JP2000117380A - Manufacture of aluminum alloy rotor stock - Google Patents

Manufacture of aluminum alloy rotor stock

Info

Publication number
JP2000117380A
JP2000117380A JP10286611A JP28661198A JP2000117380A JP 2000117380 A JP2000117380 A JP 2000117380A JP 10286611 A JP10286611 A JP 10286611A JP 28661198 A JP28661198 A JP 28661198A JP 2000117380 A JP2000117380 A JP 2000117380A
Authority
JP
Japan
Prior art keywords
die
storage groove
vane
vane storage
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10286611A
Other languages
Japanese (ja)
Inventor
Shin Miura
伸 三浦
Iwao Hashimoto
巌 橋本
Hidemi Yamada
英実 山田
Yoshiyuki Anazawa
良幸 穴沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10286611A priority Critical patent/JP2000117380A/en
Publication of JP2000117380A publication Critical patent/JP2000117380A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the service life of a die, and to improve the dimensional accuracy of a vane storage groove by casting the vane storage groove in a non-piercing manner leaving part without any groove formed thereon, and mechanically removing the part thereafter. SOLUTION: An aluminum alloy material is heated and charged in a case 9 as a blank 13. The volume of the blank 13 is larger than that of a rotor stock. The inside diameter of the case 9 is same as or slightly larger than the inside diameter of a die 5. A press punch 12 is lowered. The blank 13 is filled in the die 5, leaving an excessive material part which is longer than a part of the rotor stock. A knock-out pin 11 is raised from the lower part, and a forged stuff is knocked out. The shape of the forged stuff is left behind in the excessive material part without vane groove on one side. The excessive material part is mechanically removed from the forged stuff. The thickness of the part without any vane storage groove is >=0.5 time to <=4 times of the width of the vane storage groove.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車に搭載する
空調用ロータリー式コンプレッサーのローターやブレー
キ制御用のロータリー式真空ポンプのローター等の素材
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material such as a rotor of a rotary compressor for air conditioning mounted on an automobile and a rotor of a rotary vacuum pump for brake control.

【0002】[0002]

【従来の技術】自動車に搭載する空調用ロータリー式コ
ンプレッサーのローターやブレーキ制御用のロータリー
式真空ポンプのローターは、軽量化の目的からアルミニ
ウム合金製が主流になっている。通常、このローターの
素材は1図に示すように円筒形の外周から内側に向かっ
てベーン収納のための複数の溝(ベーン収納溝2)が切
られた形状になっている。最終的には、この素材は、そ
の中心部に機械加工によりシャフト挿入用の穴を開け、
寸法出しのための機械加工を施してローター製造に使用
される。
2. Description of the Related Art For the purpose of weight reduction, the rotor of a rotary compressor for air conditioning and the rotor of a rotary vacuum pump for brake control mounted on an automobile are mainly made of aluminum alloy. Normally, the material of the rotor has a shape in which a plurality of grooves (vane storage grooves 2) for accommodating vanes are cut inward from the outer periphery of the cylinder as shown in FIG. Eventually, this material is machined in the center of the material to make a hole for shaft insertion,
Machined for dimensioning and used for rotor manufacturing.

【0003】このローター素材の製造方法としては、熱
間押出し法により溝付きの棒材を作製し、それを輪切り
にする方法が知られている。この方法は多数のローター
素材を効率的に製造出来るという利点がある。しかしな
がら、ローターの溝2位置が軸中心から偏位しているた
め(図1(a)のd参照)、溝の両側では材料の塑性流
動にアンバランスが生ずる。そのため特に長尺の押出し
棒ではねじれや曲がりが大きくなり、その結果製品の溝
寸法精度が悪いという問題がある。また、ダイスと材料
の間が潤滑されないため、製品の表面性状が悪くなりや
すく、押出し材にクラックが発生するといった問題もあ
る。
[0003] As a method of manufacturing the rotor material, there is known a method in which a grooved bar is produced by a hot extrusion method and is cut into a ring. This method has an advantage that a large number of rotor materials can be efficiently manufactured. However, since the position of the groove 2 of the rotor is deviated from the center of the shaft (see d in FIG. 1A), the plastic flow of the material is unbalanced on both sides of the groove. For this reason, there is a problem that the torsion and bending become large, especially in the case of a long extrusion rod, and as a result, the groove dimension accuracy of the product is poor. Further, since there is no lubrication between the die and the material, there is a problem that the surface properties of the product are liable to be deteriorated and cracks are generated in the extruded material.

【0004】これを解決するため熱間鍛造による方法が
知られており、例えば特開平3ー165948にあるよ
うな熱間鍛造方法が提案されている。この場合は、製品
を1個ごとに鍛造し、成形長さが短くまた毎回ダイスが
潤滑されるため、上記の問題はかなり解決される。しか
し、この鍛造法では、ベーン収納溝を形成するダイス部
(図2参照。以下ダイス羽根部7と呼ぶ)に掛かる荷重
が成形時と製品排出時とで逆向きであるため、鍛造毎に
軸方向にダイス羽根部7が振動し、ダイス羽根部7が破
損し易くダイス寿命が短いという問題がある。
To solve this problem, a hot forging method is known. For example, a hot forging method as disclosed in Japanese Patent Application Laid-Open No. Hei 3-165948 has been proposed. In this case, the above problem is considerably solved because the product is forged one by one, the molding length is short and the die is lubricated each time. However, in this forging method, the load applied to the die portion (see FIG. 2; hereinafter, referred to as the die blade portion 7) that forms the vane housing groove is opposite in the direction of molding and the time of discharging the product. There is a problem that the die blades 7 vibrate in the direction, the die blades 7 are easily damaged, and the life of the die is short.

【0005】更に、また図2(c)のdに示すようにダ
イス羽根部は位置が軸中心から偏位していることに起因
してダイス羽根部7の振動は単に軸方向のみでなく、軸
に垂直な方向の変形も含むたおれ、ネジレ変形が生じて
いる。又、このダイス羽根部7のたおれ、ネジレ変形は
鍛造品のベーン収納溝の寸法精度を悪化させる主因であ
ると考えられる。
Further, as shown in FIG. 2 (d), the vibration of the die blade portion 7 is not limited to the axial direction due to the position of the die blade portion deviating from the axial center. A twisting deformation has occurred, including deformation in a direction perpendicular to the axis. In addition, it is considered that the sinking and twisting of the die blade portion 7 are the main causes of deteriorating the dimensional accuracy of the vane storage groove of the forged product.

【0006】このダイス羽根部のたおれを解決するため
に、例えば特開平3ー138043ではダイス羽根部の
下部にバックアップ部を設けダイス羽根部を支持する方
法が提案されており、上述のダイス羽根部のたおれ等に
よるベーン収納溝の寸法精度の悪化とダイス寿命とに改
善効果があると記載されている。しかし、本発明者らが
検討した処、この方法によっても、量産に十分な寿命は
得られなかった。これは、ダイス羽根部下部を支持する
方法では、鍛造成形時にダイス羽根部の上部は固定され
ていないので自由にたおれ変形し、他方下部は固定され
て変形しないため、逆にダイス羽根部の上部と下部とで
大きなネジレを生じ、ダイス羽根部にかかる負担が軽減
されないためと考えられる。
[0006] In order to solve this die blade slack, for example, Japanese Patent Application Laid-Open No. 3-138043 discloses a method in which a backup portion is provided below the die blade portion to support the die blade portion. It is described that there is an effect of improving the dimensional accuracy of the vane housing groove due to backlash and the like and the die life. However, as a result of investigations by the present inventors, this method did not provide a sufficient life for mass production. This is because, in the method of supporting the lower part of the die blade, the upper part of the die blade part is not fixed at the time of forging, so it freely deforms, while the lower part is fixed and does not deform. It is considered that a large twisting occurs between the upper and lower portions, and the load on the die blade portion is not reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ローター素
材を熱間鍛造法により製造する場合について、ダイス寿
命が短いという問題を解決し、溝のたおれ、ネジレを防
止してベーン収納溝の寸法精度を向上させようとするも
のである。
SUMMARY OF THE INVENTION The present invention solves the problem that the life of a die is short when a rotor material is manufactured by a hot forging method. It is intended to improve the accuracy.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、[1]ベーン収納
溝を有するアルミニウム合金製ローター素材を鍛造法に
より製造する際、ベーン収納溝を貫通させずベーン収納
溝が成形されていない部位を残した形状に鍛造し、その
後ベーン収納溝が成形されていない部位を機械加工によ
り取り除くことを特徴とするアルミニウム合金製ロータ
ー素材の製造方法、及び[2]前記ベーン収納溝が成形
されていない部位の厚さがベーン収納溝幅の0.5倍以
上4倍以下であることを特徴とする上記[1]に記載の
製造方法、及び[3]前記ベーン収納溝が成形されてい
ない部位を形成するにあたって、ベーン収納溝を成形す
るダイス羽根部に対応する位置に凹部を設けたパンチを
使用することを特徴とする上記[1]または[2]に記
載の製造方法、及び[4]前記パンチの凹部の幅がダイ
ス羽根部の幅の1倍以上6倍以下である上記[1]〜
[3]に記載の製造方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. [1] When manufacturing a rotor material made of an aluminum alloy having a vane accommodating groove by a forging method, the vane accommodating is performed. A method of manufacturing a rotor material made of an aluminum alloy, comprising forging into a shape that does not penetrate the groove and leaving a part where the vane storage groove is not formed, and then removing a part where the vane storage groove is not formed by machining. [2] The method according to [1], wherein the thickness of the part where the vane storage groove is not formed is 0.5 to 4 times the width of the vane storage groove. [3] In forming a portion where the vane storage groove is not formed, a punch having a concave portion at a position corresponding to a die blade portion for forming the vane storage groove is used. A method of manufacturing the above-mentioned [1] or [2] which, and [4] [1] width is less than 6 times 1 times the width of the die blade portion of the concave portion of the punch-
The production method according to [3].

【0009】[0009]

【発明の実施の形態】さらに詳細に本発明について説明
すれば、図4は鍛造によってローター素材を製造する工
程を示している。材料となるアルミニウム合金材料は、
図4(a)のように、所定の長さに切断後加熱されブラ
ンク13としてケース9に投入される。このときのブラ
ンク13の体積は、後述するように必要とするローター
素材体積より軸方向に余肉が出るだけ余分な体積とす
る。ケース9の内径は、鍛造後の素材のノックアウトを
円滑に行うため、ダイス5の内径と同じか、やや大きく
しておく必要がある。 次に図4(b)は、上方から加
圧パンチ12が降下し所定のストローク移動を終えた状
態を示している。この状態では、ブランク13はダイス
5内に充満されており、かつ先に述べたように、ロータ
ー素材として必要な長さより余肉部分を残している。次
に、図4(c)に示すように下方からノックアウトピン
11がせり上がり、鍛造品をノックアウトする。この時
の鍛造品の形状は、図3に示すように片側にベーン溝の
入っていない余肉部L’を残している。この余肉部分
が、加圧パンチからダイス羽根部に掛かる荷重を緩和
し、ダイス羽根部の変形を抑える。この鍛造品は、後機
械加工等によって余肉部分L’を取り除き図1に示す形
状になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To explain the present invention in more detail, FIG. 4 shows a process of manufacturing a rotor material by forging. The aluminum alloy material used as the material is
As shown in FIG. 4A, the sheet is cut into a predetermined length, heated, and put into a case 9 as a blank 13. At this time, the volume of the blank 13 is set to be an extra volume so as to have extra thickness in the axial direction from the required volume of the rotor material as described later. The inner diameter of the case 9 needs to be equal to or slightly larger than the inner diameter of the die 5 in order to smoothly knock out the forged material. Next, FIG. 4B shows a state in which the pressing punch 12 descends from above and completes a predetermined stroke movement. In this state, the blank 13 is filled in the die 5 and, as described above, leaves an extra portion than the length required for the rotor material. Next, as shown in FIG. 4C, the knockout pin 11 rises from below to knock out the forged product. At this time, the shape of the forged product has a surplus portion L 'having no vane groove on one side as shown in FIG. The excess portion reduces the load applied to the die blades from the pressure punch and suppresses the deformation of the die blades. This forged product has a surplus portion L ′ removed by post-machining or the like to have the shape shown in FIG.

【0010】なお、図4では、余肉部分をケース9内の
ブランクにて形成しているが、図5に示すようにダイス
内の羽根部分7をダイス高さより低くし、ダイス5内に
て余肉部分を残すことも可能である。また、余肉部分は
図6に示すようにベーン収納溝に対応する付近のみに限
ることも可能である。この場合は、図7の14に示すよ
うにパンチのダイス羽根部と対応する部分周辺に凹部を
設け、鍛造品のベーン収納溝付近に余肉を残しておけば
良い。
In FIG. 4, the excess portion is formed by a blank in the case 9, but as shown in FIG. 5, the blade portion 7 in the die is made lower than the die height, and It is also possible to leave a surplus part. In addition, the surplus portion can be limited to only the vicinity corresponding to the vane housing groove as shown in FIG. In this case, as shown at 14 in FIG. 7, a recess may be provided around the portion corresponding to the die blade portion of the punch, and the excess may be left near the vane storage groove of the forged product.

【0011】本発明において上述の余肉部分の厚さはダ
イス羽根部の上部に起こるメタルフロー領域の大きさに
比例する。そのメタルフローの領域の大きさは、例えば
ダイス羽根部のエッジ部のRの取り方や平坦部の幅(面
積)等ダイス羽根部上面の形状により変化するが、概ね
ダイス羽根部の幅(図2のt参照。鍛造品のベーン収納
溝の幅でも同じ)に関連付けることが出来る。本発明者
らが検討した結果、主要なメタルフロー領域は鍛造品の
ダイス羽根上面からダイス羽根部の幅のほぼ4倍までの
距離の余肉部にあった。しかしながら余肉部分の厚さが
増すと投入材料量が増えるので、材料歩留まりの観点か
らはできるだけ少ない方が好ましい。一方、余肉部分の
厚さがダイス羽根部の幅の0.5倍未満になると本願の
狙いとしているダイス羽根部にかかる荷重を緩和する効
果が得られない。従って余肉部分の厚さは、ダイス羽根
部の幅の0.5倍以上4倍以下好ましい。より好ましく
は、ダイス寿命に関して十分な効果を得るためには余肉
部分の厚さをダイス羽根幅の1倍以上とすることが望ま
しく、さらに最も望ましくは1.5倍以上の厚さとする
ことである。なお、ここで言うダイス羽根部の幅とは羽
根両側平行部の平面の間隔(図2のt)を意味してい
る。またここで言うダイス羽根部の幅は、それによって
成形されるベーン収納溝の幅(図1のt)としても実質
的に変わらない。
In the present invention, the thickness of the above-mentioned surplus portion is proportional to the size of the metal flow region formed above the die blade. The size of the metal flow region varies depending on the shape of the upper surface of the die blade, such as how to take the R of the edge of the die blade and the width (area) of the flat portion. 2 t. The same applies to the width of the vane storage groove of the forged product). As a result of the study by the present inventors, the main metal flow region was located in the surplus portion at a distance from the upper surface of the die blade of the forged product to approximately four times the width of the die blade. However, as the thickness of the surplus portion increases, the input material amount increases. Therefore, it is preferable that the thickness is as small as possible from the viewpoint of material yield. On the other hand, if the thickness of the surplus portion is less than 0.5 times the width of the die blade portion, the effect of reducing the load applied to the die blade portion, which is the target of the present application, cannot be obtained. Therefore, the thickness of the excess portion is preferably 0.5 times or more and 4 times or less the width of the die blade portion. More preferably, in order to obtain a sufficient effect on the life of the die, it is desirable that the thickness of the surplus portion be at least one time the width of the die blade, and most preferably at least 1.5 times the thickness. is there. Here, the width of the die blade means the interval (t in FIG. 2) between the planes of the blade parallel portions on both sides. Further, the width of the die blade portion here does not substantially change even as the width of the vane housing groove formed by the die blade portion (t in FIG. 1).

【0012】更に、余肉部分は、ベーン収納溝近傍のみ
パンチによる荷重を緩和するものであれば良いから、隣
り合うベーン収納溝の間は余肉の必要性は薄い。従っ
て、パンチに凹部を設けベーン収納溝付近のみ凸の余肉
を残すことでも良い(図6参照。)この場合ダイス羽根
部と羽根部との間のパンチは相対的に逆に凸となってい
るためダイス羽根部間のスペースに早めにメタルを充填
させ、ダイス羽根部の変形を側面から抑える効果もあ
る。このパンチの凹部の形状は、図7に示すように羽根
の中央方向への長さに対応した部分だけに凹部を設けて
も良いし、図8のようにダイス羽根部の数に応じた複数
の溝を中央で繋いだ形状でも可能である(鍛造品図6参
照)。このパンチの凹部の幅wについては、幅が狭すぎ
ると凹部にメタルが張り出し難くなり、十分な効果が得
られない。一方幅が広すぎると先に述べたダイス羽根を
側面から抑える効果が少なくなるため、ある幅に抑えた
ほうが効果的である。以上の観点から、パンチの凹部の
幅wは、ダイス羽根部の幅の1倍以上6倍以下、望まし
くは2倍以上4倍以下である。
Further, since it is sufficient that the surplus portion only reduces the load caused by the punch only in the vicinity of the vane storage groove, the necessity of the extra space between the adjacent vane storage grooves is small. Therefore, a concave portion may be provided in the punch to leave a convex excess only in the vicinity of the vane housing groove (see FIG. 6). In this case, the punch between the die blade portion and the blade portion becomes relatively convex. Therefore, the space between the die blades is filled with metal as soon as possible, and there is also an effect of suppressing deformation of the die blades from the side. Regarding the shape of the concave portion of the punch, the concave portion may be provided only at a portion corresponding to the length in the center direction of the blade as shown in FIG. 7, or a plurality of concave portions corresponding to the number of the die blade portions as shown in FIG. It is also possible to use a shape in which the grooves are connected at the center (see FIG. 6 of a forged product). Regarding the width w of the concave portion of the punch, if the width is too narrow, the metal does not easily protrude into the concave portion, and a sufficient effect cannot be obtained. On the other hand, if the width is too large, the effect of suppressing the die blades from the side described above is reduced, and therefore, it is more effective to suppress the die blades to a certain width. In view of the above, the width w of the concave portion of the punch is 1 to 6 times the width of the die blade portion, and preferably 2 to 4 times.

【0013】[0013]

【作用】本発明は、鍛造時の加圧パンチによるダイス羽
根部にかかる荷重を、鍛造品の加圧パンチと接する部分
にメタルの余肉部分を付け、ダイス羽根部分付近でのメ
タルフローを自由にし、加圧パンチからの直接荷重をメ
タル部分で吸収し、ダイス羽根部にかかる荷重を緩和す
るのでダイスの寿命を延ばすこと及びベーン収納溝の寸
法精度を向上することができる。
According to the present invention, the load applied to the die blades by the pressure punch at the time of forging is provided by adding an extra metal portion to a portion of the forged product which comes into contact with the pressure punch, and freeing the metal flow near the die blade portion. Since the direct load from the pressure punch is absorbed by the metal portion and the load on the die blade portion is reduced, the life of the die can be extended and the dimensional accuracy of the vane storage groove can be improved.

【0014】[0014]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 実施例1 ダイスとして図2形状の内周6の径62.5mm、羽根
7の数5枚、羽根中心と軸中心との距離d(偏位量)
4.9mm、羽根長さlが18.5mm、羽根部幅tが
4.1mm、羽根高さhが37mm、のもの、パンチは
凹部の無いものを使用し鍛造を行った。材料としてA3
90組成のアルミニウム合金をブランクとして用い、φ
61.3mmの寸法の材料をブランク厚さを変えて鍛造
製品の余肉部分の厚さを2mmから15mmまで調節し
た。鍛造条件は、ブランク温度300〜460℃、ダイ
ス及び加圧パンチ温度100〜350℃、荷重20〜1
00tである。この鍛造品のベーン収納溝の円筒外周基
準の平行度を測定することで寸法精度を調査し、またダ
イスが破壊するまでのショット数からダイス寿命を調べ
た。平行度は、鍛造品外径円筒に対する平行度である。
The present invention will be described in more detail with reference to the following examples. Example 1 As a die, the diameter of the inner circumference 6 in FIG.
Forging was performed using 4.9 mm, a blade length 1 of 18.5 mm, a blade portion width t of 4.1 mm, a blade height h of 37 mm, and a punch having no concave portion. A3 as material
Using an aluminum alloy of 90 composition as a blank, φ
The thickness of the surplus portion of the forged product was adjusted from 2 mm to 15 mm by changing the blank thickness of a material having a size of 61.3 mm. Forging conditions are as follows: blank temperature 300 to 460 ° C, die and pressure punch temperature 100 to 350 ° C, load 20 to 1
00t. The dimensional accuracy was investigated by measuring the parallelism of the vane storage groove of this forged product with reference to the cylindrical outer periphery, and the die life was examined from the number of shots until the die was broken. The degree of parallelism is the degree of parallelism with respect to the forged product outer diameter cylinder.

【0015】比較例1 実施例1と同様のダイス、パンチを使用し、同一鍛造条
件にて鍛造を行った。ただし、材料としてA390組成
のアルミニウム合金のブランク材として、φ61.3m
mのものの厚さを変え、鍛造製品の余肉部分の厚さが
1.2mmとなるようにした。表1に実施例1及び比較
例1をまとめる。この結果、余肉付け鍛造によりダイス
寿命が著しく改善されること、また寸法精度も向上する
ことが分かる。
Comparative Example 1 Using the same dies and punches as in Example 1, forging was performed under the same forging conditions. However, as a blank material of aluminum alloy of A390 composition, φ61.3 m
m was changed so that the thickness of the excess portion of the forged product was 1.2 mm. Table 1 summarizes Example 1 and Comparative Example 1. As a result, it can be understood that the die life is remarkably improved and the dimensional accuracy is also improved by the extra thickness forging.

【0016】実施例2 ダイスとして図2形状の内周6の径62.5mm、羽根
7の数5枚、羽根中心と軸中心との距離d(偏位量)
4.8mm、羽根長さlが18mm、羽根部幅tが3.
2mm、羽根高さhが51mmのダイスを用い、パンチ
は、図8の凹部が中央で繋がった形状のもので平均の凹
幅wが10mmのものを使用し鍛造を行った。材料とし
てA390組成のアルミニウム合金でφ61.3mmの
寸法のものをブランクとして用いた。鍛造条件は、実施
例1と同様とした。
Example 2 The diameter of the inner periphery 6 of FIG. 2 is 62.5 mm, the number of blades 7 is five, and the distance d between the center of the blade and the center of the shaft (the amount of deviation)
4.8 mm, blade length 1 is 18 mm, blade width t is 3.
A punch having a diameter of 2 mm and a blade height h of 51 mm was used, and a punch having a shape in which the concave portions in FIG. 8 were connected at the center and having an average concave width w of 10 mm was used for forging. As a blank, an aluminum alloy having a composition of A390 and a size of φ61.3 mm was used as a blank. The forging conditions were the same as in Example 1.

【0017】実施例3 実施例2と同一のダイス、及び同一の材料を用い、パン
チは第7図の凹部がダイス羽根に対応して独立している
形状のもので平均の凹部の幅wが9mmのものを使用し
鍛造を行った。鍛造条件は、実施例1と同様とした。
Embodiment 3 The same dies and the same material as those in Embodiment 2 are used, and the punch has a shape in which the recesses shown in FIG. 7 are independent of the die blades. Forging was carried out using a 9 mm one. The forging conditions were the same as in Example 1.

【0018】実施例4 実施例2と同一のダイス、及び同一の材料を用い、パン
チは図7の形状のもので平均の凹部の幅wが4.8mm
のものを使用し鍛造を行った。鍛造条件は、実施例1と
同様とした。
Example 4 The same dies and the same material as in Example 2 were used. The punch had the shape shown in FIG. 7 and the average recess width w was 4.8 mm.
Forging was performed using The forging conditions were the same as in Example 1.

【0019】実施例5 実施例2と同一のダイス、及び同一の材料を用い、パン
チは図8の形状のもので平均の凹部の幅wが14.3m
mのものを使用し鍛造を行った。鍛造条件は、実施例1
と同様とした。
Example 5 The same dies and the same material as in Example 2 were used. The punch had the shape shown in FIG. 8 and the average recess width w was 14.3 m.
m forging was performed. The forging conditions are the same as in Example 1.
The same as above.

【0020】比較例2 実施例2と同様のダイス、及び同一の材料を用い、パン
チは図7の形状のもので平均の凹部の幅wが2.9mm
のものを使用し鍛造を行った。鍛造条件は、実施例1と
同様とした。
Comparative Example 2 The same die and the same material as in Example 2 were used. The punch had the shape shown in FIG. 7 and the average recess width w was 2.9 mm.
Forging was performed using The forging conditions were the same as in Example 1.

【0021】実施例2から5及び比較例2の鍛造品のベ
ーン収納溝の平行度の測定結果を表2に示す。この結果
から、本発明のパンチ部に凹部を設けることによる効果
がみられる。
Table 2 shows the measurement results of the parallelism of the vane storage grooves of the forged products of Examples 2 to 5 and Comparative Example 2. From this result, the effect of providing the concave portion in the punch portion of the present invention is seen.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明によれば、ローター素材を熱間鍛
造法により製造する場合、鍛造中ダイス羽根部にかかる
荷重を緩和し、その結果ダイス寿命を延ばすことが出来
る。さらにベーン収納溝の寸法精度も向上する。
According to the present invention, when a rotor material is manufactured by hot forging, the load applied to the die blades during forging can be reduced, and as a result, the life of the die can be extended. Further, the dimensional accuracy of the vane storage groove is improved.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明以前のローター素材形状を示す図で、
(a)は平面図、(b)は(a)のBーOーB断面を示
す図である。
FIG. 1 is a view showing a rotor material shape before the present invention;
(A) is a top view, (b) is a figure which shows the BOB cross section of (a).

【図2】本発明の鍛造に使用するダイス形状の1例を示
す図で、(a)はダイスの平面図、(b)は(a)のX
−OーX断面図、(c)はA部詳細図である。
FIGS. 2A and 2B are diagrams showing an example of a die shape used for forging of the present invention, wherein FIG. 2A is a plan view of the die, and FIG.
FIG. 2C is a cross-sectional view taken along line OX, and FIG.

【図3】本発明によるローター素材形状を示す図で、
(a)は平面図、(b)は(a)のB−0−B断面を示
す図である。
FIG. 3 is a view showing a rotor material shape according to the present invention;
(A) is a top view, (b) is a figure which shows the B-0-B cross section of (a).

【図4】本発明による鍛造工程を示す図で(a)はブラ
ンク投入、鍛造前、(b)は鍛造直後、(c)は鍛造品
排出の説明図である。
FIGS. 4A and 4B are diagrams showing a forging process according to the present invention, wherein FIG. 4A is an explanatory view of blank input and before forging, FIG. 4B is immediately after forging, and FIG.

【図5】本発明による鍛造工程の他の例を示す図で
(a)はブランク投入、鍛造前、(b)は鍛造直後、
(c)は鍛造品排出の説明図である。
5A and 5B are diagrams showing another example of the forging process according to the present invention, in which FIG. 5A shows blank injection and before forging, FIG.
(C) is an explanatory view of forging discharge.

【図6】本発明によるローター素材形状の他の例を示す
図である。
FIG. 6 is a view showing another example of a rotor material shape according to the present invention.

【図7】本発明の鍛造に使用する加圧パンチの形状の一
例を示す図で、(a)は平面図、(b)は(a)のX−
OーX断面を示す図である。
FIGS. 7A and 7B are diagrams showing an example of the shape of a pressure punch used for forging of the present invention, wherein FIG. 7A is a plan view, and FIG.
It is a figure which shows the OX cross section.

【図8】本発明の鍛造に使用する加圧パンチの形状の他
の一例を示す図で、(a)は平面図、(b)は(a)の
X−OーX断面を示す図である。
8A and 8B are diagrams showing another example of the shape of the pressure punch used for forging of the present invention, wherein FIG. 8A is a plan view, and FIG. 8B is a diagram showing a cross section taken along line X-OX of FIG. is there.

【0026】[0026]

【符号の説明】[Explanation of symbols]

1 ローター素材 2 ベーン収納溝 5 ダイス 7 ダイス羽根部 9 ケース(コンテナー) 10 アンビル(ダイプレート) 11 ノックアウトピン 12 加圧パンチ 13 ブランク 14 加圧パンチの凹部 REFERENCE SIGNS LIST 1 rotor material 2 vane storage groove 5 dice 7 die blade 9 case (container) 10 anvil (die plate) 11 knockout pin 12 pressure punch 13 blank 14 depression of pressure punch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 英実 福島県喜多方市字長内7840 株式会社ショ ウティック内 (72)発明者 穴沢 良幸 福島県喜多方市字長内7840 株式会社ショ ウティック内 Fターム(参考) 3H040 AA08 AA09 BB07 CC14 CC16 DD07 DD08 DD35 DD36 4E087 AA09 BA04 CA13 CA15 CB01 DA02 DB04 EA11 EC02 EC38 EC39 EE02 HA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidemi Yamada 7840, Chikata, Kitakata, Fukushima Pref. Reference) 3H040 AA08 AA09 BB07 CC14 CC16 DD07 DD08 DD35 DD36 4E087 AA09 BA04 CA13 CA15 CB01 DA02 DB04 EA11 EC02 EC38 EC39 EE02 HA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ベーン収納溝を有するアルミニウム合金
製ローター素材を鍛造法により製造する際、ベーン収納
溝を貫通させずベーン収納溝が成形されていない部位を
残した形状に鍛造し、その後ベーン収納溝が成形されて
いない部位を機械加工により取り除くことを特徴とする
アルミニウム合金製ローター素材の製造方法。
When an aluminum alloy rotor material having a vane storage groove is manufactured by a forging method, the rotor material is forged into a shape that does not penetrate the vane storage groove and leaves a portion where the vane storage groove is not formed. A method of manufacturing a rotor material made of an aluminum alloy, wherein a portion where a groove is not formed is removed by machining.
【請求項2】 前記ベーン収納溝が成形されていない部
位の厚さがベーン収納溝幅の0.5倍以上4倍以下であ
ることを特徴とする請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the thickness of the part where the vane storage groove is not formed is 0.5 times or more and 4 times or less the width of the vane storage groove.
【請求項3】 前記ベーン収納溝が成形されていない部
位を形成するにあたって、ベーン収納溝を成形するダイ
ス羽根部に対応する位置に凹部を設けたパンチを使用す
ることを特徴とする請求項1または2記載の製造方法。
3. A punch having a concave portion provided at a position corresponding to a die blade portion for forming a vane storage groove when forming a portion where the vane storage groove is not formed. Or the production method according to 2.
【請求項4】 前記パンチの凹部の幅がダイス羽根部の
幅の1倍以上6倍以下である請求項1〜請求項3記載の
製造方法。
4. The method according to claim 1, wherein the width of the concave portion of the punch is not less than 1 and not more than 6 times the width of the die blade portion.
JP10286611A 1998-10-08 1998-10-08 Manufacture of aluminum alloy rotor stock Pending JP2000117380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286611A JP2000117380A (en) 1998-10-08 1998-10-08 Manufacture of aluminum alloy rotor stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10286611A JP2000117380A (en) 1998-10-08 1998-10-08 Manufacture of aluminum alloy rotor stock

Publications (1)

Publication Number Publication Date
JP2000117380A true JP2000117380A (en) 2000-04-25

Family

ID=17706661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286611A Pending JP2000117380A (en) 1998-10-08 1998-10-08 Manufacture of aluminum alloy rotor stock

Country Status (1)

Country Link
JP (1) JP2000117380A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075884A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Aluminum alloy-made forging-formed product and producing method therefor, and die for forging and forging apparatus, and aluminum alloy-made rotor blank and aluminum alloy-made rotor
JP2009228597A (en) * 2008-03-24 2009-10-08 Anest Iwata Corp Multi-stage pump and method for manufacturing the same
EP2312165A1 (en) * 2008-06-24 2011-04-20 Showa Denko K.K. Method for producing rotor
KR20120006924U (en) * 2011-03-30 2012-10-10 현대위스코 주식회사 Sizing equipment for forging
CN102728760A (en) * 2012-07-03 2012-10-17 北京有色金属研究总院 Aluminum alloy rotor forming die and method thereof
JP2018020329A (en) * 2016-08-01 2018-02-08 昭和電工株式会社 Forging processing device, forging processing method and manufacturing method of forging processing product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075884A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Aluminum alloy-made forging-formed product and producing method therefor, and die for forging and forging apparatus, and aluminum alloy-made rotor blank and aluminum alloy-made rotor
JP2009228597A (en) * 2008-03-24 2009-10-08 Anest Iwata Corp Multi-stage pump and method for manufacturing the same
EP2312165A1 (en) * 2008-06-24 2011-04-20 Showa Denko K.K. Method for producing rotor
CN102076965A (en) * 2008-06-24 2011-05-25 昭和电工株式会社 Method for producing rotor
EP2312165A4 (en) * 2008-06-24 2012-11-21 Showa Denko Kk Method for producing rotor
KR20120006924U (en) * 2011-03-30 2012-10-10 현대위스코 주식회사 Sizing equipment for forging
CN102728760A (en) * 2012-07-03 2012-10-17 北京有色金属研究总院 Aluminum alloy rotor forming die and method thereof
CN102728760B (en) * 2012-07-03 2014-08-13 北京有色金属研究总院 Aluminum alloy rotor forming die and method thereof
JP2018020329A (en) * 2016-08-01 2018-02-08 昭和電工株式会社 Forging processing device, forging processing method and manufacturing method of forging processing product

Similar Documents

Publication Publication Date Title
JP2007007718A (en) Method for manufacturing rocker arm
CN110918843B (en) Space envelope forming manufacturing method for thin-wall high-rib radiating component
US10086425B2 (en) Method for producing a forged crankshaft
WO2017208669A1 (en) Forging device
JPWO2018056135A1 (en) Method of manufacturing forged crankshaft
WO2016159246A1 (en) Method for manufacturing forged crankshaft
JP2000117380A (en) Manufacture of aluminum alloy rotor stock
JP4003147B2 (en) Manufacturing method of rotor
JP6958721B2 (en) Forged crank shaft manufacturing method
US6688154B2 (en) Die for forging rotor, forge production system and forging method using the die, and rotor
JP3183274B2 (en) Forging method of aluminum alloy rotor material
CN102076965A (en) Method for producing rotor
JP6822574B2 (en) Forged crankshaft manufacturing method
JP6172377B2 (en) Forming device for finishing punched material of forged crankshaft for V-type 6-cylinder engine and method for manufacturing forged crankshaft for V-type 6-cylinder engine using the same
JP6179659B2 (en) Finishing material forming apparatus for forged crankshaft for 4-cylinder engine and method for producing forged crankshaft for 4-cylinder engine using the same
JP3405372B2 (en) Manufacturing method of cam lobe for assembly
JP7485951B2 (en) Manufacturing method of crankshaft
JP6935822B2 (en) Forged crankshaft manufacturing method
JPWO2019181366A1 (en) Forged crankshaft manufacturing method
JP3947433B2 (en) Forging die, closed forging production system, aluminum alloy rotor forging method and forged aluminum alloy rotor
JP2000254754A (en) Production of aluminum alloy rotor stock and aluminum alloy rotor stock
JPS6243772B2 (en)
KR20030009146A (en) Die for forging rotor, forge production system and forging method using the die, and rotor
JP3584749B2 (en) Deburring method for forged crankshafts
JPH10118741A (en) Metallic mold for forging scroll