JP2000113906A - Organic electrolyte - Google Patents
Organic electrolyteInfo
- Publication number
- JP2000113906A JP2000113906A JP10282341A JP28234198A JP2000113906A JP 2000113906 A JP2000113906 A JP 2000113906A JP 10282341 A JP10282341 A JP 10282341A JP 28234198 A JP28234198 A JP 28234198A JP 2000113906 A JP2000113906 A JP 2000113906A
- Authority
- JP
- Japan
- Prior art keywords
- salt
- electrolyte
- solvent
- electrolyte salt
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は有機電解液、更に詳
しくは、電解質塩の溶媒として特定のニトリル化合物を
用いた、たとえばリチウム電池、リチウムイオン2次電
池、電気二重層コンデンサー、電解コンデンサー等に有
用な有機電解液に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolytic solution, more specifically, to a lithium battery, a lithium ion secondary battery, an electric double layer capacitor, an electrolytic capacitor and the like using a specific nitrile compound as a solvent for an electrolyte salt. It relates to a useful organic electrolyte.
【0002】[0002]
【従来の技術と発明が解決しようとする課題】有機電解
液は、有機溶媒に電解質塩を溶解した系で構成され、一
般にリチウム電池(1次および2次電池)、リチウムイオ
ン2次電池、電気二重層コンデンサー、電気二重層キャ
パシタ、電解コンデンサーなどの構成材料として使用さ
れている。ところで、上記有機溶媒の要件として、電解
質塩をよく溶解し、電解質塩のイオン解離度を上げるた
めに誘電率が高いことが最も基本的な重要事項であり、
その上にイオン導電性をアップするためにできうる限り
低粘度で、低温時のイオン導電性を確保するため凝固点
が低いこと、電池製造作業性や高温下での電池内圧を低
くするため高沸点であること等が要求される。また、リ
チウム電池やリチウムイオン2次電池に用いる場合は、
リチウムと非反応性(非プロトン系)であること、また電
池電圧が高いことによる電極界面での厳しい酸化および
還元環境に耐えること等が必要とされている。2. Description of the Related Art An organic electrolyte is composed of a system in which an electrolyte salt is dissolved in an organic solvent, and is generally composed of lithium batteries (primary and secondary batteries), lithium ion secondary batteries, It is used as a constituent material for double-layer capacitors, electric double-layer capacitors, electrolytic capacitors, and the like. By the way, as the requirement of the organic solvent, it is the most basic important matter that the electrolyte salt is dissolved well and the dielectric constant is high in order to increase the degree of ionic dissociation of the electrolyte salt,
On top of that, the viscosity is as low as possible to increase ionic conductivity, the solidification point is low to ensure ionic conductivity at low temperatures, and the high boiling point to lower battery internal workability at high temperature and workability in battery manufacturing Is required. When used for lithium batteries and lithium ion secondary batteries,
It is required to be non-reactive (aprotic) with lithium and to withstand severe oxidizing and reducing environments at the electrode interface due to a high battery voltage.
【0003】しかし、実際的には上記の必要諸特性は分
子構造的に相反することも多く、たとえば高誘電率を得
ようとすれば高極性分子とならざるを得ず、その結果と
して高粘度となり易い。現状のリチウム電池、リチウム
イオン2次電池では、高誘電率の溶媒(以下、主溶媒と
称す)として炭酸エチレン(略称:EC、以下同様に表示)
と炭酸プロピレン(PC)の2種が使用されているに過ぎ
ず、以下のような問題がある。However, in practice, the above-mentioned required properties often conflict with each other in terms of molecular structure. For example, if a high dielectric constant is to be obtained, the molecule must be a highly polar molecule, resulting in a high viscosity. Easily. In the current lithium batteries and lithium ion secondary batteries, ethylene carbonate (abbreviation: EC, hereinafter similarly referred to) is used as a solvent having a high dielectric constant (hereinafter, referred to as a main solvent).
And only propylene carbonate (PC) are used, and there are the following problems.
【0004】ECは常温以下で固体(凝固点:37℃)で
あるため、PC(凝固点:−49℃)あるいは他の低凝固
点の非プロトン系溶媒(以下、この内PCを除く溶媒を
助溶媒と称す)と併用することにより、凝固点を低下さ
せなければ使用できない。助溶媒として炭酸ジメチル
(凝固点:3℃、略称:DMC、以下同様に表示)、炭酸ジ
エチル(凝固点:−43℃、DEC)、1,2−ジメトキシ
エタン(凝固点:−58℃、DME)等が用いられてお
り、これら助溶媒は粘度は低いが、誘電率も低く(DM
C:3.1、DEC:2.8、DME:7.2)、かつ沸点
も低い(DMC:90℃、DEC:127℃、DME85
℃)。電解液の凝固点は、多くとも−10℃以下、好ま
しくは−20℃以下であることが必要とされ、この凝固
点低下のため、電解質塩の溶解による凝固点低下効果ま
で加味して設計されているが、併用するPCあるいは助
溶媒の量は全溶媒中最低30〜40重量%程度が必要
で、これより少なくすることは非常に難しい。助溶媒の
併用により、誘電率は低下するが、同時に粘度低下によ
って導電率は必ずしも低下しないが(但し、助溶媒量が
多くなりすぎると、導電率は低下する)、結果的にEC
の沸点(238℃)を大幅に低下させているのが現状であ
る。従って、凝固点の低い新しい主溶媒が待望されてい
る。Since EC is a solid (freezing point: 37 ° C.) at normal temperature or lower, PC (freezing point: −49 ° C.) or another aprotic solvent having a low freezing point (hereinafter, a solvent excluding PC is referred to as an auxiliary solvent) ) Cannot be used unless the freezing point is lowered. Dimethyl carbonate as co-solvent
(Freezing point: 3 ° C, abbreviation: DMC, hereinafter similarly indicated), diethyl carbonate (freezing point: -43 ° C, DEC), 1,2-dimethoxyethane (freezing point: -58 ° C, DME) and the like are used, These co-solvents have low viscosity but low dielectric constant (DM
C: 3.1, DEC: 2.8, DME: 7.2) and low boiling point (DMC: 90 ° C., DEC: 127 ° C., DME 85)
° C). The freezing point of the electrolytic solution is required to be at most -10 ° C or lower, preferably -20 ° C or lower. For this lowering of the freezing point, it is designed taking into account the effect of lowering the freezing point by dissolving the electrolyte salt. The amount of PC or co-solvent to be used in combination should be at least about 30 to 40% by weight of the total solvent, and it is very difficult to reduce the amount to less than this. The concomitant use of a co-solvent reduces the dielectric constant, but at the same time does not necessarily lower the conductivity due to a decrease in viscosity (however, if the amount of co-solvent is too large, the conductivity will decrease).
At present, the boiling point (238 ° C.) has been greatly reduced. Therefore, a new main solvent having a low freezing point is desired.
【0005】一方、PCはECと異なり凝固点が低く
(−49℃)、上記におけるECのような問題はないが、
リチウムイオン2次電池に用いた場合、負極に使用され
る黒鉛系カーボン材料によって分解を受けるため、負極
に非晶質系のカーボン材料を使用した電池以外は使用で
きない。しかし、非晶質系カーボン材料を使用した電池
は放電(使用)と共に生ずる電圧低下の度合いが大きく、
最近は、この放電(使用)による電圧低下度の少ないグラ
ファイト系材料を用いた電池が主流になってきている。
しかし、現状でこの非晶質系カーボン材料が適用できる
主溶媒となれば、常温固体のECが唯一という状態であ
る。On the other hand, unlike EC, PC has a low freezing point.
(-49 ° C.), without the problem of EC in the above,
When used in a lithium ion secondary battery, it can be decomposed by the graphite-based carbon material used for the negative electrode, and therefore can only be used for a battery using an amorphous carbon material for the negative electrode. However, batteries using an amorphous carbon material have a large voltage drop that occurs with discharge (use),
Recently, batteries using a graphite-based material with a small voltage drop due to this discharge (use) have become mainstream.
However, at present, if this amorphous carbon material is the main solvent to which it can be applied, EC at room temperature is the only EC.
【0006】[0006]
【課題を解決するための手段】本発明者らは、主溶媒と
しての必要特性である高誘電率に加え、低凝固点で沸点
が高く、イオン導電性が優れる等の諸条件を具備する電
解液溶媒について鋭意研究を進めたところ、低級脂肪族
カルボン酸エステル系または炭酸エステル系のニトリル
化合物が、上述のECやPCの欠点を悉く解消せしめ、
所期目的の新しい主溶媒として、あるいは助溶媒として
も使用できることを見出し、本発明を完成させるに至っ
た。Means for Solving the Problems The present inventors have proposed an electrolytic solution having various conditions, such as a high freezing point, a high boiling point, and excellent ionic conductivity, in addition to a high dielectric constant which is a characteristic required as a main solvent. After diligent research on solvents, lower aliphatic carboxylic acid ester-based or carbonate ester-based nitrile compounds completely eliminated the above-mentioned drawbacks of EC and PC.
The present inventors have found that they can be used as intended new main solvents or as cosolvents, and have completed the present invention.
【0007】すなわち、本発明は、電解質塩の溶媒とし
て、式: R1−COO−(CH2)a−CN [I] (式中、R1は水素原子、炭素数1〜3のアルキル基また
は炭素数1〜3のアルコキシ基;およびaは1〜3の整数
である)で示されるニトリル化合物[I]の少なくとも1
種を含むことを特徴とする有機電解液を提供するもので
ある。That is, the present invention provides a solvent for an electrolyte salt represented by the formula: R 1 -COO- (CH 2 ) a-CN [I] (wherein R 1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms) Or an alkoxy group having 1 to 3 carbon atoms; and a is an integer of 1 to 3).
An organic electrolyte solution comprising a seed is provided.
【0008】上記ニトリル化合物[I]は、下記2つの群
a),b)に大別され、かつ以下に示す手順に従って製造す
ることができる。 a) 低級脂肪族カルボン酸エステル系 式: R1'−COOH [II] (式中、R1'は水素原子または炭素数1〜3のアルキル
基である)の低級脂肪族カルボン酸(すなわち、ギ酸、酢
酸、プロピオン酸、n−酪酸、イソ酪酸)[II]またはそ
の酸無水物、酸塩化物もしくはエステル(ギ酸メチル、
酢酸メチル、プロピオン酸メチルなど)を、式: HO−(CH2)a−CN [III] (式中、aは前記と同意義である)のシアノアルコール(2
−シアノエタノール、3−シアノプロパノールなど)[I
II]と反応(エステル化またはエステル交換)させるこ
とにより、式: R1'−COO−(CH2)a−CN [Ia] (式中、R1'およびaは前記と同意義である)で示される
ニトリル化合物[Ia]、すなわち、ギ酸,酢酸,プロピオ
ン酸,n−酪酸のシアノメチル,2−シアノエチル,3−シ
アノプロピルエステル等を得る。The above nitrile compound [I] includes the following two groups:
They can be roughly classified into a) and b), and can be produced according to the following procedures. a) Lower aliphatic carboxylic acid ester formula: R 1 '-COOH [II] (wherein R 1 ' is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms) (i.e., Formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid) [II] or an acid anhydride, acid chloride or ester thereof (methyl formate,
Methyl acetate, and methyl propionate), formula: HO- (CH 2) a- CN [III] ( cyano alcohol in formula, a is as defined above) (2
-Cyanoethanol, 3-cyanopropanol, etc.) [I
II] to give a compound of the formula: R 1 '-COO- (CH 2 ) a-CN [Ia] (wherein R 1 ' and a are as defined above) Thus, a nitrile compound [Ia] represented by the following formula, ie, cyanomethyl, 2-cyanoethyl, 3-cyanopropyl ester of formic acid, acetic acid, propionic acid, and n-butyric acid is obtained.
【0009】b) 炭酸エステル系 式: ClCOOR (式中、Rはメチル、エチルまたはn−プロピルもしくは
イソプロピルである)のクロロギ酸アルキルを、上記シ
アノアルコール[III]と反応させることにより、式: RO−COO−(CH2)a−CN [Ib] (式中、Rおよびaは前記と同意義である)のニトリル化
合物[Ib]、すなわち、炭酸メチル,炭酸エチル,炭酸n−
プロピル,炭酸イソプロピル・シアノメチル,2−シア
ノエチル,3−シアノプロピルの非対称炭酸エステル系
ニトリル化合物を得る。別法として、式:B) Carbonic acid ester system An alkyl chloroformate of the formula COCOOR, where R is methyl, ethyl or n-propyl or isopropyl, is reacted with the above cyano alcohol [III] to give the formula: RO A nitrile compound [Ib] of —COO— (CH 2 ) a-CN [Ib] (wherein R and a are as defined above), that is, methyl carbonate, ethyl carbonate, n-carbonate
An asymmetric carbonate nitrile compound of propyl, isopropyl cyanomethyl carbonate, 2-cyanoethyl, and 3-cyanopropyl is obtained. Alternatively, the formula:
【化1】 (式中、Rは前記と同意義である)の炭酸ジアルキル[I
V]を、上記シアノアルコール[III]または式: R1'−COO−(CH2)a−CN [V] (式中、R1'およびaは前記と同意義である)の低級脂肪
族カルボン酸シアノアルキル[V]とエステル交換反応さ
せることにより、ニトリル化合物[Ib]を得る。なお、
このエステル交換法の場合、実際の工業的製造法として
は優位であるが、原料の炭酸ジアルキル[IV]やシアノ
アルコール[III]または低級脂肪族カルボン酸シアノ
アルキル[V]が未反応物として残留し、また対称の炭酸
ビス(シアノアルキル)が混合物として副生するので、分
留精製が必要となる。Embedded image (Wherein R is as defined above)
V] is a lower aliphatic group of the above cyano alcohol [III] or a formula: R 1 '-COO- (CH 2 ) a-CN [V] (wherein R 1 ' and a are as defined above) The nitrile compound [Ib] is obtained by transesterification with a cyanoalkyl carboxylate [V]. In addition,
This transesterification method is superior as an actual industrial production method, but the raw material dialkyl carbonate [IV], cyano alcohol [III] or lower aliphatic carboxylate cyanoalkyl [V] remains as an unreacted product. In addition, since symmetric bis (cyanoalkyl) carbonate is by-produced as a mixture, fractional purification is required.
【0010】このようにして製造されるニトリル化合物
[I]にあって、R1(アルキル基またはアルコキシ基)の
炭素数またはaが4以上になれば、ニトリル基(CN)の
含有率が低くなり、主溶媒として必要な誘電率が低下す
る。また、a=1〜3において、a=2の場合が、原料入
手や合成条件等の製造面およびコスト面で実用上有利で
ある。さらに、上記b)の別法で副生する対称の炭酸ビス
(シアノアルキル)、すなわち、炭酸ビス(シアノメチ
ル)、炭酸ビス(2−シアノエチル)、炭酸ビス(3−シア
ノプロピル)は、分子中に2個のニトリル基を含有する
ことから、高誘電率ではあるが、著しく高粘度となり、
却ってイオン導電性が低下するため、本発明の範囲外で
ある。[0010] The nitrile compound thus produced
In [I], when the number of carbon atoms or a of R 1 (alkyl group or alkoxy group) becomes 4 or more, the content of the nitrile group (CN) decreases, and the dielectric constant required as the main solvent decreases. . Further, in the case of a = 1 to 3, a = 2 is practically advantageous in terms of production and cost such as raw material acquisition and synthesis conditions. Furthermore, symmetric biscarbonate by-produced by the alternative method of b) above
(Cyanoalkyl), that is, bis (cyanomethyl) carbonate, bis (2-cyanoethyl) carbonate, and bis (3-cyanopropyl) carbonate have a high dielectric constant because they contain two nitrile groups in the molecule. Has a remarkably high viscosity,
On the contrary, it is out of the scope of the present invention because the ionic conductivity is lowered.
【0011】上記電解質塩としては、たとえば過塩素
酸、テトラフルオロホウ酸、ヘキサフルオロヒ酸、ヘキ
サフルオロリン酸、トリフルオロメタンスルホン酸など
のリチウム塩;テトラアルキル第4級アンモニウム塩(テ
トラメチルアンモニウム、テトラエチルアンモニウム、
テトラn−ブチルアンモニウムなど);テトラアルキル第
4級ホスホニウム塩(テトラメチルホスホニウム、テト
ラエチルホスホニウム、テトラn−プロピルホスホニウ
ムなど)等が好適であり、これらの中で、リチウムまた
はリチウムイオン2次電池用ではリチウム塩が、また電
気二重層キャパシタあるいは電解コンデンサー用では第
4級アンモニウム塩や第4級ホスホニウム塩が用いられ
る。Examples of the electrolyte salt include lithium salts such as perchloric acid, tetrafluoroboric acid, hexafluoroarsenic acid, hexafluorophosphoric acid, and trifluoromethanesulfonic acid; and tetraalkyl quaternary ammonium salts (tetramethylammonium, Tetraethylammonium,
Tetraalkyl quaternary phosphonium salts (tetramethylphosphonium, tetraethylphosphonium, tetra-n-propylphosphonium, etc.) and the like are preferable. Among them, lithium or lithium ion secondary batteries are preferred. A lithium salt is used, and a quaternary ammonium salt or a quaternary phosphonium salt is used for an electric double layer capacitor or an electrolytic capacitor.
【0012】[0012]
【発明の実施の形態】本発明に係る有機電解液は、上述
の如くニトリル化合物[I]の少なくとも1種に電解質塩
を配合した系で構成され、ここで、電解質塩の含有量は
通常、0.1〜2モル/dm3程度の濃度範囲となるよう
に選定すればよい。なお、使用するニトリル化合物[I]
の種類によって、得られる有機電解液の用途は以下の通
りである。ギ酸シアノアルキルおよび酢酸シアノアルキ
ルエステル[Ia]は、リチウム塩との反応あるいは充放
電で分解し易く、リチウム電池およびリチウムイオン2
次電池には不適である(但し、他の用途:電気二重層キャ
パシタや電解コンデンサー等では問題なし)。これに対
し、上記2種以外のニトリル化合物[I]の場合は、リチ
ウム電池やリチウムイオン2次電池を含め問題なく使用
可能で、その中でプロピオン酸2−シアノエチルエステ
ル[Ia]や炭酸メチル・2−シアノエチル、炭酸エチル
・2−シアノエチル[Ib]は、特にリチウム電池および
リチウムイオン2次電池への適用に好ましい特性を有す
ることが判った。DETAILED DESCRIPTION OF THE INVENTION The organic electrolyte according to the present invention comprises a system in which an electrolyte salt is blended with at least one of the nitrile compounds [I] as described above, wherein the content of the electrolyte salt is usually The concentration may be selected to be in the range of about 0.1 to 2 mol / dm 3 . The nitrile compound [I] used
The use of the obtained organic electrolyte is as follows depending on the type of Cyanoalkyl formate and cyanoalkyl acetate [Ia] are easily decomposed by reaction with a lithium salt or charge / discharge, and a lithium battery and lithium ion 2
It is not suitable for secondary batteries (however, other applications: no problem with electric double layer capacitors, electrolytic capacitors, etc.). On the other hand, in the case of the nitrile compound [I] other than the above two types, a lithium battery and a lithium ion secondary battery can be used without any problem. It has been found that 2-cyanoethyl and ethyl 2-cyanoethyl carbonate [Ib] have preferable characteristics particularly for application to lithium batteries and lithium ion secondary batteries.
【0013】本発明の有機電解液にあって、上記ニトリ
ル化合物[I]に加えて、従来から使用されている他の極
性溶媒(主溶媒および助溶媒)、たとえばリチウム電池、
リチウムイオン2次電池用では非プロトン系溶媒である
炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジ
エチル、1,2−ジメトキシエタン、γ−ブチロラクト
ン、γ−バレロラクトン、ジメチルスルホキシド、スル
ホラン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン等;電気二重層キャパシタや電解コンデンサー用
ではこれら非プロトン系溶媒に加え、N−ジメチルホル
ムアミド、N−ジメチルアセトアミド、エチレングリコ
ール等を併用することができ、また式: (R2O)bR3(OCH2CH2CN)c [式中、R2は炭素数1〜4のアルキル基;R3は1〜4個
の水酸基を有する化合物から全ての水酸基を除いた残
基;bは0〜3;およびcは1〜4(但し、b+cは1〜4)で
ある]で示される化合物、たとえばメチル・2−シアノ
エチルエーテル、エチル・2−シアノエチルエーテル、
n−プロピル・2−シアノエチルエーテル、2−メトキ
シエチル・2−シアノエチルエーテル、エチレングリコ
ールビス(2−シアノエチル)エーテル等;あるいはビス
(2−シアノエチル)エーテル[O(CH2CH2CN)2]等
のシアノエチルエーテル系溶媒(高誘電率溶媒)も併用す
ることができる(これらシアノエチルエーテル系高誘電
率溶媒は、特開平10−116514号公報に開示)。
この場合、上記他の極性溶媒および/またはシアノエチ
ルエーテル系高誘電率溶媒の量は、電解液溶媒総量の内
5〜95重量%の範囲で選定すればよい。In the organic electrolyte of the present invention, in addition to the nitrile compound [I], other polar solvents (main solvent and co-solvent) conventionally used, for example, a lithium battery,
For lithium ion secondary batteries, aprotic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, γ-valerolactone, dimethyl sulfoxide, sulfolane, tetrahydrofuran, Methyl tetrahydrofuran, etc .; for electric double layer capacitors and electrolytic capacitors, in addition to these aprotic solvents, N-dimethylformamide, N-dimethylacetamide, ethylene glycol and the like can be used in combination, and the formula: (R 2 O) bR 3 (OCH 2 CH 2 CN) c wherein R 2 is an alkyl group having 1 to 4 carbon atoms; R 3 is a residue obtained by removing all hydroxyl groups from a compound having 1 to 4 hydroxyl groups; b is 0 And c is 1-4 (however, b + c is 1-4)], for example, methyl 2-cyanoethyl Ether, ethyl 2-cyano-ethyl ether,
n-propyl-2-cyanoethyl ether, 2-methoxyethyl-2-cyanoethyl ether, ethylene glycol bis (2-cyanoethyl) ether, etc .; or bis
A cyanoethyl ether-based solvent (high dielectric constant solvent) such as (2-cyanoethyl) ether [O (CH 2 CH 2 CN) 2 ] can also be used in combination (these cyanoethyl ether-based high dielectric constant solvents are disclosed in No. 116514).
In this case, the amount of the other polar solvent and / or the cyanoethyl ether-based high dielectric constant solvent may be selected in the range of 5 to 95% by weight based on the total amount of the electrolyte solvent.
【0014】[0014]
【実施例】次に製造例および実施例を挙げて、本発明を
より具体的に説明する。 製造例1(ギ酸2−シアノエチルエステルの製造) 水分離管と還流冷却管を備えた4つ口フラスコに、ギ酸
276.2g(6モル)、2−シアノエタノール355.
5g(5モル)、シクロヘキサン300gおよび濃硫酸6g
を仕込み、還流下で生成する水を共沸除去しながら8時
間エステル化反応を行なう。反応初期は多量の水が生成
するため、65〜70℃程度の温度で反応が進行する
が、2〜3時間経過後、乾燥窒素ガスを流入しながら、
更に反応を行った(温度は85〜90℃程度まで上昇)。
反応後冷却し、純水500mlとトルエン300mlを加
え、水酸化ナトリウム水溶液を用い、中和、静置する
と、2層に分離するので、上層を残し下層(水層)を廃棄
し、この上層を純水500mlで4回洗浄し、シクロヘキ
サンとトルエンを減圧留去した後、さらに減圧蒸留で精
製を行い、目的物を得る。目的物は、無色透明の低粘度
液であって、誘電率35.8、沸点207℃、凝固点−
44℃であった。Next, the present invention will be described more specifically with reference to production examples and examples. Production Example 1 (Production of formic acid 2-cyanoethyl ester) In a four-necked flask equipped with a water separation tube and a reflux condenser, 276.2 g (6 mol) of formic acid and 355.2-cyanoethanol were added.
5 g (5 mol), cyclohexane 300 g and concentrated sulfuric acid 6 g
And conducting an esterification reaction for 8 hours while azeotropically removing water generated under reflux. Since a large amount of water is generated in the initial stage of the reaction, the reaction proceeds at a temperature of about 65 to 70 ° C., and after a lapse of 2 to 3 hours, while flowing dry nitrogen gas,
Further reaction was performed (the temperature was raised to about 85 to 90 ° C.).
After the reaction, the reaction mixture is cooled, 500 ml of pure water and 300 ml of toluene are added, neutralized with an aqueous sodium hydroxide solution and allowed to stand. When the mixture is separated into two layers, the lower layer (aqueous layer) is discarded, leaving the upper layer. After washing with 500 ml of pure water four times and distilling off cyclohexane and toluene under reduced pressure, purification is performed by distillation under reduced pressure to obtain the desired product. The target substance is a colorless and transparent low-viscosity liquid having a dielectric constant of 35.8, a boiling point of 207 ° C., and a freezing point of −
44 ° C.
【0015】製造例2(酢酸2−シアノエチルエステル) 製造例3(プロピオン酸2−シアノエチルエステル) 製造例1において、ギ酸の代わりに酢酸またはプロピオ
ン酸を用いる以外は、同様な条件でエステル化反応を行
い、それぞれの目的物を得る。各目的物の性状および特
性値は、以下の通りである。 製造例2 製造例3 性 状 無色透明低粘度液 無色透明低粘度液 誘電率 18.7 16.7 沸 点 210℃ 217℃ 凝固点 −32℃ −16℃Preparation Example 2 (2-cyanoethyl acetate) Preparation Example 3 (2-cyanoethyl propionate) In Preparation Example 1, the esterification reaction was carried out under the same conditions except that acetic acid or propionic acid was used instead of formic acid. And obtain the respective objectives. The properties and characteristic values of each object are as follows. Production Example 2 Production Example 3 Properties Colorless transparent low-viscosity liquid Colorless transparent low-viscosity liquid Dielectric constant 18.7 16.7 Boiling point 210 ° C. 217 ° C. Freezing point −32 ° C. −16 ° C.
【0016】製造例4(炭酸メチル・2−シアノエチル) 4つ口フラスコに、それぞれ予めモレキュラーシーブ3
Aにて脱水処理した、2−シアノエタノール142.2
g(2モル)、トルエン300gおよびトリエチルアミン2
73g(2.7モル)を仕込み、氷冷下(10℃以下)で激
しく撹拌しながら、クロロギ酸メチル236.3g(2.
5モル)を3時間かけて徐々に滴下し、反応させる。滴
下終了後、温度を40℃まで上げ、更に2時間反応さ
せ、メタノール32g(1モル)を加え、更に2時間撹拌
を行い、次いで冷却し、純水500mlを加え、5分程度
撹拌後、静置し、上層部を分離し、純水500mlで4回
洗浄し、トルエンを留去し、さらに減圧蒸留で精製を行
い、目的物を得る。目的物は、無色透明低粘度液であっ
て、誘電率24.6、沸点85℃(20mmHg)、凝固点
−11℃であった。Production Example 4 (Methyl 2-cyanoethyl carbonate) A molecular sieve 3 was previously placed in a four-necked flask.
A, 2-cyanoethanol 142.2 dehydrated
g (2 mol), 300 g of toluene and triethylamine 2
73 g (2.7 mol) were charged and, under vigorous stirring under ice-cooling (10 ° C. or lower), 236.3 g (2.7 g) of methyl chloroformate.
5 mol) is gradually added dropwise over 3 hours to react. After completion of the dropwise addition, the temperature was raised to 40 ° C., the reaction was continued for another 2 hours, 32 g (1 mol) of methanol was added, the mixture was stirred for another 2 hours, then cooled, 500 ml of pure water was added, and after stirring for about 5 minutes, Then, the upper layer is separated, washed four times with 500 ml of pure water, toluene is distilled off, and the residue is purified by distillation under reduced pressure to obtain the desired product. The target product was a colorless, transparent, low-viscosity liquid having a dielectric constant of 24.6, a boiling point of 85 ° C (20 mmHg), and a freezing point of -11 ° C.
【0017】実施例1〜4 製造例1〜4で得たニトリル化合物を溶媒とし、それぞ
れヘキサフルオロリン酸リチウム(LiPF6)の1モル溶
液(電解液)を作製した後、LCZメーターを用い1KH
z、20℃での導電率を測定した。結果は以下の通りで
ある。 導電率 ニトリル化合物 (ジーメンス/cm) 1.ギ酸2−シアノエチル 5.8×10-3 2.酢酸2−シアノエチル 3.1×10-3 3.プロピオン酸2−シアノエチル 2.5×10-3 4.炭酸メチル・2−シアノエチル 8.1×10−4 Examples 1 to 4 Using the nitrile compounds obtained in Production Examples 1 to 4 as solvents, 1-molar solutions (electrolyte solutions) of lithium hexafluorophosphate (LiPF 6 ) were prepared.
z, conductivity at 20 ° C. was measured. The results are as follows. Conductivity nitrile compound (Siemens / cm) 2-cyanoethyl formate 5.8 × 10 -3 2. 2-cyanoethyl acetate 3.1 × 10 −3 3. 3. 2-cyanoethyl propionate 2.5 × 10 -3 Methyl carbonate 2-cyanoethyl 8.1 × 10 -4
フロントページの続き (72)発明者 別所 信次 大阪府高槻市明田町7番1号 サンスター 技研株式会社内 Fターム(参考) 4H006 AA03 AB91 5H024 AA01 DD17 EE09 FF14 FF18 FF19 5H029 AJ07 AL07 AL08 AM03 AM04 AM05 AM07 DJ09 HJ02 Continuation of the front page (72) Inventor Shinji Bessho 7-1 Akita-cho, Takatsuki-shi, Osaka Sunstar Giken Co., Ltd. F-term (reference) 4H006 AA03 AB91 5H024 AA01 DD17 EE09 FF14 FF18 FF19 5H029 AJ07 AL07 AL08 AM03 AM04 AM05 AM07 DJ09 HJ02
Claims (6)
は炭素数1〜3のアルコキシ基;およびaは1〜3の整数
である)で示されるニトリル化合物の少なくとも1種を
含むことを特徴とする有機電解液。1. A solvent for an electrolyte salt having the formula: R 1 —COO— (CH 2 ) a —CN (wherein, R 1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms) An alkoxy group; and a is an integer of 1 to 3).
請求項1に記載の有機電解液。2. The organic electrolyte according to claim 1, wherein a is 2 in the nitrile compound.
子、メトキシまたはエトキシおよびaが2である請求項
1に記載のニトリル化合物。3. The nitrile compound according to claim 1, wherein R 1 is a hydrogen atom, methoxy or ethoxy and a is 2.
至3のいずれか1つに記載の有機電解液。4. The organic electrolyte according to claim 1, wherein the electrolyte salt is a lithium salt.
ニウム塩および/またはテトラアルキル第4級ホスホニ
ウム塩である請求項1乃至3のいずれか1つに記載の有
機電解液。5. The organic electrolyte according to claim 1, wherein the electrolyte salt is a tetraalkyl quaternary ammonium salt and / or a tetraalkyl quaternary phosphonium salt.
求項1乃至5のいずれか1つに記載の有機電解液。6. The organic electrolyte according to claim 1, wherein another solvent is used in combination with the nitrile compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28234198A JP4221088B2 (en) | 1998-10-05 | 1998-10-05 | Organic electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28234198A JP4221088B2 (en) | 1998-10-05 | 1998-10-05 | Organic electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000113906A true JP2000113906A (en) | 2000-04-21 |
JP4221088B2 JP4221088B2 (en) | 2009-02-12 |
Family
ID=17651164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28234198A Expired - Fee Related JP4221088B2 (en) | 1998-10-05 | 1998-10-05 | Organic electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4221088B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091422A1 (en) * | 2004-03-22 | 2005-09-29 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2011154783A (en) * | 2010-01-26 | 2011-08-11 | Equos Research Co Ltd | Method of manufacturing electrolyte for electrochemical device |
US8000084B2 (en) * | 2007-07-25 | 2011-08-16 | Honeywell International, Inc. | High voltage electrolytes |
WO2012002396A1 (en) * | 2010-06-30 | 2012-01-05 | 日本ゼオン株式会社 | Binder composition for non-aqueous battery electrode, electrolytic solution composition for non-aqueous battery, and use thereof |
WO2023219102A1 (en) * | 2022-05-12 | 2023-11-16 | 京セラ株式会社 | Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery |
WO2024096043A1 (en) * | 2022-11-01 | 2024-05-10 | 京セラ株式会社 | Electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery |
-
1998
- 1998-10-05 JP JP28234198A patent/JP4221088B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091422A1 (en) * | 2004-03-22 | 2005-09-29 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
US7985502B2 (en) | 2004-03-22 | 2011-07-26 | Ube Industries, Ltd. | Nonaqueous electrolyte solution and lithium secondary battery using same |
US8000084B2 (en) * | 2007-07-25 | 2011-08-16 | Honeywell International, Inc. | High voltage electrolytes |
JP2011154783A (en) * | 2010-01-26 | 2011-08-11 | Equos Research Co Ltd | Method of manufacturing electrolyte for electrochemical device |
WO2012002396A1 (en) * | 2010-06-30 | 2012-01-05 | 日本ゼオン株式会社 | Binder composition for non-aqueous battery electrode, electrolytic solution composition for non-aqueous battery, and use thereof |
JPWO2012002396A1 (en) * | 2010-06-30 | 2013-08-29 | 日本ゼオン株式会社 | Non-aqueous battery electrode binder composition, non-aqueous battery electrolyte composition and use thereof |
US9153820B2 (en) | 2010-06-30 | 2015-10-06 | Zeon Corporation | Binder composition for non-aqueous battery electrode, electrolyte solution composition for non-aqueous battery, and use thereof |
JP5862562B2 (en) * | 2010-06-30 | 2016-02-16 | 日本ゼオン株式会社 | Non-aqueous battery electrode binder composition, non-aqueous battery electrolyte composition and use thereof |
WO2023219102A1 (en) * | 2022-05-12 | 2023-11-16 | 京セラ株式会社 | Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery |
WO2024096043A1 (en) * | 2022-11-01 | 2024-05-10 | 京セラ株式会社 | Electrolytic solution for lithium ion secondary batteries, and lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4221088B2 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9359384B2 (en) | Organohalosilane and use thereof in electrolytes of non-aqueous lithium ion batteries | |
CN108475822B (en) | Nonaqueous electrolyte solution for secondary battery and secondary battery provided with same | |
JP4591505B2 (en) | Electrolyte | |
KR101422383B1 (en) | Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery | |
JP4748153B2 (en) | Electrolyte | |
KR20130033363A (en) | Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electrical storage device | |
KR20160100965A (en) | Nonaqueous electrolyte, capacitor device using same, and carboxylic acid ester compound used in same | |
US7517999B2 (en) | Imidazolium compound | |
JP5674390B2 (en) | Sulfone compound and non-aqueous electrolyte using the same | |
JP3542762B2 (en) | Lithium fluoroalkyl phosphate compounds and use of these compounds as electrolyte salts | |
US20200274188A1 (en) | Preparation of ionic liquids based on boron clusters | |
WO2010007889A1 (en) | Nonaqueous electrolyte solution for lithium battery, lithium battery using same, and formyloxy group-containing compound used therein | |
CN110343125A (en) | A kind of method and this application for mixing lithium salts in lithium ion battery of low cost preparation high-purity certainty ratio mixing lithium salts | |
JP4929766B2 (en) | Electrolyte | |
JP4221088B2 (en) | Organic electrolyte | |
JPH10233345A (en) | Nonaqueous electrolytic solution | |
JP3946825B2 (en) | Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery | |
KR20090111327A (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery | |
JPH11185808A (en) | Organic electrolyte | |
EP3604276A1 (en) | New components for electrolyte compositions | |
CN111689926B (en) | Preparation method, product and application of 3-methyl-1, 4, 2-dioxazole-5-ketone | |
JP2005060261A (en) | Bis(2,2,3,4,4,4-hexafluorobutyl) carbonate and method for producing the same, and nonaqueous electrolytic solution | |
TW201533019A (en) | Ester having 3,3,3-trifluoropropionate group and method for producing same | |
WO2018149212A1 (en) | Method for preparing pyridine ring sulfonyl imide alkali metal salt | |
JP5785064B2 (en) | Nonaqueous electrolyte containing phosphonoacetic acid compound and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040629 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051004 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051004 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |