradually narrowed from the base P to the tip to increase the deflection,
As shown in FIG. 6, when the thickness of 0 to 20% is further reduced, the component force for pushing the water backward at the final stage of the swing of the propulsion plate increases. Alternatively, the ribs (10) may be formed by changing the length and arrangement density of bar goods having the same thickness as shown in FIG. 11 so as to reinforce a portion near the base P and to flexibly flex the tip. In each case, since the bending force is repeatedly applied to the rib (10) and the film (11), the rib must have high fatigue resistance and adhere well to each other. FIG. 12 is a side view of a basic propulsion plate of the present invention, and FIG. 13 is a sectional view taken along line YY of FIG. The stiff outer edges (3, 3) move forward, the inner surface (4) moves softly and lags, and the water impinging on the inner surface is sent almost rearward while spreading along both outer edges. FIG.
As shown in Fig. 4, fish swimming at about 80 km / h, such as snags, have a strong fin-shaking power and a high flow velocity in the vertical (B, B) directions, so the fins are narrow and extend vertically upward and downward diagonally. The space (6) is also large and does not push excess water, so that it proceeds efficiently. FIG. 15 shows the caudal fins of medium-speed fish such as rabbits and trout. If the propulsion plate that can withstand high-speed repetitive bending can be shaken at high speed, it is better to have a shape that is long vertically and short as shown in Fig. 14; Larger shape is better. The cross-sectional shape (Y-Y) of the propulsion plate shown in FIG. 15 may be made of a stretchable material as shown in FIG. 16 in order to allow room for extension on the inner side surface (4), but as shown in FIG. It may be a wave shape. (Embodiment) FIG. 18 is a plan view in which a propulsion plate and a driving device are attached to a boat, FIG. 19 is a front view thereof, and FIG. 20 is a side view thereof. As shown in FIG. 21, the base P of the propulsion plate (20) is fixed to the rotating shaft (21) by sandwiching it from both sides with elastic fixing plates (22, 22). The axis (21) is the frame (25)
The frame (25) is attached to the hull (24) via the butterfly plate (23). Shaft (2
Fix the pulley (27) at the upper end of 1) and
8) is fixed at the point (M) of the pulley (27), wound around the periphery of the pulley (27), and the rope (28) is alternately pulled to rotate the pulley (27) right and left. The pulley (27) may be swung about 60 degrees to the left and right from the center line.
The two ropes (28, 28) on the left and right
9 and 29), and attached to the drive pulley (30). The shaft (31) of the drive pulley (30) is held by a bearing (34) provided on a frame (33) fixed to the side of the ship and a bearing (35) provided on the bottom of the ship, and a foot provided on the lower end of the shaft (31). Pedal (3) attached to the table (38)
7, 37) are alternately stepped to swing the propulsion plate (20) left and right. The rope (28) is used for driving because it is rust-free, strong, has few troubles, and can be used for emergency measures even by amateurs. This is because the footrest (38) can be depressed without damaging the heel. The guide (29) prevents the rope (28) from rubbing against the body. A stabilizer (40) is provided on the bottom of the ship to reduce the sway of the hull caused by the sway of the propulsion plate. If you step on the pedals alternately, your boat will move forward. At a shallow place, a handle (29) is provided on the frame (25) to raise the propulsion plate, and the handle (29) is pulled or the upper part of the shaft (21) is extended for a long time. 23) raises the propulsion plate. FIG. 22 shows an application to paddles such as boats and canoes. All (4) at the base P of the propulsion plate (20)
If the shafts of 2) are connected and fixed, the propulsion can be made faster and more easily with the same force. FIG. 23 shows an example of application to a diving fin. An ankle insertion space (41) is provided at the base P of the propulsion plate (20). The tip of the propulsion plate (20) is cut as shown in the figure to provide a space (6), and the inner surface (4)
Is particularly soft. In this case, the width of the fin cannot be so large, but the configuration and the effect are not changed. What is common in both cases is that the space portion (6) is provided by cutting the tip of the inner surface (4) of the propulsion plate (20).
The particularly thin and flexible construction of the inner surface tip (5)
It is valid. The area of the space (6) may be 10 to 30% of the area of the propulsion plate (4), but it is preferable to provide about 50 to 60% for high speed use. In addition, this invention shall be applicable also to a fan and a fan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボートを漕ぐ場合の水の動きの説明図FIG. 1 is an explanatory diagram of water movement when rowing a boat.

【図2】同じくオール面の水の動きの説明図FIG. 2 is an explanatory view of the movement of water on the all surface.

【図3】一般的な魚の鰭の説明図FIG. 3 is an explanatory view of a common fish fin.

【図4】魚の鰭の動作中の説明図FIG. 4 is an explanatory view of a fish fin during operation.

【図5】同じく鰭の構造の説明図FIG. 5 is an explanatory view of the same fin structure.

【図6】魚を模した推進板の動作の説明図FIG. 6 is an explanatory diagram of an operation of a propulsion plate imitating a fish.

【図7】本発明の実施例の説明図FIG. 7 is an explanatory view of an embodiment of the present invention.

【図8】図7の断面形状の説明図FIG. 8 is an explanatory view of a cross-sectional shape of FIG. 7;

【図9】図7の断面形状の説明図FIG. 9 is an explanatory diagram of a cross-sectional shape in FIG. 7;

【図10】図7の断面形状の説明図FIG. 10 is an explanatory diagram of a cross-sectional shape in FIG. 7;

【図11】実施例図FIG. 11 is a diagram showing an embodiment.

【図12】実施例の動作説明図FIG. 12 is a diagram illustrating the operation of the embodiment.

【図13】実施例の動作説明図FIG. 13 is a diagram illustrating the operation of the embodiment.

【図14】高速魚の鰭の説明図FIG. 14 is an illustration of a high-speed fish fin

【図15】中速魚の鰭の説明図FIG. 15 is an explanatory view of a fin of a medium-speed fish.

【図16】図15の断面形状図FIG. 16 is a sectional shape view of FIG.

【図17】図15の断面形状図FIG. 17 is a sectional view of FIG. 15;

【図18】実施例の平面図FIG. 18 is a plan view of the embodiment.

【図19】実施例の正面図FIG. 19 is a front view of the embodiment.

【図20】実施例の側面図FIG. 20 is a side view of the embodiment.

【図21】本発明の推進板の平面図及び側面図FIG. 21 is a plan view and a side view of a propulsion plate according to the present invention.

【図22】本発明の推進板の応用例FIG. 22 is an application example of the propulsion plate of the present invention.

【図23】本発明のフィンに応用した例FIG. 23 shows an example applied to a fin of the present invention.

【符号の説明】[Explanation of symbols]

1 ボート 2 オール 3 外縁 4 内側面 5 内側面末端部 6 空間部 10 リブ 11 膜材 20 推進板 21 軸 22 固定板 23 蝶番 24 船体 25 フレーム 26 軸受け 27 プーリー 28 ロープ 29 ガイド 30 取っ手 31 軸 33 フレーム 34 軸受け 35 軸受け 36 足台 37 ペダル 40 安定板 41 足首挿入スペース 42 オール DESCRIPTION OF SYMBOLS 1 Boat 2 All 3 Outer edge 4 Inner surface 5 Inner surface end part 6 Space part 10 Rib 11 Membrane material 20 Thrust plate 21 Shaft 22 Fixed plate 23 Hinge 24 Hull 25 Frame 26 Bearing 27 Pulley 28 Rope 29 Guide 30 Handle 31 Shaft 33 Frame 34 Bearing 35 Bearing 36 Footrest 37 Pedal 40 Stabilizer 41 Ankle insertion space 42 All

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 魚の尾鰭状の推進板であって、基部から
先端にゆくに従って可とう性の両外側縁部が尾鰭の様に
拡がり、此の両外側縁部の内側に基部から5本以上のリ
ブを放射状に延ばし、且つリブの間を柔軟な膜で連結
し、外縁部のたわみ量を内側膜面部のたわみ量よりも小
さくなる様に構成した魚の尾鰭状推進板。
1. A caudal fin-shaped propulsion plate of a fish, in which two flexible outer edges expand like caudal fins from the base to the tip, and five or more from the base inside the both outer edges. The fish caudal fin-shaped propulsion plate in which the ribs are radially extended, and the ribs are connected by a flexible film so that the amount of deflection at the outer edge is smaller than the amount of deflection at the inner film surface.
【請求項2】 前記推進板に於いて、両外縁部の長さを
内側膜面の先端部よりも10〜30%長く突出させてな
る特許請求第1項記載の尾鰭状推進板。
2. The caudal fin-shaped propulsion plate according to claim 1, wherein said propulsion plate has both outer edges projecting 10 to 30% longer than the tip of the inner membrane surface.
【請求項3】 前記推進板に於いて両外側縁部の曲げ強
度が内側膜面部の曲げ強度よりも大きく、鰭を左右に振
る場合、内側膜面部が両外縁部よりも遅れて大きくたわ
む様に構成してなる特許請求第1項記載の尾鰭状推進
板。
3. In the propulsion plate, the bending strength of both outer edges is larger than the bending strength of the inner membrane surface, and when the fin is swung right and left, the inner membrane surface bends more greatly than the outer edges. The caudal fin-shaped propulsion plate according to claim 1, wherein the propulsion plate is configured as follows.
【請求項4】 前記推進板に於いて鰭の内側面部の先端
部分10〜30%が基部に近い部分に較べてより一層た
わみ易い様に構成してなる特許請求第1項記載の尾鰭状
推進板。
4. The tail fin-shaped propulsion according to claim 1, wherein the propulsion plate is configured such that a tip portion of the inner surface portion of the fin is more easily bent than a portion near the base portion. Board.
【請求項5】 前記推進板に於いて両外側縁を含むリブ
間の膜面が扇子の様な波型の断面を持って充分にたわむ
ゆとりを持ち、上下両外側縁間の角度が外方または内方
に拡張或いは収縮しうる様に構成してなる特許請求第1
項記載の尾鰭状推進板。
5. In the propulsion plate, a film surface between ribs including both outer edges has a wavy cross section like a fan and has a sufficient flexibility to bend, and an angle between upper and lower outer edges is outward. Or a structure which can be expanded or contracted inward.
Caudal fin-shaped propulsion plate as described in the item.
【請求項6】 前記推進板に於いて、鰭の各リブを基部
から先端に行くに従って次第に細く構成した特許請求第
1項記載の尾鰭状推進板。
6. The tail fin-shaped propulsion plate according to claim 1, wherein the ribs of the fin are gradually narrowed from the base to the tip.
【請求項7】 前記推進板に於いて鰭の各リブが基部か
ら先端まで同じ太さである様に構成した特許請求第1項
記載の尾鰭状推進板。
7. The tail fin-shaped propulsion plate according to claim 1, wherein the ribs of the fin have the same thickness from the base to the tip of the propulsion plate.
【請求項8】 前記推進板に於いて鰭の外縁部の剛性を
大きくし、内側の膜面はリブを有せず基部から先端に向
かって次第に薄くなる様に構成した特許請求第1項記載
の尾鰭状推進板。
8. The propulsion plate according to claim 1, wherein the rigidity of the outer edge of the fin is increased, and the inner membrane surface has no ribs and becomes gradually thinner from the base to the tip. Caudal fin-shaped propulsion plate.
【請求項9】 前記推進板に於いて鰭の骨格をなすリブ
が、それぞれ複数本の細い線を纏めて構成された特許請
求第1項記載の尾鰭状推進板。
9. The tail fin-shaped propulsion plate according to claim 1, wherein the ribs forming the fin skeleton of the propulsion plate are formed by integrating a plurality of thin lines.
【請求項10】 前記推進板の基部に足を挿入固定する
部分を設けてなる特許請求第1項記載の尾鰭状推進板。
10. The caudal fin-shaped propulsion plate according to claim 1, wherein a portion for inserting and fixing a foot is provided at a base of said propulsion plate.
【請求項11】 前記推進板の基部をボート用オールの
先端部に結合出来る様に構成した特許請求第1項記載の
尾鰭状推進板。
11. The caudal fin-shaped propulsion plate according to claim 1, wherein a base portion of said propulsion plate is connected to a tip of a boat oar.
【請求項12】 カヌー等のかいの1端または両端に前
記推進板の基部を結合出来る様に構成した1項記載の尾
鰭状推進板。
12. The caudal fin-shaped propulsion plate according to claim 1, wherein a base of the propulsion plate can be connected to one or both ends of a paddle such as a canoe.
【請求項13】 前記推進板の膜面を含む平面内に於い
てリブと略直交する軸を基部に設け、膜面を軸周に往復
旋回運動させる機構を設けてなる特許請求第1項記載の
尾鰭状推進装置。
13. A mechanism according to claim 1, wherein an axis substantially perpendicular to the rib is provided on the base in a plane including the film surface of the propulsion plate, and a mechanism for reciprocatingly rotating the film surface around the axis is provided. Caudal fin propulsion device.
JP10331842A 1998-10-15 1998-10-15 Fish-tail-fin like propulsion unit Pending JP2000118493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331842A JP2000118493A (en) 1998-10-15 1998-10-15 Fish-tail-fin like propulsion unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331842A JP2000118493A (en) 1998-10-15 1998-10-15 Fish-tail-fin like propulsion unit

Publications (1)

Publication Number Publication Date
JP2000118493A true JP2000118493A (en) 2000-04-25

Family

ID=18248271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331842A Pending JP2000118493A (en) 1998-10-15 1998-10-15 Fish-tail-fin like propulsion unit

Country Status (1)

Country Link
JP (1) JP2000118493A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063222A (en) * 2009-09-18 2011-03-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Propulsion mechanism for underwater vehicle, and underwater vehicle
CN104554682A (en) * 2015-01-28 2015-04-29 中国科学技术大学 Area-controllable underwater bionic propelling device
CN106364649A (en) * 2016-09-28 2017-02-01 博雅工道(北京)机器人科技有限公司 Fishtail structure of robotic fish
CN109250052A (en) * 2018-06-28 2019-01-22 杭州霆舟无人科技有限公司 More fin torsional wave underwater robots
CN111959726A (en) * 2020-08-12 2020-11-20 青岛海洋科学与技术国家实验室发展中心 Flexible tail fin hybrid drive underwater glider
CN112109868A (en) * 2020-08-31 2020-12-22 浙江理工大学 Flipper propulsion device imitating hind limb of beaver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063222A (en) * 2009-09-18 2011-03-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Propulsion mechanism for underwater vehicle, and underwater vehicle
CN104554682A (en) * 2015-01-28 2015-04-29 中国科学技术大学 Area-controllable underwater bionic propelling device
CN104554682B (en) * 2015-01-28 2017-02-22 中国科学技术大学 Area-controllable underwater bionic propelling device
CN106364649A (en) * 2016-09-28 2017-02-01 博雅工道(北京)机器人科技有限公司 Fishtail structure of robotic fish
CN106364649B (en) * 2016-09-28 2018-06-19 博雅工道(北京)机器人科技有限公司 A kind of machine fish fish tail structure
CN109250052A (en) * 2018-06-28 2019-01-22 杭州霆舟无人科技有限公司 More fin torsional wave underwater robots
CN111959726A (en) * 2020-08-12 2020-11-20 青岛海洋科学与技术国家实验室发展中心 Flexible tail fin hybrid drive underwater glider
CN111959726B (en) * 2020-08-12 2022-05-20 青岛海洋科学与技术国家实验室发展中心 Flexible tail fin hybrid drive underwater glider
CN112109868A (en) * 2020-08-31 2020-12-22 浙江理工大学 Flipper propulsion device imitating hind limb of beaver

Similar Documents

Publication Publication Date Title
Fish Advantages of natural propulsive systems
Walker et al. Mechanical performance of aquatic rowing and flying
Fish et al. Review of dolphin hydrodynamics and swimming performance
Fish Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance
US6719599B2 (en) High efficiency hydrofoil and swim fin designs
Toussaint et al. Biomechanical aspects of peak performance in human swimming
Hirata et al. Study on turning performance of a fish robot
Feldkamp Foreflipper propulsion in the California sea lion, Zalophus californianus
US7744434B2 (en) Oscillating-foil type underwater propulsor with a joint
Walker Kinematics and performance of maneuvering control surfaces in teleost fishes
Fish Biomechanical perspective on the origin of cetacean flukes
US2854787A (en) Self propelled toy fish
US6957509B2 (en) Rotating diving decoy rig
US5348503A (en) Underwater paddle and vertical fin for swimmer
JP2000118493A (en) Fish-tail-fin like propulsion unit
Fujiwara et al. Development of fishlike robot that imitates carangiform and subcarangiform swimming motions
US6179683B1 (en) Swimming aquatic creature simulator
JP4436446B2 (en) Spearblade swimming fin
Bandyopadhyay Swimming and flying in nature—The route toward applications: The Freeman scholar lecture
US6375531B1 (en) Dolphin-tail style multi-purpose swim fin and assembly
JP2000125703A (en) Electromotive lure
Wiktorowicz et al. Powered control mechanisms contributing to dynamically stable swimming in porcupine puffers (Teleostei: Diodon holocanthus)
GB2169255A (en) Device for propelling a vessel or a person
Licht et al. Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently
Kikuchi Design of Fish Fin