JP2000116047A - High heat conduction insulated coil and rotary electric machine device using it - Google Patents

High heat conduction insulated coil and rotary electric machine device using it

Info

Publication number
JP2000116047A
JP2000116047A JP10274596A JP27459698A JP2000116047A JP 2000116047 A JP2000116047 A JP 2000116047A JP 10274596 A JP10274596 A JP 10274596A JP 27459698 A JP27459698 A JP 27459698A JP 2000116047 A JP2000116047 A JP 2000116047A
Authority
JP
Japan
Prior art keywords
mica
thickness
coil
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10274596A
Other languages
Japanese (ja)
Inventor
Shigeo Amagi
滋夫 天城
Masaki Akatsuka
正樹 赤塚
Tomoya Tsunoda
智也 角田
Mitsuru Onoda
満 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10274596A priority Critical patent/JP2000116047A/en
Publication of JP2000116047A publication Critical patent/JP2000116047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously satisfy high heat conductivity and a high voltage characteristics by setting a value that is obtained by dividing the standard deviation of thickness at thirty arbitrary points in the longitudinal direction of a mica insulation tape by the average value of the thickness at the same points to a specific value or less. SOLUTION: After a mica insulation tape consisting of a mica layer 2 and a layer 1 where a reinforcing material and a particle filling resin layer are in one piece is wound around a conductor 4, a pressure 6 is applied. When there is a thick part 3 at one portion of the tape, the pressure cannot be transferred to an area near it fully and hence a void 5 remains. A tape is formed, where the stiffness of a roll coater is changed in various ways and the thickness scattering of the longitudinal direction of the mica insulation tape is changed, the insulation strength of the coil is measured, and a value that is obtained by dividing the standard deviation of the thickness at thirty arbitrary points in the longitudinal direction of the mica insulation tape by the average value of the thickness at the same points is set to 0.038 or less, thus rapidly increasing the insulation strength, and establishing both of the high thermal conductivity in the thickness direction of the insulation layer and the high insulation strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導率と耐電
圧特性を兼ね備えた絶縁処理を行ったコイルならびにこ
のコイルを用いた回転電機装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated coil having both a high thermal conductivity and a high withstand voltage characteristic, and a rotating electric machine using the coil.

【0002】[0002]

【従来の技術】従来の技術の例として特開昭63−110929
号公開公報に記載されているように、マイカ層の間に配
置される樹脂層の中へ充填材として窒化ホウ素,窒化ア
ルミニウム,窒化硅素,酸化アルミニウム,酸化マグネ
シウム,酸化ベリリウム及び炭化硅素等の少なくとも5
W/mK以上の熱伝導率を持ち、この充填材の90重量
%の粒径が0.1 〜15μmの範囲にある粒子を入れ絶
縁処理したコイルがあった。しかし、絶縁層の厚さ方向
の熱伝導率0.4W/mK 以上と耐電圧として絶縁破壊
強さ25kV/mm以上を両立させることが難しかった。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 63-110929 discloses an example of the prior art.
As described in Japanese Patent Application Laid-Open Publication No. H10-163, at least a material such as boron nitride, aluminum nitride, silicon nitride, aluminum oxide, magnesium oxide, beryllium oxide, and silicon carbide is used as a filler in a resin layer disposed between mica layers. 5
There was a coil having a thermal conductivity of W / mK or more and insulated with particles containing 90% by weight of the filler having a particle size in the range of 0.1 to 15 μm. However, it was difficult to achieve both a thermal conductivity of 0.4 W / mK or more in the thickness direction of the insulating layer and a dielectric strength of 25 kV / mm or more as a withstand voltage.

【0003】[0003]

【発明が解決しようとする課題】小形で高出力の回転電
機装置を製作する、あるいはコイルに中空導体を用いて
その内部へ水などの冷媒を通して冷却する直接冷却の方
式をとらず、コイル絶縁層の外側に空気あるいは水素ガ
スを通して冷却する間接冷却方式で高出力の回転電機装
置を製作することが望まれている。このためには絶縁層
部の熱抵抗を低減するためコイル絶縁層の厚さ方向の高
熱伝導率化と高耐電圧の両立が必要である。
Instead of manufacturing a small, high-output rotary electric machine, or using a hollow conductor for the coil to cool the interior of the coil through a coolant such as water, the coil insulating layer is not used. It is desired to produce a high-output rotary electric machine by an indirect cooling system in which air or hydrogen gas is cooled outside the device. For this purpose, it is necessary to achieve both high thermal conductivity in the thickness direction of the coil insulating layer and high withstand voltage in order to reduce the thermal resistance of the insulating layer.

【0004】本発明の目的は、高熱伝導率と高耐電圧特
性を兼ね備えた絶縁処理を行ったコイルならびにこのコ
イルを用いた回転電機装置を提供することにある。
An object of the present invention is to provide an insulated coil having both a high thermal conductivity and a high withstand voltage characteristic, and a rotating electric machine using the coil.

【0005】[0005]

【課題を解決するための手段】本発明に用いるマイカ絶
縁テープは、マイカと、少なくとも5W/mK以上の熱
伝導率を持つ高熱伝導充填粒子、ならびにこれらの材料
を載せる補強材が積層構造をなし、これらの隙間を埋め
る樹脂からなる。このマイカ絶縁テープの製作フロー概
要を図1に示す。まず、高熱伝導充填粒子を樹脂へ所定
量配合したAを作る。別途、水中で粉砕分散し抄紙機で
抄造したマイカペーパーと補強材を樹脂で張り合わせて
シートBをつくる。その後、AをBへロールコーターを
用いて塗工し、乾燥した後にテープ幅に切断して完成す
る。
Means for Solving the Problems The mica insulating tape used in the present invention has a laminated structure of mica, high thermal conductive filler particles having a thermal conductivity of at least 5 W / mK, and a reinforcing material on which these materials are placed. And a resin that fills these gaps. FIG. 1 shows an outline of a production flow of this mica insulating tape. First, A is prepared by mixing a predetermined amount of the high thermal conductive filler particles with the resin. Separately, mica paper pulverized and dispersed in water and formed by a paper machine and a reinforcing material are laminated with a resin to form a sheet B. Thereafter, A is coated on B using a roll coater, dried, and then cut into a tape width to complete the process.

【0006】このマイカ絶縁テープにおいて、高耐電圧
を維持する部分は主にマイカと樹脂からなるマイカ層
で、絶縁層の高熱伝導率化を図る部分は高熱伝導充填粒
子と樹脂からなる粒子充填樹脂層である。コイルの絶縁
層は前述の補強材とマイカ層と粒子充填樹脂層で構成さ
れるマイカ絶縁テープを導体の周囲へ巻き付け、周囲か
ら加圧加熱成形して作る。絶縁層の熱伝導率を高めるた
めには高熱伝導充填粒子と樹脂からなる粒子充填樹脂層
の熱伝導率ができるだけ高いことが望ましい。
In this mica insulating tape, a portion for maintaining high withstand voltage is a mica layer mainly composed of mica and resin, and a portion for increasing the thermal conductivity of the insulating layer is a particle-filled resin composed of highly thermally conductive filled particles and resin. Layer. The insulating layer of the coil is formed by winding a mica insulating tape composed of the above-mentioned reinforcing material, mica layer, and particle-filled resin layer around the conductor, and pressing and heating from the periphery. In order to increase the thermal conductivity of the insulating layer, it is desirable that the particle-filled resin layer composed of the high thermal conductive filler particles and the resin has as high a thermal conductivity as possible.

【0007】補強材としては、クロス,不織布,フイル
ムあるいはこれらの組み合わせが望ましい。粒子充填樹
脂層の熱伝導率を高めるためには、粒子充填樹脂層にお
いて高熱伝導充填粒子が占める体積比率を高めればよ
い。
As the reinforcing material, a cloth, a nonwoven fabric, a film or a combination thereof is desirable. In order to increase the thermal conductivity of the particle-filled resin layer, the volume ratio of the high thermal conductive filler particles in the particle-filled resin layer may be increased.

【0008】しかし、高熱伝導充填粒子が占める体積比
率を高めると樹脂の硬化反応が進む前の粒子充填樹脂層
の粘度が高くなる。このときマイカ絶縁テープの厚さに
大きいばらつきがあると、導体の周囲へマイカ絶縁テー
プを巻き付けた際に厚いマイカ絶縁テープと薄いマイカ
絶縁テープが隣接する。
However, when the volume ratio occupied by the high thermal conductive filler particles is increased, the viscosity of the particle-filled resin layer before the curing reaction of the resin proceeds increases. At this time, if there is a large variation in the thickness of the mica insulating tape, the thick mica insulating tape and the thin mica insulating tape are adjacent to each other when the mica insulating tape is wound around the conductor.

【0009】このため、粘度が高く厚いマイカ絶縁テー
プに隣接する薄いマイカ絶縁テープには十分圧力が伝わ
らずボイドなどの欠陥が残り耐電圧特性である絶縁破壊
強さが低下する。この状況を図2の模式図を用いて説明
する。
For this reason, the pressure is not sufficiently transmitted to the thin mica insulating tape adjacent to the thick mica insulating tape having a high viscosity, defects such as voids remain, and the dielectric breakdown strength, which is a withstand voltage characteristic, decreases. This situation will be described with reference to the schematic diagram of FIG.

【0010】図2は導体4の周りへマイカ層2と、補強
材と粒子充填樹脂層が一体になった層1からなるマイカ
絶縁テープを巻いた後に圧力6を加えている状態であ
る。テープの一部に厚い箇所3があるとその近傍に圧力
が十分伝わらず、ボイド5が残る。
FIG. 2 shows a state in which a pressure 6 is applied after winding a mica insulating tape composed of a mica layer 2 and a layer 1 in which a reinforcing material and a particle-filled resin layer are integrated around a conductor 4. If there is a thick portion 3 in a part of the tape, the pressure is not sufficiently transmitted in the vicinity thereof, and the void 5 remains.

【0011】このため、ロールコーターの剛性を種々変
えマイカ絶縁テープの長さ方向の厚さばらつきを変えた
テープを作り、コイルの絶縁破壊強さを測定した結果、
マイカ絶縁テープの長さ方向任意の30箇所の厚さの標
準偏差を同じ箇所の厚さの平均値で割った値を0.03
8 以下にすると絶縁破壊強さが急に高まることが解か
った。これより絶縁層の厚さ方向の高い熱伝導率と高い
絶縁破壊強さを両立する課題を解決できた。
For this reason, a tape was prepared in which the thickness of the mica insulating tape in the length direction was varied by changing the rigidity of the roll coater variously, and the dielectric breakdown strength of the coil was measured.
The value obtained by dividing the standard deviation of the thickness at any 30 locations in the length direction of the mica insulating tape by the average value of the thickness at the same location is 0.03.
It was found that the dielectric breakdown strength suddenly increased when the value was 8 or less. This has solved the problem of achieving both high thermal conductivity in the thickness direction of the insulating layer and high dielectric breakdown strength.

【0012】[0012]

【発明の実施の形態】(実施例1)マイカを水中分散し
マイカ粒子とし、抄紙機にて抄造し厚さ0.08mm のマ
イカペーパーを製作した。補強材として厚さ0.05mm
のガラスクロスを用い、ノボラク型エポキシ樹脂100
重量部に対してBF3モノエチルアミン3重量部を加え
た樹脂でマイカペーパーと補強材のガラスクロスを張り
合わせシートBを製作した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1) Mica was dispersed in water to form mica particles, and the paper was machined with a paper machine to produce mica paper having a thickness of 0.08 mm. 0.05mm thick as reinforcement
Novolak epoxy resin 100
Sheet B was produced by bonding mica paper and a reinforcing glass cloth to a resin obtained by adding 3 parts by weight of BF3 monoethylamine to parts by weight.

【0013】高熱伝導充填粒子にはアルミナ粒子を用い
た。このアルミナ粒子は、全粒子の粒径が0.24μm
〜18.5μmの範囲にあり、平均粒径が1.6μm で
ある。次にノボラク型エポキシ樹脂100重量部に対し
てBF3モノエチルアミン3重量部を加えた樹脂に、前
述のアルミナ粒子と樹脂の重量比を2:1に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。
Alumina particles were used as the high thermal conductive filler particles. The alumina particles had a particle diameter of 0.24 μm.
1818.5 μm, and the average particle size is 1.6 μm. Next, the resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the alumina particles to the resin of 2: 1, and 15% by weight of methyl ethyl ketone was added to the mixture. In addition, resin A containing high thermal conductive filler particles was produced.

【0014】その後図1のフローにしたがって、マイカ
絶縁テープ総重量に対しアルミナ粒子の重量比率が30
%となるように、マイカペーパーと補強材のガラスクロ
スを張り合わせたシートBに高熱伝導充填粒子を配合し
た樹脂Aをロールコーターで塗工した。このとき用いた
ロールコーターの剛性を、1mの間隔2箇所で支えて支
持点間の中央部に100Nの力を加えた時のロールコー
ター中央部の撓み量で表わすと0.002mmであった。
Then, according to the flow of FIG. 1, the weight ratio of the alumina particles to the total weight of the mica insulating tape is 30.
%, A resin B containing high thermal conductive filler particles was applied to a sheet B in which mica paper and a glass cloth as a reinforcing material were adhered, using a roll coater. The rigidity of the roll coater used at this time was 0.002 mm in terms of the amount of deflection at the center of the roll coater when a force of 100 N was applied to the center between the support points while supporting the support at two places of 1 m.

【0015】マイカペーパーと補強材のガラスクロスを
張り合わせたシートBに高熱伝導充填粒子を配合した樹
脂Aを塗工したシートを乾燥後、幅30mmに切断しアル
ミナ粒子入りのマイカ絶縁テープを製作した。この実施
例1のアルミナ粒子入りのマイカ絶縁テープ中のマイカ
重量比率は31%、アルミナ重量比率は32%である。
A sheet obtained by coating a resin B containing high thermal conductive filler particles on a sheet B in which mica paper and a glass cloth as a reinforcing material are laminated is dried, and then cut into a width of 30 mm to produce a mica insulating tape containing alumina particles. . The mica weight ratio in the mica insulating tape containing alumina particles of Example 1 was 31%, and the alumina weight ratio was 32%.

【0016】マイカ重量比率は、このテープに用いたマ
イカペーパーの単位面積当りの重量Wmをアルミナ粒子
入りのマイカ絶縁テープの単位面積当りの重量Wt1で
割って求めた。アルミナ重量比率は、アルミナ粒子入り
のマイカ絶縁テープを600℃の電気炉で2時間加熱
し、樹脂を除去した状態の単位面積当り重量Wt2から
マイカペーパーの単位面積当りの重量Wmならびに補強
材に用いたガラスクロスの単位面積当り重量Wgを引い
た値をWt1で割って求めた。実施例1のアルミナ粒子
入りマイカ絶縁テープの断面模式図を図4に示す。マイ
カと樹脂からなるマイカ層2と補強材であるガラスクロ
ス7とアルミナ粒子充填樹脂層8を積層した形となって
いる。
The mica weight ratio was determined by dividing the weight Wm per unit area of the mica paper used for this tape by the weight Wt1 per unit area of the mica insulating tape containing alumina particles. The alumina weight ratio is determined by heating the mica insulating tape containing alumina particles in an electric furnace at 600 ° C. for 2 hours to remove the resin from the weight Wt2 per unit area to the weight Wm per unit area of the mica paper and reinforcing material. The value obtained by subtracting the weight Wg per unit area of the glass cloth was divided by Wt1. FIG. 4 is a schematic cross-sectional view of the mica insulating tape containing alumina particles of Example 1. A mica layer 2 made of mica and resin, a glass cloth 7 as a reinforcing material, and a resin layer 8 filled with alumina particles are laminated.

【0017】[0017]

【表1】 [Table 1]

【0018】このマイカ絶縁テープの厚さをマイクロメ
ータを用いてテープ長さ方向の約1mピッチで30点測
定して平均厚さと標準偏差を求めた結果、表1に示すよ
うに平均厚さは0.290mmで標準偏差を平均値で割っ
た値は0.032であった。このアルミナ粒子入りマイ
カ絶縁テープを、予め素線間絶縁処理を行った図5に示
す断面の高さ40mm,幅10mm,長さ1000mmのコイ
ル導体10に半掛け7回巻いた後、110℃のもとで1
5min 加熱した後、圧力5MPaで加圧した後170℃
のもとで60min 加熱し、対地絶縁層を形成した絶縁コ
イルを5本製作した。この対地絶縁層の断面を顕微鏡で
観察したところ図3の断面模式図に示すようにボイドは
なかった。
The average thickness and the standard deviation were obtained by measuring the thickness of the mica insulating tape at 30 points at a pitch of about 1 m in the length direction of the tape using a micrometer, and as a result, as shown in Table 1, the average thickness was The value obtained by dividing the standard deviation by the average value at 0.290 mm was 0.032. The mica insulating tape containing the alumina particles is wound half-turned seven times around a coil conductor 10 having a cross section of 40 mm in height, 10 mm in width and 1000 mm in length shown in FIG. Originally one
After heating for 5min, pressurized at 5MPa and then 170 ℃
Then, five insulated coils on which a ground insulating layer was formed were manufactured by heating for 60 minutes. When a cross section of this ground insulating layer was observed with a microscope, no void was found as shown in the schematic cross-sectional view of FIG.

【0019】このコイルの絶縁破壊電圧と絶縁層の熱伝
導率を測定した結果を表1の実施例1に示す。熱伝導率
は0.53W/mK、絶縁破壊強さは27kV/mm であ
った。絶縁破壊電圧はJIS C2116に従って測定
した。また厚さ方向の熱伝導率は、対地絶縁層の最内層
にPTFEフイルムを巻いて絶縁処理した箇所から円盤
状試験片を採取し、試験片の表裏の温度差と定常状態に
おいて試験片厚さ方向に貫通する熱量から熱伝導率を算
出する装置(ダイナテック社製C−MATIC)により測
定した。
The results of measuring the dielectric breakdown voltage of the coil and the thermal conductivity of the insulating layer are shown in Example 1 of Table 1. The thermal conductivity was 0.53 W / mK and the dielectric breakdown strength was 27 kV / mm. The dielectric breakdown voltage was measured according to JIS C2116. The thermal conductivity in the thickness direction is determined by taking a disk-shaped test piece from the place where the innermost layer of the ground insulating layer is insulated by winding a PTFE film, and the temperature difference between the front and back of the test piece and the thickness of the test piece in a steady state. The thermal conductivity was calculated from the amount of heat penetrating in the direction (C-MATIC manufactured by Dynatech).

【0020】(実施例2,3)マイカを水中分散しマイ
カ粒子とし、抄紙機にて抄造し厚さ0.08mm のマイカ
ペーパーを製作した。補強材として厚さ0.05mm のガ
ラスクロスを用い、ノボラク型エポキシ樹脂100重量
部に対してBF3モノエチルアミン3重量部を加えた樹
脂でマイカペーパーと補強材のガラスクロスを張り合わ
せシートBを製作した。
(Examples 2 and 3) Mica was dispersed in water to form mica particles, and paper was formed using a paper machine to produce mica paper having a thickness of 0.08 mm. Sheet B was prepared by bonding mica paper and reinforcing glass cloth to a resin obtained by adding a glass cloth having a thickness of 0.05 mm as a reinforcing material and adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of a novolak type epoxy resin. .

【0021】高熱伝導充填粒子にはアルミナ粒子を用い
た。このアルミナ粒子は、全粒子の粒径が0.24μm
〜18.5μm の範囲にあり、平均粒径が1.6μmで
ある。次にノボラク型エポキシ樹脂100重量部に対し
てBF3モノエチルアミン3重量部を加えた樹脂に、前
述のアルミナ粒子と樹脂の重量比を2:1に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。
Alumina particles were used as the high thermal conductive filler particles. The alumina particles had a particle diameter of 0.24 μm.
1818.5 μm, and the average particle size is 1.6 μm. Next, the resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the alumina particles to the resin of 2: 1, and 15% by weight of methyl ethyl ketone was added to the mixture. In addition, resin A containing high thermal conductive filler particles was produced.

【0022】その後図1のフローにしたがって、マイカ
絶縁テープ総重量に対しアルミナ粒子の重量比率が30
%となるように、マイカペーパーと補強材のガラスクロ
スを張り合わせたシートBに高熱伝導充填粒子を配合し
た樹脂Aをロールコーターで塗工した。このとき用いた
ロールコーターの剛性を、1mの間隔2箇所で支えて支
持点間の中央部に100Nの力を加えた時のロールコー
ター中央部の撓み量で表わすと0.003mm であった。
マイカペーパーと補強材のガラスクロスを張り合わせた
シートBに高熱伝導充填粒子を配合した樹脂Aを塗工し
たシートを乾燥後、幅30mmに切断しアルミナ粒子入り
のマイカ絶縁テープを製作した。
Thereafter, according to the flow of FIG. 1, the weight ratio of the alumina particles to the total weight of the mica insulating tape is 30.
%, A resin B containing high thermal conductive filler particles was applied to a sheet B in which mica paper and a glass cloth as a reinforcing material were adhered, using a roll coater. The rigidity of the roll coater used at this time was 0.003 mm when expressed in terms of the amount of deflection at the center of the roll coater when a force of 100 N was applied to the center between the support points while supporting at two places of 1 m.
A sheet obtained by applying resin A containing high thermal conductive filler particles to a sheet B in which mica paper and a glass cloth as a reinforcing material were bonded was dried, and then cut to a width of 30 mm to produce a mica insulating tape containing alumina particles.

【0023】実施例2のアルミナ粒子入りのマイカ絶縁
テープ中のマイカ重量比率は31%、アルミナ重量比率
は30%である。実施例3のアルミナ粒子入りのマイカ
絶縁テープ中のマイカ重量比率は30%、アルミナ重量
比率は31%である。これらの重量比率の算出方法は実
施例1と同じである。マイカ絶縁テープの厚さをマイク
ロメータを用いてテープの長さ方向約1mピッチで30
点測定して平均厚さと標準偏差を求めた結果、表1に示
すように平均厚さはそれぞれ実施例2が0.287mm,実施
例3が0.296mmで標準偏差を平均値で割った値は実
施例2が0.034,実施例3が0.038 であった。
The weight ratio of mica in the mica insulating tape containing alumina particles of Example 2 was 31%, and the weight ratio of alumina was 30%. The mica weight ratio in the mica insulating tape containing alumina particles of Example 3 was 30%, and the alumina weight ratio was 31%. The method of calculating these weight ratios is the same as in the first embodiment. Use a micrometer to measure the thickness of the mica insulating tape at a pitch of about 1 m in the length direction of the tape.
As shown in Table 1, the average thickness was 0.287 mm for Example 2 and 0.296 mm for Example 3, and the value obtained by dividing the standard deviation by the average value was as shown in Table 1. Example 2 had 0.034 and Example 3 had 0.038.

【0024】実施例2ならびに実施例3のアルミナ粒子
入りマイカ絶縁テープを、それぞれ予め素線間絶縁処理
を行った図5の断面の高さ40mm,幅10mm,長さ10
00mmのコイル導体10に半掛け7回巻いた後、110
℃のもとで15min 加熱した後、圧力5MPaで加圧し
た後170℃のもとで60min 加熱し、対地絶縁層を形
成した絶縁コイルを実施例2について5本、実施例3に
ついて5本製作した。これらのコイルの絶縁破壊電圧と
熱伝導率を測定した結果を表1の実施例2,3に示す。
熱伝導率は実施例2が0.50W/mK,実施例3が0.
51W/mKであった。絶縁破壊強さは実施例2が2
7.3kV/mm,実施例3が26.8kV/mmであった。
なお、絶縁破壊電圧ならびに熱伝導率は実施例1と同じ
手法により求めた。
Each of the mica insulating tapes containing alumina particles of Examples 2 and 3 was subjected to insulation treatment between wires in advance, and had a cross section of 40 mm in height, 10 mm in width and 10 mm in length in FIG.
After winding 7 times around the coil conductor 10 of 00 mm,
After heating at 15 ° C for 15 minutes, pressurizing at 5MPa and then heating at 170 ° C for 60 minutes, five insulated coils with ground insulation layer formed on Example 2 and five on Example 3 did. The results of measuring the dielectric breakdown voltage and the thermal conductivity of these coils are shown in Examples 2 and 3 in Table 1.
The thermal conductivity of Example 2 was 0.50 W / mK, and that of Example 3 was 0.5 W / mK.
It was 51 W / mK. The dielectric breakdown strength was 2 in Example 2.
7.3 kV / mm, and Example 3 was 26.8 kV / mm.
The dielectric breakdown voltage and the thermal conductivity were determined by the same method as in Example 1.

【0025】(比較例1〜4)マイカを水中分散しマイ
カ粒子とし、抄紙機にて抄造し厚さ0.08mm のマイカ
ペーパーを製作した。補強材として厚さ0.05mm のガ
ラスクロスを用い、ノボラク型エポキシ樹脂100重量
部に対してBF3モノエチルアミン3重量部を加えた樹
脂でマイカペーパーと補強材のガラスクロスを張り合わ
せシートBを製作した。
(Comparative Examples 1 to 4) Mica was dispersed in water to form mica particles, which were then formed by a paper machine to produce mica paper having a thickness of 0.08 mm. Sheet B was prepared by bonding mica paper and reinforcing glass cloth to a resin obtained by adding a glass cloth having a thickness of 0.05 mm as a reinforcing material and adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of a novolak type epoxy resin. .

【0026】高熱伝導充填粒子にはアルミナ粒子を用い
た。このアルミナ粒子は、全粒子の粒径が0.24μm
〜18.5μmの範囲にあり、平均粒径が1.6μm で
ある。次にノボラク型エポキシ樹脂100重量部に対し
てBF3モノエチルアミン3重量部を加えた樹脂に、前
述のアルミナ粒子と樹脂の重量比を2:1に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。その後図1
のフローにしたがって、マイカ絶縁テープ総重量に対し
アルミナ粒子の重量比率が30%となるように、マイカ
ペーパーと補強材のガラスクロスを張り合わせたシート
Bに高熱伝導充填粒子を配合した樹脂Bをロールコータ
ーで塗工した。
Alumina particles were used as the high thermal conductive filler particles. The alumina particles had a particle diameter of 0.24 μm.
1818.5 μm, and the average particle size is 1.6 μm. Next, the resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the alumina particles to the resin of 2: 1, and 15% by weight of methyl ethyl ketone was added to the mixture. In addition, resin A containing high thermal conductive filler particles was produced. Then Figure 1
According to the flow of the above, roll the resin B in which the high thermal conductive filler particles are blended into the sheet B in which the mica paper and the glass cloth of the reinforcing material are bonded so that the weight ratio of the alumina particles to the total weight of the mica insulating tape is 30%. Coated with a coater.

【0027】このとき用いたロールコーターの剛性を、
1mの間隔で支えて支持点間の中央部に100Nの力を
加えた時のロールコーター中央部の撓み量で表わすと比
較例1,2,3では0.006mm、比較例4では0.01
5mmであった。
The rigidity of the roll coater used at this time is
When expressed by the amount of deflection of the center of the roll coater when a force of 100 N is applied to the center between the support points while supporting at intervals of 1 m, 0.0006 mm in Comparative Examples 1, 2 and 3, and 0.01 in Comparative Example 4.
It was 5 mm.

【0028】マイカペーパーと補強材のガラスクロスを
張り合わせたシートBに高熱伝導充填粒子を配合した樹
脂Aを塗工したシートを乾燥した後、幅30mmに切断
し、表1の比較例1〜4のアルミナ粒子入りのマイカ絶
縁テープを製作した。比較例1〜4のアルミナ粒子入り
のマイカ絶縁テープ中のマイカ重量比率,アルミナ重量
比率を表1に示す。これらの重量比率の算出方法は実施
例1と同じである。
A sheet obtained by applying a resin A containing high thermal conductive filler particles to a sheet B in which mica paper and a glass cloth as a reinforcing material were bonded was dried, cut into a width of 30 mm, and then compared with Comparative Examples 1 to 4 in Table 1. A mica insulating tape containing alumina particles was manufactured. Table 1 shows the mica weight ratio and the alumina weight ratio in the mica insulating tape containing alumina particles of Comparative Examples 1 to 4. The method of calculating these weight ratios is the same as in the first embodiment.

【0029】比較例1〜4のマイカ絶縁テープの厚さを
マイクロメータを用いてテープ長さ方向約1mピッチで
30点測定して平均厚さと標準偏差を求めた結果、表1
の比較例1〜4の欄に示すように平均厚さはそれぞれ
0.282mm,0.291mm,0.293mm,0.294mm
で標準偏差を平均値で割った値はそれぞれ0.042,
0.054,0.059,0.098 であった。比較例1
〜4のアルミナ粒子入りのマイカ絶縁テープを、各々予
め素線関絶縁処理を行った図5の断面の高さ40mm,幅
10mm,長さ1000mmのコイル導体10に半掛け7回
巻いた後、110℃のもとで15min 加熱した後、圧力
5MPaで加圧した後170℃のもとで60min 加熱
し、比較例1〜4の対地絶縁層を形成した絶縁コイルを
各々5本ずつ製作した。
The thickness of the mica insulating tape of Comparative Examples 1 to 4 was measured at 30 points at a pitch of about 1 m in the tape length direction using a micrometer, and the average thickness and standard deviation were obtained.
As shown in the columns of Comparative Examples 1 to 4, the average thicknesses were 0.282 mm, 0.291 mm, 0.293 mm, and 0.294 mm, respectively.
And the standard deviation divided by the average is 0.042, respectively.
0.054, 0.059, 0.098. Comparative Example 1
After winding the mica insulating tape containing alumina particles of Nos. 4 to 4 in half on a coil conductor 10 having a height of 40 mm, a width of 10 mm, and a length of 1000 mm in FIG. After heating at 110 ° C. for 15 minutes, pressurizing at a pressure of 5 MPa, and then heating at 170 ° C. for 60 minutes, five insulated coils each having a ground insulating layer of Comparative Examples 1 to 4 were manufactured.

【0030】比較例1〜4のコイルの絶縁破壊電圧と熱
伝導率を測定した結果を表1の比較例1〜4に示す。比
較例1〜4の熱伝導率はそれぞれ0.50,0.51,0.
50,0.49W/mKであったが、絶縁破壊強さは比較
例1〜4それぞれ24.3,23.7,22.0,22.5
kV/mm で、いずれも25kV/mm以下であり、絶縁
コイルとして不十分な値であった。なお、絶縁破壊電圧
ならびに熱伝導率は実施例1と同じ手法により求めた。
The results of measuring the dielectric breakdown voltage and the thermal conductivity of the coils of Comparative Examples 1 to 4 are shown in Tables 1 to 4 of Comparative Examples 1 to 4. The thermal conductivity of Comparative Examples 1-4 was 0.50, 0.51 and 0.5, respectively.
Although it was 50, 0.49 W / mK, the dielectric breakdown strength was 24.3, 23.7, 22.0, 22.5 in Comparative Examples 1 to 4, respectively.
In each case, the value was 25 kV / mm or less, which was insufficient for an insulating coil. The dielectric breakdown voltage and the thermal conductivity were determined by the same method as in Example 1.

【0031】(実施例4,5)マイカを水中分散しマイ
カ粒子とし、抄紙機にて抄造し厚さ0.06mm のマイカ
ペーパーを製作した。補強材として厚さ0.05mm のガ
ラスクロスを用い、ノボラク型エポキシ樹脂100重量
部に対してBF3モノエチルアミン3重量部を加えた樹
脂でマイカペーパーと補強材のガラスクロスを張り合わ
せシートBを製作した。
(Examples 4 and 5) Mica was dispersed in water to form mica particles, and the paper was machined with a paper machine to produce mica paper having a thickness of 0.06 mm. Sheet B was prepared by bonding mica paper and reinforcing glass cloth to a resin obtained by adding a glass cloth having a thickness of 0.05 mm as a reinforcing material and adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of a novolak type epoxy resin. .

【0032】高熱伝導充填粒子にはアルミナ粒子を用い
た。このアルミナ粒子は、全粒子の粒径が0.24μm
〜18.5μmの範囲にあり、平均粒径が1.6μm で
ある。次にノボラク型エポキシ樹脂100重量部に対し
てBF3モノエチルアミン3重量部を加えた樹脂に、前
述のアルミナ粒子と樹脂の重量比を2:1に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。その後図1
のフローにしたがって、マイカ絶縁テープ総重量に対
し、アルミナ粒子の重量比率が40%となるように、マ
イカペーパーと補強材のガラスクロスを張り合わせたシ
ートBに高熱伝導充填粒子を配合した樹脂Aをロールコ
ーターで塗工した。
Alumina particles were used as the high thermal conductive filler particles. The alumina particles had a particle diameter of 0.24 μm.
1818.5 μm, and the average particle size is 1.6 μm. Next, the resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the alumina particles to the resin of 2: 1, and 15% by weight of methyl ethyl ketone was added to the mixture. In addition, resin A containing high thermal conductive filler particles was produced. Then Figure 1
According to the flow of the above, the resin A in which the high thermal conductive filler particles are blended into the sheet B in which the mica paper and the glass cloth of the reinforcing material are bonded together so that the weight ratio of the alumina particles becomes 40% with respect to the total weight of the mica insulating tape. Coated with a roll coater.

【0033】このとき用いたロールコーターの剛性を、
1mの間隔2箇所で支えて支持点間の中央部に100N
の力を加えた時のロールコーター中央部の撓み量で表わ
すと0.003mm であった。このマイカペーパーと補強
材のガラスクロスを張り合わせたシートBに高熱伝導充
填粒子を配合した樹脂Aを塗工したシートを乾燥後、幅
30mmに切断しアルミナ粒子入りのマイカ絶縁テープを
製作した。
The rigidity of the roll coater used at this time is
100N at the center between the support points by supporting at two places of 1m distance
The amount of deflection at the center of the roll coater when the force was applied was 0.003 mm. A sheet obtained by applying a resin A containing high thermal conductive filler particles to a sheet B in which a mica paper and a glass cloth as a reinforcing material were bonded was dried, and then cut into a width of 30 mm to produce a mica insulating tape containing alumina particles.

【0034】実施例4のアルミナ粒子入りのマイカ絶縁
テープ中のマイカ重量比率は20%、アルミナ重量比率
は40%である。実施例5のアルミナ粒子入りのマイカ
絶縁テープ中のマイカ重量比率は21%、アルミナ重量
比率は39%である。これらの重量比率の算出方法は実
施例1と同じである。
The weight ratio of mica in the mica insulating tape containing alumina particles of Example 4 was 20%, and the weight ratio of alumina was 40%. The mica weight ratio in the mica insulating tape containing alumina particles of Example 5 was 21%, and the alumina weight ratio was 39%. The method of calculating these weight ratios is the same as in the first embodiment.

【0035】実施例4,5のマイカ絶縁テープの厚さを
マイクロメータを用いて長さ方向約1mピッチで30点
測定して平均厚さと標準偏差を求めた結果、表1に示す
ように平均厚さは実施例4が0.314mm,実施例5が
0.310mmで標準偏差を平均値で割った値は実施例4
が0.037,実施例5が0.034であった。実施例
4,5のアルミナ粒子入りマイカ絶縁テープを、予め素
線間絶縁処理を行った図5の断面の高さ40mm,幅10
mm,長さ1000mmのコイル導体10に半掛け7回巻い
た後、110℃のもとで15min 加熱した後、圧力5M
Paで加圧した後170℃のもとで60min 加熱し、実
施例4ならびに実施例5の対地絶縁層を形成した絶縁コ
イルをそれぞれ5本ずつ製作した。
The thicknesses of the mica insulating tapes of Examples 4 and 5 were measured at a pitch of about 1 m in the longitudinal direction at 30 points using a micrometer, and the average thickness and standard deviation were obtained. The thickness is 0.314 mm in Example 4 and 0.310 mm in Example 5, and the value obtained by dividing the standard deviation by the average value is Example 4.
Was 0.037 and Example 5 was 0.034. The mica insulating tape containing alumina particles of Examples 4 and 5 was pre-insulated between wires and had a cross section of FIG.
After winding half a coil 7 times around the coil conductor 10 having a length of 1000 mm and a length of 1000 mm, the coil conductor was heated at 110 ° C. for 15 minutes, and the pressure was 5M.
After pressurizing with Pa, heating was performed at 170 ° C. for 60 minutes, and five insulated coils each having the ground insulating layer of Examples 4 and 5 were manufactured.

【0036】このコイルの絶縁破壊電圧と熱伝導率を測
定した結果を表1の実施例4,5に示す。熱伝導率は実
施例4が0.60W/mK,実施例5が0.58W/mK
であった。絶縁破壊強さは実施例4が26.7kV/m
m,実施例5が26.8kV/mmであった。なお、絶縁破
壊電圧ならびに熱伝導率は実施例1と同じ手法により求
めた。
The results of measuring the dielectric breakdown voltage and the thermal conductivity of this coil are shown in Examples 4 and 5 in Table 1. The thermal conductivity of Example 4 was 0.60 W / mK, and that of Example 5 was 0.58 W / mK.
Met. The dielectric breakdown strength of Example 4 was 26.7 kV / m.
m, Example 5 was 26.8 kV / mm. The dielectric breakdown voltage and the thermal conductivity were determined by the same method as in Example 1.

【0037】(実施例6,7)マイカを水中分散しマイ
カ粒子とし、抄紙機にて抄造し厚さ0.11mm のマイカ
ペーパーを製作した。補強材として厚さ0.05mm のガ
ラスクロスを用い、ノボラク型エポキシ樹脂100重量
部に対してBF3モノエチルアミン3重量部を加えた樹
脂でマイカペーパーと補強材のガラスクロスを張り合わ
せシートBを製作した。
(Examples 6 and 7) Mica was dispersed in water to form mica particles, and the paper was machined with a paper machine to produce mica paper having a thickness of 0.11 mm. Sheet B was prepared by bonding mica paper and reinforcing glass cloth to a resin obtained by adding a glass cloth having a thickness of 0.05 mm as a reinforcing material and adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of a novolak type epoxy resin. .

【0038】高熱伝導充填粒子にはアルミナ粒子を用い
た。このアルミナ粒子は、全粒子の粒径が0.24μm
〜18.5μmの範囲にあり、平均粒径が1.6μm で
ある。次にノボラク型エポキシ樹脂100重量部に対し
てBF3モノエチルアミン3重量部を加えた樹脂に、前
述のアルミナ粒子と樹脂の重量比を2:1に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。
Alumina particles were used as the high thermal conductive filler particles. The alumina particles had a particle diameter of 0.24 μm.
1818.5 μm, and the average particle size is 1.6 μm. Next, the resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the alumina particles to the resin of 2: 1, and 15% by weight of methyl ethyl ketone was added to the mixture. In addition, resin A containing high thermal conductive filler particles was produced.

【0039】その後図1のフローにしたがって、マイカ
絶縁テープ総重量に対しアルミナ粒子の重量比率が20
%となるように、マイカペーパーと補強材のガラスクロ
スを張り合わせたシートBに高熱伝導充填粒子を配合し
た樹脂Aをロールコーターで塗工した。このとき用いた
ロールコーターの剛性を、1mの間隔2箇所で支えて支
持点間の中央部に100Nの力を加えた時のロールコー
ター中央部の撓み量で表わすと0.003mmであった。
Thereafter, according to the flow of FIG. 1, the weight ratio of the alumina particles to the total weight of the mica insulating tape was 20%.
%, A resin B containing high thermal conductive filler particles was applied to a sheet B in which mica paper and a glass cloth as a reinforcing material were adhered, using a roll coater. The rigidity of the roll coater used at this time was 0.003 mm in terms of the amount of deflection at the center of the roll coater when a force of 100 N was applied to the center between the support points while being supported at two places of 1 m.

【0040】マイカペーパーと補強材のガラスクロスを
張り合わせたシートBに高熱伝導充填粒子を配合した樹
脂Aを塗工したシートを乾燥後、幅30mmに切断しアル
ミナ粒子入りのマイカ絶縁テープを製作した。実施例6
のアルミナ粒子入りのマイカ絶縁テープ中のマイカ重量
比率は40%、アルミナ重量比率は20%である。実施
例7のマイカ重量比率は39%、アルミナ重量比率は2
1%である。これらの重量比率の算出方法は実施例1と
同じである。
A sheet obtained by coating a resin B containing high thermal conductive filler particles on a sheet B in which mica paper and a glass cloth as a reinforcing material were bonded was dried, and then cut into a width of 30 mm to produce a mica insulating tape containing alumina particles. . Example 6
The mica weight ratio in the mica insulating tape containing alumina particles is 40% and the alumina weight ratio is 20%. In Example 7, the mica weight ratio was 39%, and the alumina weight ratio was 2%.
1%. The method of calculating these weight ratios is the same as in the first embodiment.

【0041】実施例6,7のマイカ絶縁テープの厚さを
マイクロメータを用いてテープ長さ方向約1mピッチで
30点測定して平均厚さと標準偏差を求めた結果、表1
に示すように平均厚さは実施例6が0.308mm,実施
例7が0.302mmで標準偏差を平均値で割った値は実
施例6が0.034,実施例7が0.034であった。
The thicknesses of the mica insulating tapes of Examples 6 and 7 were measured at 30 points at a pitch of about 1 m in the tape length direction using a micrometer, and the average thickness and standard deviation were obtained.
The average thickness is 0.308 mm for Example 6 and 0.302 mm for Example 7, and the standard deviation divided by the average value is 0.034 for Example 6 and 0.034 for Example 7. there were.

【0042】実施例6,7のアルミナ粒子入りマイカ絶
縁テープを、予め素線間絶縁処理を行った図5の断面の
高さ40mm,幅10mm,長さ1000mmのコイル導体1
0に半掛け7回巻いた後、110℃のもとで15min 加
熱した後、圧力5MPaで加圧した後170℃のもとで
60min 加熱し、実施例6,7の対地絶縁層を形成した
絶縁コイルをそれぞれ5本ずつ製作した。
The mica insulating tape containing alumina particles of Examples 6 and 7 was subjected to insulation treatment between wires in advance, and a coil conductor 1 having a cross section of 40 mm in height, 10 mm in width and 1000 mm in length in FIG.
After half-turning 0 and 7 turns, heating was performed at 110 ° C. for 15 minutes, then pressurized at a pressure of 5 MPa, and then heated at 170 ° C. for 60 minutes to form the ground insulating layers of Examples 6 and 7. Five insulated coils were manufactured respectively.

【0043】実施例6,7のコイルの絶縁破壊電圧と熱
伝導率を測定した結果を表1の実施例6,7に示す。熱
伝導率は実施例6が0.40W/mK,実施例7が0.4
1W/mKであった。絶縁破壊強さは実施例6が27.
3kV/mm,実施例7が27.3kV/mmであった。なお、
絶縁破壊電圧ならびに熱伝導率は実施例1と同じ手法に
より求めた。
The results of measuring the dielectric breakdown voltage and the thermal conductivity of the coils of Examples 6 and 7 are shown in Examples 6 and 7 of Table 1. The thermal conductivity was 0.40 W / mK in Example 6 and 0.4 in Example 7.
It was 1 W / mK. The dielectric breakdown strength of Example 6 was 27.
3 kV / mm, and Example 7 was 27.3 kV / mm. In addition,
The dielectric breakdown voltage and the thermal conductivity were determined in the same manner as in Example 1.

【0044】(実施例8,9)マイカを水中分散しマイ
カ粒子とし、抄紙機にて抄造し厚さ0.12mm のマイカ
ペーパーを製作した。補強材として厚さ0.05mm のガ
ラスクロスを用い、ノボラク型エポキシ樹脂100重量
部に対してBF3モノエチルアミン3重量部を加えた樹
脂でマイカペーパーと補強材のガラスクロスを張り合わ
せシートBを製作した。
(Examples 8 and 9) Mica was dispersed in water to form mica particles, and the paper was machined with a paper machine to produce mica paper having a thickness of 0.12 mm. Sheet B was prepared by bonding mica paper and reinforcing glass cloth to a resin obtained by adding a glass cloth having a thickness of 0.05 mm as a reinforcing material and adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of a novolak type epoxy resin. .

【0045】高熱伝導充填粒子には窒化ホウ素粒子を用
いた。この窒化ホウ素粒子は、全粒子の粒径が0.3μ
m〜15μmの範囲にあり、平均粒径が1.8μmであ
る。次にノボラク型エポキシ樹脂100重量部に対して
BF3モノエチルアミン3重量部を加えた樹脂に、前述
の窒化ホウ素粒子と樹脂の重量比を3:2に混合し、こ
の混合物に15重量%のメチルエチルケトンを加え高熱
伝導充填粒子を配合した樹脂Aを製作した。
Boron nitride particles were used as the high thermal conductive filler particles. The boron nitride particles have a total particle size of 0.3 μm.
m to 15 μm, and the average particle size is 1.8 μm. Next, a resin obtained by adding 3 parts by weight of BF3 monoethylamine to 100 parts by weight of the novolak type epoxy resin was mixed at a weight ratio of the boron nitride particles to the resin of 3: 2, and the mixture was mixed with 15% by weight of methyl ethyl ketone. Was added to prepare a resin A containing high thermal conductive filler particles.

【0046】その後図1のフローにしたがって、マイカ
絶縁テープ総重量に対し窒化ホウ素粒子の重量比率が1
0%となるように、マイカペーパーと補強材のガラスク
ロスを張り合わせたシートBに高熱伝導充填粒子を配合
した樹脂Aをロールコーターで塗工した。このとき用い
たロールコーターの剛性を、1mの間隔2箇所で支えて
支持点間の中央部に100Nの力を加えた時のロールコ
ーター中央部の撓み量で表わすと0.003mmであっ
た。
Then, according to the flow of FIG. 1, the weight ratio of boron nitride particles to the total weight of the mica insulating tape is 1
A resin A containing high thermal conductive filler particles was applied to a sheet B in which mica paper and a glass cloth of a reinforcing material were bonded to each other with a roll coater so as to have a concentration of 0%. The rigidity of the roll coater used at this time was 0.003 mm in terms of the amount of deflection at the center of the roll coater when a force of 100 N was applied to the center between the support points while being supported at two places of 1 m.

【0047】マイカペーパーと補強材のガラスクロスを
張り合わせたシートBに高熱伝導充填粒子を配合した樹
脂Aを塗工したシートを乾燥後、幅30mmに切断し窒化
ホウ素粒子入りのマイカ絶縁テープを製作した。実施例
8の窒化ホウ素粒子入りのマイカ絶縁テープ中のマイカ
重量比率は50%、窒化ホウ素重量比率は10%であ
る。実施例9のマイカ重量比率は50%、窒化ホウ素重
量比率は10%である。これらの重量比率の算出方法は
実施例1と同じである。
A sheet obtained by applying a resin A containing high thermal conductive filler particles to a sheet B in which mica paper and a glass cloth as a reinforcing material are adhered is dried, and then cut into a width of 30 mm to produce a mica insulating tape containing boron nitride particles. did. The mica weight ratio in the mica insulating tape containing boron nitride particles of Example 8 was 50%, and the boron nitride weight ratio was 10%. In Example 9, the mica weight ratio was 50%, and the boron nitride weight ratio was 10%. The method of calculating these weight ratios is the same as in the first embodiment.

【0048】実施例8,9のマイカ絶縁テープの厚さを
マイクロメータを用いてテープ長さ方向約1mピッチで
30点測定して平均厚さと標準偏差を求めた結果、表1
に示すように平均厚さは実施例8が0.283mm,実施
例9が0.285mmで標準偏差を平均値で割った値は実
施例8が0.037,実施例9が0.035であった。実
施例8,9の窒化ホウ素粒子入りマイカ絶縁テープを、
予め素線間絶縁処理を行った図5の断面の高さ40mm,
幅10mm,長さ1000mmのコイル導体10に半掛け7
回巻いた後、110℃のもとで15min 加熱した後、圧
力5MPaで加圧した後170℃のもとで60min 加熱
し、実施例8,9の対地絶縁層を形成した絶縁コイルを
それぞれ5本ずつ製作した。
The thicknesses of the mica insulating tapes of Examples 8 and 9 were measured at a pitch of about 1 m in the tape length direction at 30 points using a micrometer, and the average thickness and standard deviation were obtained.
The average thickness is 0.283 mm for Example 8, 0.285 mm for Example 9, and the standard deviation divided by the average value is 0.037 for Example 8 and 0.035 for Example 9. there were. The mica insulating tape containing boron nitride particles of Examples 8 and 9 was
The cross-section height of FIG.
Half-hung on a coil conductor 10 of 10 mm width and 1000 mm length 7
After being wound, the coil was heated at 110 ° C. for 15 minutes, then pressurized at a pressure of 5 MPa, and then heated at 170 ° C. for 60 minutes. I made each book.

【0049】実施例8,9のコイルの絶縁破壊電圧と熱
伝導率を測定した結果を表1の実施例8,9に示す。熱
伝導率は実施例8が0.40W/mK,実施例9が0.4
0W/mKであった。絶縁破壊強さは実施例8が26.
9kV/mm,実施例7が27.0kV/mmであった。なお、
絶縁破壊電圧ならびに熱伝導率は実施例1と同じ手法に
より求めた。
The results of measuring the dielectric breakdown voltage and the thermal conductivity of the coils of Examples 8 and 9 are shown in Examples 8 and 9 in Table 1. The thermal conductivity of Example 8 was 0.40 W / mK, and that of Example 9 was 0.4.
It was 0 W / mK. The dielectric breakdown strength of Example 8 was 26.
9 kV / mm, and Example 7 was 27.0 kV / mm. In addition,
The dielectric breakdown voltage and the thermal conductivity were determined in the same manner as in Example 1.

【0050】(実施例10)図6は、本発明による一実
施例の回転電機の概略を示す部分断面図である。回転電
機は、軸受け20を保持する固定子枠100と固定子枠
に固定された固定子と、固定子の内部にあって軸受け2
0に回転自在に支持されて回転する回転子とから構成さ
れる。固定子は固定子鉄心30と固定子コイル40とか
らなる。固定子コイル40を固定子鉄心30に組み込ん
だ状態を表わす固定子の部分断面を図7に示す。固定子
コイル40に加わる定格電圧Eは11kVである。
(Embodiment 10) FIG. 6 is a partial sectional view schematically showing a rotary electric machine according to an embodiment of the present invention. The rotating electric machine includes a stator frame 100 holding a bearing 20, a stator fixed to the stator frame, and a bearing 2 inside the stator.
And a rotor rotatably supported at 0. The stator includes a stator core 30 and a stator coil 40. FIG. 7 shows a partial cross section of the stator showing a state where the stator coil 40 is incorporated in the stator core 30. The rated voltage E applied to the stator coil 40 is 11 kV.

【0051】実施例1に用いたアルミナ粒子入りのマイ
カ絶縁テープを、予め素線間絶縁処理を行ったコイル導
体11に半掛け7回巻いた後、表面補強用のガラスクロ
スを半掛け1回及び低抵抗コロナシールド層を半掛け1
回巻、110℃のもとで15min 加熱した後、圧力5M
Paで加圧し、170℃のもとで60min 加熱し、対地
絶縁層12を付けた固定子コイル40を作製した。
The mica insulating tape containing alumina particles used in Example 1 was wound around the coil conductor 11 which had been subjected to insulation treatment between the wires in a half-hook manner seven times, and then a glass cloth for surface reinforcement was half-hung once. And half the low resistance corona shield layer 1
Rolled, heated at 110 ° C for 15 minutes, then pressure 5M
Pressurization was performed under Pa, and heating was performed at 170 ° C. for 60 minutes to produce a stator coil 40 to which the ground insulating layer 12 was attached.

【0052】続いて図7の固定子のスロット50の側
面,底面と固定子コイル40の間にガラス繊維強化プラ
スチックス板13を挟んで固定子コイル40を固定子の
スロット50に組み込んだ。上下2段の固定子コイル4
0の間には相間絶縁材14を挟んだ。固定子コイル40
の上にガラス繊維強化プラスチックスシート17を乗
せ、ガラス繊維強化プラスチックスばね15を入れ、楔
16を用いて固定子コイル40をスロット50に固定し
た。その後、各スロットに組み込んだ固定子コイル40
のコイルエンド部70で各コイル間の接続を行い、コイ
ルエンド部の補強を行った。この固定子へ回転子を組み
込み空気による間接冷却方式の発電機を製作した。
Subsequently, the stator coil 40 was incorporated into the stator slot 50 with the glass fiber reinforced plastics plate 13 interposed between the side and bottom surfaces of the stator slot 50 of FIG. Upper and lower two-stage stator coil 4
Between 0, the interphase insulating material 14 was interposed. Stator coil 40
A glass fiber reinforced plastic sheet 17 was placed on the top, a glass fiber reinforced plastic spring 15 was inserted, and the stator coil 40 was fixed to the slot 50 using the wedge 16. After that, the stator coils 40 installed in each slot are
The connection between the coils was performed at the coil end portion 70 to reinforce the coil end portion. A rotor was incorporated into this stator to produce an indirect cooling generator using air.

【0053】この発電機固定子の耐電圧試験をJECに
従って定格電圧Eに対して1000V+2Eの試験電圧
を加え、合格することを確認できた。また、出力47V
A運転時の固定子コイル導体温度の上昇値を抵抗法で測
定した結果、同じ発電機にアルミナ粒子が入らないマイ
カ絶縁テープで対地絶縁を行ったコイルを組み込み測定
した固定子コイル導体温度の上昇値に比較して15%以
上低いことが確認できた。このことは、同じ温度上昇を
許容する場合、出力を√1.15=1.07倍増加できる
ことになる。
In the withstand voltage test of this generator stator, a test voltage of 1000 V + 2E was applied to the rated voltage E according to JEC, and it was confirmed that the test passed. Output 47V
As a result of measuring the stator coil conductor temperature rise value during the A operation by the resistance method, the stator coil conductor temperature rise was measured by incorporating a coil in which the same generator was insulated to ground with a mica insulating tape that did not contain alumina particles. It was confirmed that the value was lower than the value by 15% or more. This means that if the same temperature rise is allowed, the output can be increased by √1.15 = 1.07 times.

【0054】[0054]

【発明の効果】本発明によりコイル絶縁層の厚さ方向の
高熱伝導率と高耐電圧を兼ね備えた高熱伝導絶縁コイル
を提供することができ、さらに回転電機装置の大きさ、
昇温量を同じままで出力を高められ小形で高出力の回転
電機装置を提供することができる。
According to the present invention, it is possible to provide a high thermal conductive insulating coil having both high thermal conductivity in the thickness direction of the coil insulating layer and high withstand voltage.
It is possible to provide a small, high-output rotating electrical machine device whose output can be increased while maintaining the same amount of temperature rise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイカ絶縁テープの製造課程の概略フ
ロー図。
FIG. 1 is a schematic flow chart of a process of manufacturing a mica insulating tape of the present invention.

【図2】比較例1の絶縁コイルの対地絶縁層を示す断面
模式図。
FIG. 2 is a schematic cross-sectional view showing an insulating layer to the ground of the insulating coil of Comparative Example 1.

【図3】本発明による実施例1の絶縁コイルの対地絶縁
層を示す断面模式図。
FIG. 3 is a schematic cross-sectional view showing an insulating layer to the ground of the insulating coil according to the first embodiment of the present invention.

【図4】本発明による実施例1のマイカ絶縁テープの断
面概要図。
FIG. 4 is a schematic cross-sectional view of the mica insulating tape according to the first embodiment of the present invention.

【図5】本発明の実施例1〜9,比較例1〜4における
素線間絶縁処理を行ったコイル導体にマイカ絶縁テープ
を巻く状況を説明する斜視図。
FIG. 5 is a perspective view illustrating a situation in which a mica insulating tape is wound around a coil conductor that has been subjected to inter-element wire insulation processing in Examples 1 to 9 and Comparative Examples 1 to 4 of the present invention.

【図6】本発明による実施例10の発電機の断面概要
図。
FIG. 6 is a schematic sectional view of a generator according to a tenth embodiment of the present invention.

【図7】本発明による実施例10の発電機の固定子スロ
ット近傍の断面鳥瞰図。
FIG. 7 is a bird's-eye sectional view of the vicinity of a stator slot of a generator according to a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…補強材と粒子充填樹脂層が一体になった層、2…マ
イカ層、3…平均厚さより厚い、補強材と粒子充填樹脂
層が一体になった層、4…導体、5…ボイド、6…絶縁
コイル成形圧力、7…ガラスクロス、8…アルミナ粒子
充填樹脂層、9…アルミナ粒子入りマイカ絶縁テープ、
10…コイル導体、11…固定子コイルの導体、12…
対地絶縁層、13…ガラス繊維強化プラスチックスシー
ト、14…相間絶縁材、15…ガラス繊維強化プラスチ
ックスばね、16…コイル固定楔、17…ガラス繊維強
化プラスチックスシート、20…軸受け、30…固定子
鉄心、40…固定子コイル、50…スロット、60…回
転子鉄心、70…固定子コイルエンド部、100…固定
子枠。
DESCRIPTION OF SYMBOLS 1 ... Layer in which reinforcing material and particle-filled resin layer were integrated, 2 ... Mica layer, 3 ... Thickness larger than average thickness, layer in which reinforcing material and particle-filled resin layer were integrated, 4 ... Conductor, 5 ... Void, 6: Insulation coil forming pressure, 7: Glass cloth, 8: Resin layer filled with alumina particles, 9: Mica insulating tape containing alumina particles,
10 ... coil conductor, 11 ... stator coil conductor, 12 ...
Ground insulating layer, 13: glass fiber reinforced plastic sheet, 14: interphase insulating material, 15: glass fiber reinforced plastic spring, 16: coil fixed wedge, 17: glass fiber reinforced plastic sheet, 20: bearing, 30: fixed Child core, 40: stator coil, 50: slot, 60: rotor core, 70: stator coil end part, 100: stator frame.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 智也 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 小野田 満 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 5H604 AA03 BB14 CC01 CC05 CC16 DA01 DA07 DA15 DB25 PB03 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoya Kakuda 3-1-1, Sachimachi, Hitachi-City, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Mitsuru Onoda 3-1-1 Sachimachi, Hitachi-City, Ibaraki No. 1 F term in Hitachi, Ltd. Hitachi Plant (reference) 5H604 AA03 BB14 CC01 CC05 CC16 DA01 DA07 DA15 DB25 PB03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】20〜50重量%のマイカと10〜40重
量%の少なくとも5W/mK以上の熱伝導率を持つ充填
粒子、ならびにこれらの材料を載せる補強材が積層構造
をなし、これらの隙間を埋める樹脂からなるマイカ絶縁
テープを導体の周りに巻き付けて絶縁処理したコイルに
おいて、マイカ絶縁テープの長さ方向の任意の点30箇
所の厚さの標準偏差を同じ箇所の厚さの平均値で割った
値が0.038 以下であることを特徴とする高熱伝導絶
縁コイル。
1. 20 to 50% by weight of mica and 10 to 40% by weight of filler particles having a thermal conductivity of at least 5 W / mK, and a reinforcing material on which these materials are mounted form a laminated structure, and a gap between them is provided. In a coil in which a mica insulating tape made of resin that fills in is wound around a conductor and insulated, the standard deviation of the thickness of any 30 points in the length direction of the mica insulating tape is the average value of the thickness of the same point. A highly thermally conductive insulating coil, wherein a value obtained by dividing the value is 0.038 or less.
【請求項2】回転電機のコアの円周方向に配設されたス
ロット内に導体の周囲を絶縁材で覆われたコイルを挿入
し、このスロット上部に楔を装着してスロット内のコイ
ルを固定した回転電機において、20〜50重量%のマ
イカと10〜40重量%の少なくとも5W/mK以上の
熱伝導率を持つ充填粒子、ならびにこれらの材料を載せ
る補強材が積層構造をなし、これらの隙間を埋める樹脂
からなるマイカ絶縁テープの長さ方向の任意の点30箇
所の厚さの標準偏差を同じ箇所の厚さの平均値で割った
値が0.038 以下であることを特徴とする高熱伝導絶
縁コイルを用いた回転電機装置。
2. A coil whose conductor is covered with an insulating material is inserted into a slot provided in a circumferential direction of a core of a rotating electric machine, and a wedge is mounted on an upper portion of the slot to remove a coil in the slot. In a fixed rotating electric machine, 20 to 50% by weight of mica and 10 to 40% by weight of filler particles having a thermal conductivity of at least 5 W / mK or more, and a reinforcing material on which these materials are mounted form a laminated structure. The value obtained by dividing the standard deviation of the thickness at any 30 points in the length direction of the mica insulating tape made of a resin filling the gap by the average value of the thickness at the same point is 0.038 or less. A rotating electric machine using a high thermal conductive insulating coil.
JP10274596A 1998-09-29 1998-09-29 High heat conduction insulated coil and rotary electric machine device using it Pending JP2000116047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274596A JP2000116047A (en) 1998-09-29 1998-09-29 High heat conduction insulated coil and rotary electric machine device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274596A JP2000116047A (en) 1998-09-29 1998-09-29 High heat conduction insulated coil and rotary electric machine device using it

Publications (1)

Publication Number Publication Date
JP2000116047A true JP2000116047A (en) 2000-04-21

Family

ID=17543952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274596A Pending JP2000116047A (en) 1998-09-29 1998-09-29 High heat conduction insulated coil and rotary electric machine device using it

Country Status (1)

Country Link
JP (1) JP2000116047A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073496A1 (en) * 2011-11-14 2013-05-23 三菱電機株式会社 Electromagnetic coil, method for manufacturing same, and insulating tape
WO2015053374A1 (en) 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JPWO2013161041A1 (en) * 2012-04-26 2015-12-21 株式会社日立製作所 Stator coil of rotating electric machine
JP2017516437A (en) * 2014-03-11 2017-06-15 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Insulating tape, use of said insulating tape as an electrical insulator for electrical machines, electrical insulator and method for producing insulating tape

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073496A1 (en) * 2011-11-14 2013-05-23 三菱電機株式会社 Electromagnetic coil, method for manufacturing same, and insulating tape
JPWO2013161041A1 (en) * 2012-04-26 2015-12-21 株式会社日立製作所 Stator coil of rotating electric machine
WO2015053374A1 (en) 2013-10-09 2015-04-16 日立化成株式会社 Prepreg mica tape and coil using same
JPWO2015053374A1 (en) * 2013-10-09 2017-03-09 日立化成株式会社 Prepreg mica tape and coil using the same
EP3046117A4 (en) * 2013-10-09 2017-05-17 Hitachi Chemical Co., Ltd. Prepreg mica tape and coil using same
US10373727B2 (en) 2013-10-09 2019-08-06 Hitachi Chemical Company, Ltd Prepreg mica tape and coil using same
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JP6058169B2 (en) * 2014-01-29 2017-01-11 三菱電機株式会社 Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
US10199136B2 (en) * 2014-01-29 2019-02-05 Mitsubishi Electric Corporation Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine
JP2017516437A (en) * 2014-03-11 2017-06-15 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Insulating tape, use of said insulating tape as an electrical insulator for electrical machines, electrical insulator and method for producing insulating tape

Similar Documents

Publication Publication Date Title
JP3576119B2 (en) Coil for rotating electric machine and my car tape used for insulation of this coil
US6242825B1 (en) Electric rotating machine with reduced thickness and volume of insulation
JP3458693B2 (en) Insulation and electric winding
JP3843967B2 (en) Insulating coil manufacturing method
KR100428888B1 (en) Insulating material electric winding, and method of manufacture thereof
US20040226740A1 (en) Insulating material and electric machine winding and method for manufacturing the same
US20140083592A1 (en) Method of producing an electrical insulation system for an electric machine
JP2000116047A (en) High heat conduction insulated coil and rotary electric machine device using it
JP3879054B2 (en) Mica base sheet and insulation coil
JP2012244861A (en) Insulation coil
JPS5937660B2 (en) Winding insulators for electrical machine coil windings
JP2003009446A (en) High heat conductive insulting coil and rotating electric machine
JP3422674B2 (en) Insulated coil and rotating electric machine using the same
US3626587A (en) Methods of constructing electrical transformers
EP0662746B1 (en) Sheet material for electrical insulation
JP3674406B2 (en) Rotating electric machine
JP3648333B2 (en) Rotating electric machine
JP2000294061A (en) Insulating material and winding of electric machine
JP3497719B2 (en) Electric machine insulation coil and rotating electric machine using the same
JPH05191942A (en) Manufacture of electric apparatus winding
JP3060547B2 (en) Superconducting coil manufacturing method
JPH08163838A (en) Manufacture of stator coil for high voltage electric rotating machine
EP3866307B1 (en) Stator coil, method for manufacturing same, and rotary electrical machine
JPH11234938A (en) High-voltage dynamo-electric machine and its manufacture
JP2002374646A (en) Insulating material and insulated coil using it