JP2000111288A - Ice thermal storage device using fluorosilicone cold heat medium - Google Patents

Ice thermal storage device using fluorosilicone cold heat medium

Info

Publication number
JP2000111288A
JP2000111288A JP10278757A JP27875798A JP2000111288A JP 2000111288 A JP2000111288 A JP 2000111288A JP 10278757 A JP10278757 A JP 10278757A JP 27875798 A JP27875798 A JP 27875798A JP 2000111288 A JP2000111288 A JP 2000111288A
Authority
JP
Japan
Prior art keywords
water
ice
storage device
heat medium
cold heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10278757A
Other languages
Japanese (ja)
Other versions
JP3482136B2 (en
Inventor
Kimito Sakai
公人 酒井
Shoji Kozuka
祥二 小塚
Akira Tanaka
章 田中
Takeshi Noma
毅 野間
Katsuya Yamashita
勝也 山下
Yutaka Watanabe
裕 渡邊
Mikio Takayanagi
幹男 高柳
Tooru Kaiji
徹 海治
Masaaki Morita
正明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27875798A priority Critical patent/JP3482136B2/en
Publication of JP2000111288A publication Critical patent/JP2000111288A/en
Application granted granted Critical
Publication of JP3482136B2 publication Critical patent/JP3482136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To directly apply to a contact-type ice thermal storage device for improving practicality by the cold heat medium of a silicone compound containing fluorine with improved separation property from water and a greater specific gravity than ice and water, in the ice thermal storage device for depositing ice particles by directly performing the contact heat exchange of water and non-soluble cold heat medium. SOLUTION: A nozzle 2 is arranged at the upper end of an ice-making part 1 and two pipes are connected to the nozzle 2. More specifically, a cold heat medium 3 is circulated and supplied from one cooling medium supply pipe 3a and water 4 is circulated and supplied from the other water supply pipe 3a. Also, the cooled cold heat medium is heat-exchanged with water, and cooled water is changed into ice. Further, since ice has a lighter specific gravity than water, an ice particle 9 is generated at the upper portion of a water layer. The cold heat medium 3 that is used at this time is alkylpolysiloxane containing at least one fluorine. The cold heat medium is a non-aqueous liquid body, exchanges heat by liquid - liquid contact with water, cools water and generates a fine ice particle, and then separates a cold heat medium 10 at a lower layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業用として大規
模な地域熱供給プラントなどに使用されたり、空調用と
して高層建築の空調設備などに使用される直接接触式の
フロロシリコーン系冷熱媒体を用いた氷蓄熱装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct contact type fluorosilicone refrigeration medium used in a large-scale district heat supply plant or the like for industrial use, or for air conditioning equipment in a high-rise building for air conditioning. The present invention relates to an ice heat storage device used.

【0002】[0002]

【従来の技術】近年、氷蓄熱装置を有する空調システム
は、昼間に集中する冷房用電力需要を低減するために、
安価な深夜電力を利用し、且つ熱源機器容量の低減や契
約電力の低減も図れることからビル空調や地域冷房暖房
システムなどの比較的大容量の空調システムへの適用が
期待されている。
2. Description of the Related Art In recent years, an air conditioning system having an ice heat storage device has been developed to reduce the power demand for cooling which is concentrated in the daytime.
Since it is possible to use inexpensive late-night power and reduce the heat source equipment capacity and contract power, it is expected to be applied to relatively large-capacity air conditioning systems such as building air conditioning and district cooling and heating systems.

【0003】特に、最近では、夏期の昼間の冷房電力負
荷が急速に増大し、電力の安定供給が阻害される恐れが
あることから、社会的にも深夜電力の有効利用が望まれ
る状況になっている。
[0003] In particular, recently, the cooling power load during the daytime in summer has rapidly increased, and there is a risk that stable supply of power may be hindered. ing.

【0004】このような背景から、蓄熱槽を有する空調
設備が多数提案され、既に稼働状況のもののもあり、現
在では特に蓄熱容量が従来と比べて大幅に増大する氷蓄
熱装置の実用化が進められている。
[0004] Against this background, a number of air conditioners having a heat storage tank have been proposed, some of which are already in operation. At present, the practical use of an ice heat storage device in which the heat storage capacity is greatly increased as compared with the prior art has been promoted. Have been.

【0005】この氷蓄熱装置は、蓄熱槽に氷を蓄熱さ
せ、これを昼間の冷房用の冷熱源として空気調和機器等
に利用したり、あるいは製氷部で生成させた氷粒、水を
直接空気調和機などに供給して冷房用の冷熱源とするも
のである。
This ice heat storage device stores ice in a heat storage tank and uses the heat as a cold heat source for daytime cooling in an air conditioner or the like, or directly converts ice particles and water generated in an ice making section into air. It is supplied to a conditioner or the like and used as a cooling heat source for cooling.

【0006】この氷蓄熱装置の一例としては、米国特許
第29968894号、特開平5−223291号公報
などに開示されたものがある。これらはいずれも空調用
潜熱蓄熱装置であり、潜熱蓄熱体(第一の液体)として
水を用い特に氷粒状態を連続的に生成するものであり、
冷凍機において0℃以下に冷熱媒体(第二の液体、非水
溶性冷熱媒体)を冷却し、これを水中に噴出させて水と
直接接触熱交換させて氷粒を生成する方式である。した
がってこのような直接接触方式の潜熱蓄熱装置は、熱損
失が少なく、高効率で微細な氷粒を生成することができ
る。又、この氷粒は、水より軽いので浮力や水流ととも
に移動するので、常に0℃の水と冷熱媒体とが直接接触
することにより製氷されるため高い製氷効率とすること
が出来る。
An example of the ice heat storage device is disclosed in US Pat. No. 2,968,894, Japanese Patent Application Laid-Open No. 5-223291, and the like. These are all latent heat storage devices for air conditioning, and use water as a latent heat storage element (first liquid) to continuously generate an ice particle state in particular,
In this method, a cooling medium (a second liquid, a water-insoluble cooling medium) is cooled to 0 ° C. or lower in a refrigerator, and this is jetted into water to cause direct contact heat exchange with water to generate ice particles. Therefore, such a direct contact type latent heat storage device can generate fine ice particles with high efficiency and little heat loss. Also, since the ice particles are lighter than water and move with buoyancy and water flow, ice is always produced by direct contact between the 0 ° C. water and the cooling medium, so that high ice making efficiency can be achieved.

【0007】これは、従来から潜熱蓄熱装置に用いられ
ている冷熱媒体は、各公報に開示されているものは全て
フロロカ−ボン等であるが、これは温暖化係数が高いこ
とから排出規制の対象となり、代替え化合物が求められ
てきている。
[0007] The cooling medium conventionally used in the latent heat storage device is a fluorocarbon or the like which is disclosed in each gazette. However, since it has a high global warming potential, it is restricted in emission. There is a growing need for alternative compounds.

【0008】この冷熱媒体使用物質の特徴は、引火温
度が高く、危険性が少ない、氷や水よりも比重が大き
い、凝固温度が水より低く、冷却した時に固化しな
い、水と反応しない、水との分離性がよい、比熱
が大きい、長期に渡り安定である、地球温暖化等の
環境に影響が少ないなどが上げられる。上記、の性
能は、工業的に重要な性能であり、消防法上の非危険物
となる程度の安全性及び環境に影響が少ないことが望ま
しい。又、〜の性能は、システムの機能を果たすた
めに必須の性能である。
[0008] The characteristics of this cooling medium use substance are: high ignition temperature, low risk, higher specific gravity than ice and water, solidification temperature lower than water, does not solidify when cooled, does not react with water, does not react with water, Good heat separation, high specific heat, stability over a long period of time, and little impact on the environment such as global warming. The above-mentioned performance is an industrially important performance, and it is desirable that the safety and environment be small enough to be a non-dangerous substance under the Fire Service Law. The performances (1) to (4) are indispensable in order to fulfill the functions of the system.

【0009】しかし、従来冷熱媒体として知られている
ものは、本システムには、不適である。例えば四塩化炭
素などのハロゲン化合物等のハロゲン化ポリマ−には、
引火温度が高いか、引火しない性質のものが多いが、有
害物質に指定されているものが多く、環境に悪影響与え
るため本システムの冷熱媒体としては不適当である。
又、脂肪族炭化水素、芳香族炭化水素などの各種炭化水
素化合物には、氷や水との分離性が良いものもあるが、
氷よりも比重が軽く、引火点が低く、安全性に乏しい。
However, what is conventionally known as a cooling medium is not suitable for the present system. For example, halogenated polymers such as halogen compounds such as carbon tetrachloride include:
Although the ignition temperature is high or many do not ignite, many are specified as harmful substances and adversely affect the environment, making them unsuitable as a cooling medium for this system.
In addition, although various hydrocarbon compounds such as aliphatic hydrocarbons and aromatic hydrocarbons have good separability from ice and water,
Lighter than ice, has a lower flash point and is less safe.

【0010】一方、特開平4−239584号公報に開
示されたジメチルシリコ−ンオイルも冷熱媒体として用
いられることが多いが、比重が氷よりも軽く、引火点が
低いため不適当であり、上述の様にシステム要求される
性能を充分に満足する冷熱媒体は見いだされていない。
On the other hand, dimethyl silicone oil disclosed in Japanese Patent Application Laid-Open No. Hei 4-239584 is often used as a cooling medium, but is not suitable because it has a lower specific gravity than ice and a lower flash point. As described above, a cooling medium that sufficiently satisfies the performance required for the system has not been found.

【0011】[0011]

【発明が解決しようとする課題】以上説明したように従
来技術においては、システム要求される性能を充分に満
足する冷熱媒体は見いだされていないのが現状である。
As described above, in the prior art, a cooling medium that sufficiently satisfies the performance required of the system has not been found at present.

【0012】本発明は、上記〜の性質を有し、上述
の様に、氷より比重の重く水との分離性を高めた冷熱媒
体を使用する直接接触式氷蓄熱装置に適用可能で実用的
に優れた冷熱媒体を提供することにある。
The present invention has the above-mentioned properties and is applicable to a direct contact type ice heat storage device using a cooling medium having a specific gravity higher than that of ice and having an improved separability from water as described above. An object of the present invention is to provide an excellent cooling medium.

【0013】[0013]

【課題を解決するための手段】本発明は、非水溶性液体
である冷却媒体と水との直接接触により製氷し、しかる
後冷熱媒体の比重が氷より重いことを利用して水及び氷
の下層に冷熱媒体を分離することを特徴とするフロロシ
リコーン系冷熱媒体を用いた氷蓄熱装置であって、この
氷蓄熱装置において使用されるのに好適な冷熱媒体の要
旨は次に示す一般式
SUMMARY OF THE INVENTION The present invention provides ice making by direct contact between water and a cooling medium which is a water-insoluble liquid, and then makes use of the fact that the specific gravity of the cooling medium is heavier than ice. An ice storage device using a fluorosilicone-based cooling medium characterized by separating a cooling medium into a lower layer, and the gist of a cooling medium suitable for use in the ice storage device is a general formula shown below.

【化1】 式中の複数のRは独立のR1 またはR2 を表し、R1
メチル基をR2 はC2〜C6 のアルキル基を表し、Rの
総数に対するRがR2 である割合が5%以上で表せ、重
量平均におけるX及びYが1〜50であるアルキル基と
フッ素を含むポリシロキサンからなる氷蓄熱用冷熱媒
体。
Embedded image In the formula, a plurality of Rs represent independent R 1 or R 2 , R 1 represents a methyl group, R 2 represents a C 2 to C 6 alkyl group, and the ratio of R to R 2 to the total number of R is 5 or less. %, Wherein X and Y in weight average are 1 to 50, and a cooling medium for ice heat storage comprising an alkyl group and a polysiloxane containing fluorine.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0015】本発明の熱媒体を使用した氷蓄熱装置の概
要を図1に基づいて以下に説明する。
An outline of an ice heat storage device using the heat medium of the present invention will be described below with reference to FIG.

【0016】図1に示すように、製氷部1の上端部に
は、ノズル2が配置され、このノズル部2には2本の配
管が接続され、一方の配管は、冷却媒体供給配管3aで
あり、この冷却媒体供給配管3aから冷熱媒体としての
冷熱媒体3が循環供給されるとともに、他方の配管は水
供給配管4aであり、この水供給配管3aから水4が循
環供給される。冷却された冷熱媒体は、水と熱交換され
冷却された水は氷になる。氷は、水より比重が軽いため
水層の上部に氷粒9を形成する。
As shown in FIG. 1, a nozzle 2 is disposed at the upper end of the ice making section 1, and two pipes are connected to the nozzle section 2. One of the pipes is connected to a cooling medium supply pipe 3a. The cooling medium 3 as a cooling medium is circulated and supplied from the cooling medium supply pipe 3a, and the other pipe is a water supply pipe 4a. The water 4 is circulated and supplied from the water supply pipe 3a. The cooled cooling medium exchanges heat with water, and the cooled water becomes ice. Since ice has a lower specific gravity than water, it forms ice particles 9 at the upper part of the water layer.

【0017】本発明に使用される上記熱媒体3は、前記
一般式1で表せれるフッ素を一つ以上含むアルキルポリ
シロキサンからからなる。ポリシロキサンの主鎖の長さ
は、X,Yの数が小さすきすぎると比重が軽くなり水や
氷との比重さによる分離が困難になり分離性が悪化する
ため好ましくない。したがって式1で表せるX,Yは、
整数をあらわすが、いずれの場合も、X,Yが1〜50
のものが用いられるものである。
The heat medium 3 used in the present invention is made of an alkylpolysiloxane containing at least one fluorine represented by the general formula 1. If the number of X and Y is too small, the specific length of the main chain of the polysiloxane is undesirably reduced because the specific gravity becomes light, separation with water or ice becomes difficult, and the separability deteriorates. Therefore, X and Y expressed by Equation 1 are
In each case, X and Y are 1 to 50.
Is used.

【0018】一方、Rで表されるアルキル基には、少な
くとも一つ以上のフッ素を含むモノフロロメタン、ジフ
ロロメタントリフロロメタンとCn 2n+1(n=1〜1
6)等とフッ素を含まないメチル基やC2 〜C16のアル
キル基であり、そのフッ素を一つ以上含むCn F2n+1
とアルキル基は、直鎖アルキル及び分岐鎖アルキルのい
ずれでもよく複数のRは、C1 〜C16のアルキル基であ
れば同一でもお互い異なっても良い。尚、上式のnは正
の整数で表す。
On the other hand, the alkyl group represented by R includes monofluoromethane, difluoromethane trifluoromethane containing at least one or more fluorine, and C n F 2n + 1 (n = 1 to 1).
6) a methyl group or a C 2 -C 16 alkyl group containing no fluorine and C n F 2 n +1 containing one or more fluorine atoms
And the alkyl group may be any of a straight-chain alkyl and a branched-chain alkyl, and a plurality of Rs may be the same or different from each other as long as it is a C 1 to C 16 alkyl group. Note that n in the above formula is represented by a positive integer.

【0019】本発明のフロロシリコ−ンの合成法は、従
来公知の環状三量体を合成した後、フッ素化し、加水分
解処理等によって合成される。
In the method of synthesizing the fluorosilicone of the present invention, a conventionally known cyclic trimer is synthesized, then fluorinated, and hydrolyzed.

【0020】本発明の前記一般式1で表せるフロロシリ
コ−ンからなる氷蓄熱用冷熱媒体は、非水溶性液体であ
り、熱媒体の水との間で液−液接触により熱交換して、
水を冷やして微細な氷粒子を生成させ、しかる後、水及
び氷の下層に冷熱媒体を分離することが出来る。図1の
ような氷蓄熱装置における熱媒体としてフッソを少なく
とも一つ以上含むフロロシリコ−ンを特徴とするが、そ
の単独使用のみならず従来の冷熱媒体例えばフロロカ−
ボンに加えてもその効果は以下の実施例の記載から明ら
かである。
The cooling medium for ice heat storage comprising the fluorosilicone represented by the general formula 1 of the present invention is a water-insoluble liquid, and performs heat exchange with water as a heat medium by liquid-liquid contact.
The water can be cooled to produce fine ice particles, after which the cooling medium can be separated into the water and the lower layer of ice. As a heat medium in an ice heat storage device as shown in FIG. 1, a fluorosilicon containing at least one fluorine is characterized.
The effect of adding bon is apparent from the description of the following examples.

【0021】[0021]

【実施例】次に実施例を用いて、本発明を具体的に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例によって限定されるものではない。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0022】(実施例1)市販のフロロシリコ−ン(例
えば東芝シリコ−ン社製のFQF501、ワッカ−ケミ
カルズイ−ストアジア社製のAF96,AF98,AF
300,AF1000,AF10000、東レダウコ−
ニング社製のFS1265、信越化学社製のFL−10
0,FL−400,FL1000、デュポン社製クライ
オトックスオイル等)の混合物及び混合物を分画し、個
々単品の物性及び分離性を調べたところ氷蓄熱装置用熱
媒体として良好であった。
(Example 1) Commercially available fluorosilicon (for example, FQF501 manufactured by Toshiba Silicone Co., Ltd., AF96, AF98, AF manufactured by Wakka Chemical Sweat Asia Co., Ltd.)
300, AF1000, AF10000, Toray Dako
FS1265 manufactured by Ning Inc., FL-10 manufactured by Shin-Etsu Chemical Co., Ltd.
0, FL-400, FL1000, Cryotox oil manufactured by DuPont) and the mixture were fractionated, and the physical properties and separability of each single product were examined.

【0023】引火点℃;>300,凝固点;<−30
℃、比重25℃;1.2〜1.3 温暖化係数;0 分離性は、以下の実験方法の浸とう後の二層分離到達時
間が短時間なものを良いと判断した。
Flash point ° C;> 300, freezing point; <-30
° C, specific gravity 25 ° C; 1.2 to 1.3 Global warming potential; 0 The separability was judged to be good if the two-layer separation time after immersion in the following experimental method was short.

【0024】フロロシリコ−ン13mlに水127ml
を混合した溶液を空気が混入しないように分液ロ−トに
入れ蓋をした後、振とう器を用いて10分程度激しく浸
とうした。その溶液を静置後から上層の水と下層のフロ
ロシリコ−ンの二層に分離するまでの時間を測定した。
127 ml of water in 13 ml of fluorosilicone
The solution containing the mixture was placed in a separating funnel so as to prevent air from entering, and the lid was closed. Then, the solution was vigorously immersed for about 10 minutes using a shaker. The time from the standing of the solution to the separation of the upper layer of water and the lower layer of fluorosilicone into two layers was measured.

【0025】(実施例2)フロロカ−ボン12ml、フ
ロロシリコ−ン1mlに水127mlを混合した溶液を
実施例1の様に浸とう実験を行い分離到達時間を測定し
た。
(Example 2) A solution obtained by mixing 12 ml of fluorocarbon and 1 ml of fluorosilicone with 127 ml of water was subjected to an experiment of immersion as in Example 1, and the time required for separation was measured.

【0026】(実施例3)フロロカ−ボン1ml、フロ
ロシリコ−ン12mlに水127mlを混合した溶液を
実施例1の様に浸とう実験を行い分離到達時間を測定し
た。
Example 3 An experiment of immersing a solution obtained by mixing 127 ml of water with 1 ml of fluorocarbon and 12 ml of fluorosilicone as in Example 1 was performed, and the time required for separation was measured.

【0027】(実施例4)フロロシリコ−ン13ml、
水127ml、界面活性剤を1000ppm混合した溶
液を実施例1の様に浸とう実験を行い分離到達時間を測
定した。
Example 4 13 ml of fluorosilicone,
An experiment of immersing a solution in which 127 ml of water and 1000 ppm of a surfactant were mixed as in Example 1 was performed, and the time required for separation was measured.

【0028】(実施例5)フロロシリコ−ン13ml、
水127ml、水酸化Feを1000ppm混合した溶
液を実施例1の様に浸とう実験を行い分離到達時間を測
定した。
Example 5 13 ml of fluorosilicone,
An experiment of immersing a solution in which 127 ml of water and 1000 ppm of Fe hydroxide were mixed as in Example 1 was performed, and the time required for separation was measured.

【0029】(実施例6)フロロシリコ−ン13ml、
水127ml、水酸化Znを1000ppm混合した溶
液を実施例1の様に浸とう実験を行い分離到達時間を測
定した。
Example 6 13 ml of fluorosilicone,
An experiment of immersing a solution in which 127 ml of water and 1000 ppm of Zn hydroxide were mixed as in Example 1 was performed, and the time to reach separation was measured.

【0030】(実施例7)フロロシリコ−ン13ml、
水127ml、水酸化Caを混合した溶液を1000p
pm実施例1の様に浸とう実験を行い分離到達時間を測
定した。
Example 7 13 ml of fluorosilicone,
A mixture of 127 ml of water and Ca hydroxide
pm An immersion experiment was performed as in Example 1 and the time to reach separation was measured.

【0031】(実施例8)フロロシリコ−ン13ml、
水127ml、可塑剤を1000ppm混合した溶液を
実施例1の様に浸とう実験を行い分離到達時間を測定し
た。
Example 8 13 ml of fluorosilicone,
An experiment of immersing a solution obtained by mixing 127 ml of water and 1000 ppm of a plasticizer as in Example 1 was performed, and the time required for separation was measured.

【0032】(実施例9)フロロシリコ−ン13ml、
水127ml、酸化防止剤を1000ppm混合した溶
液を実施例1の様に浸とう実験を行い分離到達時間を測
定した。
Example 9 13 ml of fluorosilicone,
An experiment of immersing a solution in which 127 ml of water and 1000 ppm of an antioxidant were mixed as in Example 1 was performed, and the time required for separation was measured.

【0033】(比較例1)実施例1〜9に用いられてい
る冷熱媒体のフロロシリコ−ンの代わりにフロロカ−ボ
ンを用いた以外は、同じ溶液を作成し、分離到達時間を
測定した。実施例1〜9及び比較例1で作成した溶液を
分液ロ−トに空気が混入しない状態で、浸とう機を用い
て10分程度激しく攪拌した後、静止後二層分離到達時
間を測定し分離性を比較した。
Comparative Example 1 The same solution was prepared except that fluorocarbon as the cooling medium used in Examples 1 to 9 was used instead of fluorosilicon, and the time required for separation was measured. The solutions prepared in Examples 1 to 9 and Comparative Example 1 were vigorously stirred for about 10 minutes using an immersion machine in a state in which air was not mixed into the separating funnel, and the time required for two-layer separation after stopping was measured. The separation properties were compared.

【0034】その結果を表1に示す。Table 1 shows the results.

【0035】この結果からフロロシリコ−ンを冷熱媒体
に用いると従来のフロロカ−ボンより水との分離性が高
いことが判る。又、フロロカ−ボンを冷熱媒体に用いる
とフロロカ−ボン及び水中に装置の使用材料からの異物
及び溶出成分が混入すると初期の分離性が保たれなくな
り悪くなる傾向が見られる。しかし、フロロシリコ−ン
を単独及びフロロカ−ボンに少量のフロロシリコ−ンを
加えることにより、先のフロロカ−ボン単独で用いたよ
り水との分離性が高く、その効果は絶大であった。
From these results, it can be seen that the use of fluorosilicone as the cooling medium has a higher water-separability than conventional fluorocarbons. Also, when fluorocarbon is used as the cooling medium, if the fluorocarbon and water are mixed with foreign substances and eluted components from the materials used in the apparatus, the initial separation property cannot be maintained and the tendency tends to be poor. However, by adding the fluorosilicon alone and a small amount of the fluorosilicon to the fluorocarbon, the separability from water was higher than when the fluorocarbon was used alone, and the effect was remarkable.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明の冷熱媒体は、引火温度が高い、
凝固温度が高い、比重が氷より重い、水との分離性が良
い、環境に与える影響が少ない等の性質を有し、非水溶
性液体であると水と冷熱媒体の液−液接触により製氷
し、かかる後冷熱媒体の比重が氷よりも重いことを利用
して水及び氷の下層に冷熱媒体を分離することを特徴と
する氷蓄熱装置の熱媒体として好適に利用できる。
The cooling medium of the present invention has a high flash temperature,
It has properties such as high coagulation temperature, heavier specific gravity than ice, good separability from water, and little effect on the environment.If it is a non-aqueous liquid, it makes ice by liquid-liquid contact of water and a cooling medium. However, by utilizing the fact that the specific gravity of the post-cooling medium is heavier than ice, the post-cooling medium can be suitably used as a heat medium of an ice heat storage device characterized by separating the cooling medium into water and the lower layer of ice.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の氷蓄熱用不凍液を使用する氷蓄熱装置
の概略図である。
FIG. 1 is a schematic diagram of an ice heat storage device using an antifreeze solution for ice heat storage of the present invention.

【符号の説明】[Explanation of symbols]

1は製氷部、1aは側壁、2はノズル部、3は冷熱媒
体、3aは冷熱媒体供給配管、4は水、4aは水供給配
管、5は冷熱却媒体ノズル部、6は水ノズル部、7は拡
大テ−パ管、8は冷熱媒体の細粒、9は氷粒、10は冷
熱媒体貯留部、10aは配管、11は氷水整流部、12
は氷水供給部、13水平面
1 is an ice making section, 1a is a side wall, 2 is a nozzle section, 3 is a cooling medium, 3a is a cooling medium supply pipe, 4 is water, 4a is a water supply pipe, 5 is a cooling and heating medium nozzle section, 6 is a water nozzle section, 7 is an enlarged taper tube, 8 is fine particles of a cooling medium, 9 is ice particles, 10 is a cooling medium storage section, 10a is a pipe, 11 is an ice water rectification section, 12
Is ice water supply, 13 horizontal plane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 章 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 野間 毅 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 山下 勝也 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 渡邊 裕 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 高柳 幹男 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 海治 徹 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 森田 正明 神奈川県川崎市幸区小向東芝町1番地 東 芝リサーチコンサルティング株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Tanaka 1 Toshiba R & D Center, Komukai Toshiba-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Takeshi Noma 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 4-4, Toshiba Keihin Works Co., Ltd. (72) Katsuya Yamashita 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture, Japan 2-72 Suehirocho, Toshiba Co., Ltd. No. 1 Toshiba Corporation Head Office (72) Inventor Mikio Takayanagi 1-1-1, Shibaura, Minato-ku, Tokyo (72) Inventor Toshiba Corporation Head Office (72) 1-1, Shibaura, Minato-ku, Tokyo 1-1 No. Toshiba Corporation Head Office (72) Inventor Masaaki Morita 1 Toshiba Research Consulting, Komukai Toshiba-cho, Koyuki-ku, Kawasaki-shi, Kanagawa Group Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水と不溶解の冷熱媒体を直接接触熱交換
させて氷粒を析出する氷蓄熱装置において、水との分離
性がよく、氷や水より比重の重いフッ素を少なくとも一
つ以上含むシリコーン系化合物の冷熱媒体を用いること
を特徴とするフロロシリコーン系冷熱媒体を用いた氷蓄
熱装置。
1. An ice heat storage device that directly contacts and heat-exchanges water and an insoluble cooling medium to precipitate ice particles, wherein at least one of fluorine having a higher specific gravity than ice and water is used. An ice heat storage device using a fluorosilicone-based cooling / heating medium, characterized by using a cooling / heating medium of a silicone-based compound.
【請求項2】請求項1記載のフロロシリコーン系冷熱媒
体を用いた氷蓄熱装置において、前記冷熱媒体は、シリ
コーンの側鎖を変性して少なくともフッ素を一つ以上含
む化合物で、比重が1.2 〜1.6 の化合物であることを特
徴とするフロロシリコーン系冷熱媒体を用いた氷蓄熱装
置。
2. An ice heat storage device using a fluorosilicone-based cooling / heating medium according to claim 1, wherein said cooling / heating medium is a compound containing at least one fluorine by modifying a side chain of silicone and having a specific gravity of 1.2 to 1.2. An ice heat storage device using a fluorosilicone-based cooling / heating medium, which is a compound of 1.6.
【請求項3】 請求項1記載のフロロシリコーン系冷熱
媒体を用いた氷蓄熱装置において、前記冷却媒体は、シ
リコーンの両末端を変性して少なくともフッ素を一つ以
上含む化合物で、比重が1.2 〜1.6 の化合物である特徴
とするフロロシリコーン系冷熱媒体を用いた氷蓄熱装
置。
3. An ice heat storage device using a fluorosilicone-based cooling / heating medium according to claim 1, wherein said cooling medium is a compound which is modified at both ends of silicone and contains at least one fluorine and has a specific gravity of 1.2 to 1.2. An ice heat storage device using a fluorosilicone-based cooling / heating medium, which is a compound of 1.6.
【請求項4】 請求項1記載のフロロシリコーン系冷熱
媒体を用いた氷蓄熱装置において、前記冷熱媒体は、シ
リコーンの片末端を変性して少なくともフッ素を一つ以
上含む化合物で、比重が1.2 〜1.6 の化合物である特徴
とするフロロシリコーン系冷熱媒体を用いた氷蓄熱装
置。
4. An ice heat storage device using a fluorosilicone-based cooling / heating medium according to claim 1, wherein said cooling / heating medium is a compound containing one or more fluorines by modifying one end of silicone and having a specific gravity of 1.2 to 1.2. An ice heat storage device using a fluorosilicone-based cooling / heating medium, which is a compound of 1.6.
JP27875798A 1998-09-30 1998-09-30 Ice heat storage device using fluorosilicone cooling medium Expired - Fee Related JP3482136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27875798A JP3482136B2 (en) 1998-09-30 1998-09-30 Ice heat storage device using fluorosilicone cooling medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27875798A JP3482136B2 (en) 1998-09-30 1998-09-30 Ice heat storage device using fluorosilicone cooling medium

Publications (2)

Publication Number Publication Date
JP2000111288A true JP2000111288A (en) 2000-04-18
JP3482136B2 JP3482136B2 (en) 2003-12-22

Family

ID=17601774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27875798A Expired - Fee Related JP3482136B2 (en) 1998-09-30 1998-09-30 Ice heat storage device using fluorosilicone cooling medium

Country Status (1)

Country Link
JP (1) JP3482136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272291A (en) * 2005-03-30 2006-10-12 Jgc Corp Temperature controller
CN102817654A (en) * 2011-06-07 2012-12-12 胡晓颖 Melting phase-changing energy-storing generating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272291A (en) * 2005-03-30 2006-10-12 Jgc Corp Temperature controller
JP4602140B2 (en) * 2005-03-30 2010-12-22 日揮株式会社 Temperature control device
CN102817654A (en) * 2011-06-07 2012-12-12 胡晓颖 Melting phase-changing energy-storing generating system

Also Published As

Publication number Publication date
JP3482136B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
Liu et al. Calorimetric evaluation of phase change materials for use as thermal interface materials
JPH11513738A (en) Hydrofluoroether as a low-temperature refrigerant
JP3324392B2 (en) Heat storage material
JP2015000944A (en) Paraffin-based latent heat-storing material composition and use as latent heat storing material of paraffin-based composition
AU2898692A (en) Vapour absorbent compositions
WO1989002455A1 (en) Refrigerant
JP2000111288A (en) Ice thermal storage device using fluorosilicone cold heat medium
JP2005047926A (en) Fluorinated ether
WO2005091413A1 (en) Cooling fluid composition for fuel cell
US6079482A (en) Clathrate forming medium and its use in thermal energy storage systems and processes for thermal energy storage and transfer
JP5604834B2 (en) Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion
JP2009073985A (en) Heat-absorbing or releasing capsule, method for producing heat-absorbing or releasing capsule, heat-absorbing or releasing capsule dispersion, and cooling liquid for fuel cell stack
JP2008508103A5 (en)
JP2545879B2 (en) Coolant
KR0142138B1 (en) Cooling and heating medium for ice storage system
JP6054813B2 (en) Paraffin-based latent heat storage material composition and use of paraffin-based composition as latent heat storage material
JPH06346047A (en) Heat accumulating material
EP0947572A1 (en) Heat transfer fluid compositions for low temperature applications
JP2887910B2 (en) Heat storage medium for ice storage
KR20220137912A (en) Refrigerant composition and use thereof
JPH10185379A (en) Ice making system or ice storage system
JP2623006B2 (en) Refrigeration equipment using hydrogen storage alloy
JP2006261289A (en) Stationary induction apparatus containing silicone liquid
HU219161B (en) Heat storage medium for paraffin latent heat store and process for using an additive with crystal structure modifier behaviour
WO2023164093A2 (en) Synthesis of hfo-153-10mczz including catalytic coupling of hcfc-225ca or cfc-215cb

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees