JP2000109314A - Production of alkali metallic cyanate and cyanuric acid derivative - Google Patents

Production of alkali metallic cyanate and cyanuric acid derivative

Info

Publication number
JP2000109314A
JP2000109314A JP10282468A JP28246898A JP2000109314A JP 2000109314 A JP2000109314 A JP 2000109314A JP 10282468 A JP10282468 A JP 10282468A JP 28246898 A JP28246898 A JP 28246898A JP 2000109314 A JP2000109314 A JP 2000109314A
Authority
JP
Japan
Prior art keywords
cyanate
reaction
solvent
acid derivative
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282468A
Other languages
Japanese (ja)
Other versions
JP4265003B2 (en
Inventor
Yoshihiro Takayama
義弘 高山
Kiyohide Takagi
清秀 高木
Tsuneo Nakanishi
恒雄 中西
Akinori Kameyama
昭憲 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP28246898A priority Critical patent/JP4265003B2/en
Publication of JP2000109314A publication Critical patent/JP2000109314A/en
Application granted granted Critical
Publication of JP4265003B2 publication Critical patent/JP4265003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily obtain a high purity alkali metallic cyanate in a state suitable for use as a starting material for producing a cyanuric acid derivative by allowing an alkali metallic carbonate to react with urea in an amide solvent to form a reaction product suspended in the solvent. SOLUTION: An alkali metallic carbonate [M2CO3 (M is Na, K or Li)] is allowed to react with urea [(NH2)2CO] in an amide solvent to obtain the objective alkali metallic cyanate (MOCN) suspended in the solvent. The amide solvent is preferably dimethylformamide and the amount of the solvent used is usually about 0.5-10 times (weight) the amount of the urea. The reaction is carried out by a batch system under atmospheric pressure or elevated pressure at about 100-200 deg.C for >=1 hr. When the suspended alkali metallic cyanate is allowed to react with an aliphatic halogenated compound such as a halogenated allyl, a halogenated 2-methylallyl or a propyl halide, the objective high purity cyanuric acid derivative is efficiently obtained in a high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ金属シアネ
ート及びシアヌル酸誘導体の製造方法に関する。
The present invention relates to a method for producing an alkali metal cyanate and a cyanuric acid derivative.

【0002】[0002]

【従来の技術】従来、アルカリ金属シアネート、例え
ば、シアン酸ナトリウムの製造方法として、尿素と炭酸
ナトリウムとを混合加熱する、溶融固相反応法が知られ
ている。シアン酸ナトリウムは、反応溶媒中での脂肪族
ハロゲン化物との反応によるシアヌル酸誘導体の製造方
法の原料として利用される。
2. Description of the Related Art As a method for producing an alkali metal cyanate, for example, sodium cyanate, a melt solid phase reaction method in which urea and sodium carbonate are mixed and heated has conventionally been known. Sodium cyanate is used as a raw material in a method for producing a cyanuric acid derivative by reacting with an aliphatic halide in a reaction solvent.

【0003】ところで、シアヌル酸誘導体の製造方法に
おいて、上記の溶融固相反応法で得られたシアン酸ナト
リウムを原料とする場合は、シアン酸ナトリウムの粉砕
工程を必要とする欠点がある。更に、シアン酸ナトリウ
ムの粉砕にも限度があるため、微細かつ均一粒径のシア
ン酸ナトリウムが反応溶媒に分散した懸濁液を調製する
ことが困難であり、反応速度の観点からも不利益があ
る。しかも、溶融固相反応法の場合、シアン酸ナトリウ
ムの純度が低く、90重量%以上に純度を高めることは
経済的に困難である。
[0003] In the production method of cyanuric acid derivatives, when sodium cyanate obtained by the above-mentioned melt solid phase reaction method is used as a raw material, there is a disadvantage that a pulverizing step of sodium cyanate is required. Furthermore, since there is a limit to the grinding of sodium cyanate, it is difficult to prepare a suspension in which sodium cyanate having a fine and uniform particle size is dispersed in the reaction solvent, and disadvantages are caused from the viewpoint of the reaction rate. is there. In addition, in the case of the melt solid phase reaction method, the purity of sodium cyanate is low, and it is economically difficult to increase the purity to 90% by weight or more.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、溶融固相反応法
を利用した従来のアルカリ金属シアネートの製造方法に
比し、工業的に有利であり、シアヌル酸誘導体の製造原
料として好適な状態で得ることが出来、しかも、純度の
点でも改良されたアルカリ金属シアネートの製造方法、
および、原料として上記製造方法で得られたアルカリ金
属シアネートを利用したシアヌル酸誘導体の製造方法を
提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object an industrial advantage as compared with a conventional method for producing an alkali metal cyanate using a molten solid phase reaction method. Advantageous, can be obtained in a suitable state as a raw material for the production of cyanuric acid derivatives, moreover, a method for producing an alkali metal cyanate which is also improved in terms of purity,
Another object of the present invention is to provide a method for producing a cyanuric acid derivative using the alkali metal cyanate obtained by the above production method as a raw material.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の第1
の要旨は、アミド系溶媒中にてアルカリ金属カーボネー
トと尿素とを反応させることを特徴とするアルカリ金属
シアネートの製造方法に存し、本発明の第2の要旨は、
アミド系溶媒中にてアルカリ金属カーボネートと尿素と
を反応させてアミド系溶媒中に懸濁したアルカリ金属シ
アネートを得、次いで、上記の懸濁液中のアルカリ金属
シアネートと脂肪族ハロゲン化化合物とを反応させるこ
とを特徴とするシアヌル酸誘導体の製造方法に存する。
That is, the first aspect of the present invention is as follows.
The gist of the present invention resides in a method for producing an alkali metal cyanate, which comprises reacting an alkali metal carbonate and urea in an amide-based solvent.
The alkali metal carbonate and urea are reacted in the amide solvent to obtain an alkali metal cyanate suspended in the amide solvent, and then the alkali metal cyanate and the aliphatic halide compound in the above suspension are mixed. Reacting the cyanuric acid derivative.

【0006】[0006]

【発明の実施の形態】先ず、本発明に係るアルカリ金属
シアネートの製造方法について説明する。本発明におい
ては、アルカリ金属カーボネートと尿素とを反応させて
アルカリ金属シアネートを得る。この場合の反応は、次
の反応式に示す通りであり、同式中、Mはアルカリ金属
を表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for producing an alkali metal cyanate according to the present invention will be described. In the present invention, an alkali metal carbonate is reacted with urea to obtain an alkali metal cyanate. The reaction in this case is as shown in the following reaction formula, where M represents an alkali metal.

【0007】[0007]

【化1】2(NH22CO+M2CO3→2MOCN+2
NH3+CO2+H2
Embedded image 2 (NH 2 ) 2 CO + M 2 CO 3 → 2MOCN + 2
NH 3 + CO 2 + H 2 O

【0008】アルカリ金属カーボネートとしては、炭酸
ナトリウムの他、炭酸カリウム、炭酸リチウム等が使用
される。アルカリ金属カーボネートに対する尿素の使用
量は、上記の化学式から明らかな様に理論的には2倍モ
ルである。
As the alkali metal carbonate, potassium carbonate, lithium carbonate and the like are used in addition to sodium carbonate. The amount of urea used relative to the alkali metal carbonate is theoretically twice the molar amount as apparent from the above chemical formula.

【0009】本発明においては、アミド系溶媒中にて上
記の反応を行う必要がある。すなわち、後述の実施例に
おいて確認されている通り、反応溶媒としてアミド系溶
媒を使用したことにより、脂肪族ハロゲン化物との反応
によって高収率で高純度のシアヌル酸誘導体を製造する
ために必要な原料特性が備えられたアルカリ金属シアネ
ート懸濁液を得ることが出来る。勿論、溶融固相反応法
による製造方法の場合に必要とされるアルカリ金属シア
ネートの粉砕は不要である。アミド系溶媒としては、ジ
メチルホルムアミド(DMF)、ジエチルホルムアミ
ド、ジメチルアセトアミド、N−メチルピロリドン等が
挙げられるが、特にDMFが好適に使用される。
In the present invention, it is necessary to carry out the above reaction in an amide solvent. That is, as confirmed in Examples described later, by using an amide solvent as a reaction solvent, it is necessary to produce a high-purity cyanuric acid derivative in high yield by reaction with an aliphatic halide. An alkali metal cyanate suspension having raw material properties can be obtained. Of course, the pulverization of the alkali metal cyanate, which is required in the case of the production method by the melt solid phase reaction method, is unnecessary. Examples of the amide-based solvent include dimethylformamide (DMF), diethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. DMF is particularly preferably used.

【0010】反応は、通常、回分方式で行われ、蒸発す
る反応溶媒を凝縮して反応器に循環させる凝縮設備を備
えた反応装置を使用して行われる。溶媒の使用割合は、
尿素に対し、通常0.5〜10重量倍、好ましくは1〜
3重量倍の範囲から選択される。反応温度は、通常10
0〜200℃、好ましくは100℃から溶媒の沸点(D
MFの場合は150℃)の範囲から選択される。反応圧
力は、常圧または加圧の何れでもよいが、操作性の観点
からは常圧が好ましい。反応時間は、通常1〜10時間
の範囲から選択される。反応器から蒸発する溶媒に同伴
されて反応器から排出される副生するアンモニアは、上
記の溶媒をホルマリンと接触させることにより、ヘキサ
メチレンテトラミンとして回収することが出来る。
[0010] The reaction is usually carried out in a batch system, and is carried out using a reactor equipped with a condensing equipment for condensing the evaporating reaction solvent and circulating it in the reactor. The proportion of the solvent used is
Urea is usually 0.5 to 10 times by weight, preferably 1 to 10 times.
It is selected from a range of 3 times by weight. The reaction temperature is usually 10
0 to 200 ° C, preferably from 100 ° C to the boiling point of the solvent (D
(In the case of MF, 150 ° C.). The reaction pressure may be either normal pressure or pressurization, but is preferably normal pressure from the viewpoint of operability. The reaction time is usually selected from the range of 1 to 10 hours. The by-product ammonia discharged from the reactor accompanying the solvent evaporating from the reactor can be recovered as hexamethylenetetramine by bringing the above solvent into contact with formalin.

【0011】次に、本発明に係るシアヌル酸誘導体の製
造方法について説明する。本発明においては、アルカリ
金属シアネートと脂肪族ハロゲン化化合物とを反応させ
てシアヌル酸誘導体を得る。この際、アミド系溶媒中に
てアルカリ金属カーボネートと尿素とを反応させてアミ
ド系溶媒中に懸濁したアルカリ金属シアネートを使用す
る。すなわち、本発明においては、前記のアルカリ金属
シアネートの製造反応に引き続き上記の反応を行うこと
が出来る。通常、アルカリ金属シアネートのアミド系溶
媒懸濁液中に脂肪族ハロゲン化化合物を添加して反応を
行う。
Next, a method for producing the cyanuric acid derivative according to the present invention will be described. In the present invention, a cyanuric acid derivative is obtained by reacting an alkali metal cyanate with an aliphatic halide compound. At this time, an alkali metal carbonate and urea are reacted in an amide-based solvent, and an alkali metal cyanate suspended in the amide-based solvent is used. That is, in the present invention, the above-described reaction can be performed subsequent to the above-described production reaction of the alkali metal cyanate. Usually, the reaction is carried out by adding an aliphatic halogenated compound to an amide-based solvent suspension of an alkali metal cyanate.

【0012】上記の脂肪族ハロゲン化化合物としては、
特に制限されないが、代表的には、塩化アリルや臭化ア
リル等のハロゲン化アリル、塩化2−メチルアリルや臭
化2−メチルアリル等のハロゲン化2−メチルアリル又
は塩化プロピルや臭化プロピル等のハロゲン化プロピル
が使用される。これらは、次の各反応式に従い、イソシ
アヌル酸エステルの三量化物を与える。斯かる三量化物
は各種の中間体として有用である。
The above-mentioned aliphatic halogenated compounds include:
Although not particularly limited, typically, allyl halide such as allyl chloride and allyl bromide, 2-methylallyl halide such as 2-methylallyl chloride and 2-methylallyl bromide, or halogenated such as propyl chloride and propyl bromide and the like Propyl is used. These give trimers of isocyanuric acid esters according to the following reaction formulas. Such a trimer is useful as various intermediates.

【0013】[0013]

【化2】 Embedded image

【0014】反応は、前記のアルカリ金属シアネートの
製造反応と同様に回分方式で行われ、蒸発する溶媒を凝
縮して反応系に循環させる凝縮設備を備えた反応装置を
使用して行われる。溶媒の使用割合、反応温度、反応圧
力、反応時間は、前記のアルカリ金属シアネートの製造
反応の場合と同様の条件を採用することが出来、前記の
アルカリ金属シアネートの製造反応に引き続きシアヌル
酸誘導体の製造反応を行う場合は、変更を要しない。
The reaction is carried out in a batch system in the same manner as in the above-mentioned alkali metal cyanate production reaction, and is carried out using a reactor equipped with a condensing equipment for condensing an evaporating solvent and circulating it in the reaction system. The use ratio of the solvent, the reaction temperature, the reaction pressure, and the reaction time can be the same conditions as in the case of the above-described alkali metal cyanate production reaction, and the cyanuric acid derivative of the alkali metal cyanate production reaction can be used. No change is required when performing the production reaction.

【0015】[0015]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0016】実施例1 温度計、攪拌機、コンデンサー付き1Lガラス製反応容
器に、DMF219g、炭酸ナトリウム106g(1.0モ
ル)及び尿素120g(2.0モル)を仕込み、130
℃まで昇温した後、6時間保持した。この際、コンデン
サ−管内で炭酸アンモニウムが析出して管内を閉塞する
ことを防ぐため、コンデンサ−の冷却水の温度は70℃
に保持した。次いで、反応液を室温まで冷却した後、濾
過により固体反応生成物のシアン酸ナトリウムを取り出
し、メタノールで洗浄後に乾燥した。シアン酸ナトリウ
ムの収率は95重量%であった。また、X線回折(測定
条件:40KV,20mAスピン)による純度は94重
量%であり、残りは炭酸ナトリウムであった。
Example 1 A 1-L glass reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 219 g of DMF, 106 g (1.0 mol) of sodium carbonate, and 120 g (2.0 mol) of urea.
After the temperature was raised to ° C, the temperature was maintained for 6 hours. At this time, the temperature of the cooling water of the condenser was set to 70 ° C. in order to prevent ammonium carbonate from depositing in the condenser tube and blocking the tube.
Held. Next, after cooling the reaction solution to room temperature, sodium cyanate as a solid reaction product was taken out by filtration, washed with methanol, and dried. The yield of sodium cyanate was 95% by weight. The purity by X-ray diffraction (measurement conditions: 40 KV, 20 mA spin) was 94% by weight, and the balance was sodium carbonate.

【0017】実施例2 実施例1において、DMF263g、炭酸ナトリウム10
6g(1.0モル)及び尿素120g(2.0モル)を反
応器に仕込み、150℃まで昇温した後に3時間保持し
て反応を行った以外は、実施例1と同様にしてシアン酸
ナトリウム得た。シアン酸ナトリウムの収率は97重量
%であった。また、シアン酸ナトリウムの純度は95重
量%であり、残りは炭酸ナトリウムであった。
Example 2 In Example 1, 263 g of DMF and 10 parts of sodium carbonate were used.
6 g (1.0 mol) and 120 g (2.0 mol) of urea were charged into a reactor, heated to 150 ° C., and then held for 3 hours to carry out the reaction. Sodium was obtained. The yield of sodium cyanate was 97% by weight. The purity of sodium cyanate was 95% by weight, and the balance was sodium carbonate.

【0018】実施例3 実施例1において、DMF263g、炭酸ナトリウム10
6g(1.0モル)及び尿素120g(2.0モル)を反
応器に仕込み、170℃まで昇温した後に2時間保持し
て反応を行った以外は、実施例1と同様にしてシアン酸
ナトリウム得た。なお、反応器内の圧力は約2.6Kg/
cm2であった。シアン酸ナトリウムの収率は98重量%
であった。また、シアン酸ナトリウムの純度は98重量
%であり、残りは炭酸ナトリウムであった。
Example 3 In Example 1, 263 g of DMF and 10 parts of sodium carbonate were used.
6 g (1.0 mol) and 120 g (2.0 mol) of urea were charged into a reactor, heated to 170 ° C., and held for 2 hours to carry out the reaction. Sodium was obtained. The pressure in the reactor was about 2.6 kg /
It was cm 2. 98% by weight of sodium cyanate
Met. The purity of sodium cyanate was 98% by weight, and the balance was sodium carbonate.

【0019】実施例4 実施例1と同様に反応を行った後、反応液の温度を14
0℃に上げ、コンデンサーの冷却水を70℃の温水から
冷水に切り替え、アリルクロライド153g(2.0モ
ル)を2時間かけて滴下しながら反応させた。冷却後、
副生した塩を濾過で除去し、回収した濾液を蒸留(14
4℃/3mmHg)し、収率94重量%でトリアリルイソ
シアヌレートを得た。トリアリルイソシアヌレートの純
度はガスクロマトグラフィー測定の結果99重量%であ
り、融点は25.3℃であった。
Example 4 After the reaction was carried out in the same manner as in Example 1, the temperature of the reaction solution was raised to 14
The temperature was raised to 0 ° C., and the cooling water of the condenser was switched from hot water of 70 ° C. to cold water, and 153 g (2.0 mol) of allyl chloride was reacted dropwise over 2 hours. After cooling,
By-product salts are removed by filtration, and the collected filtrate is distilled (14).
4 ° C./3 mmHg) to obtain triallyl isocyanurate in a yield of 94% by weight. The purity of triallyl isocyanurate was 99% by weight as measured by gas chromatography, and the melting point was 25.3 ° C.

【0020】実施例5 実施例3と同様に反応を行った後、反応液の温度を14
0℃に下げ、コンデンサーの冷却水を70℃の温水から
冷水に切り替え、アリルクロライド153g(2.0モ
ル)を2時間かけて滴下しながら反応させた。冷却後、
副生した塩を濾過で除去し、回収した濾液を蒸留(14
4℃/3mmHg)し、収率96重量%でトリアリルイソシ
アヌレートを得た。トリアリルイソシアヌレートの純度
はガスクロマトグラフィー測定の結果99重量%であ
り、融点は25.5℃であった。
Example 5 After the reaction was carried out in the same manner as in Example 3, the temperature of the reaction solution was raised to 14
The temperature was lowered to 0 ° C., and the cooling water of the condenser was switched from hot water of 70 ° C. to cold water, and reacted while dropping 153 g (2.0 mol) of allyl chloride over 2 hours. After cooling,
By-product salts are removed by filtration, and the collected filtrate is distilled (14).
4 ° C./3 mmHg) to obtain triallyl isocyanurate in a yield of 96% by weight. The purity of triallyl isocyanurate was 99% by weight as measured by gas chromatography, and the melting point was 25.5 ° C.

【0021】実施例6 実施例2と同様に反応を行った後、反応液の温度を14
0℃に下げ、コンデンサーの冷却水を70℃の温水から
冷水に切り替え、塩化n−プロピル157g(2.0モ
ル)を2時間かけて滴下しながら反応させた。冷却後、
副生した塩を濾過で除去し、回収した濾液を蒸留(〜1
04℃/0.2mmHg)し、収率94重量%でトリプロピ
ルイソシアヌレートを得た。トリプロピルイソシアヌレ
ートの純度はガスクロマトグラフィー測定の結果98重
量%であり、融点は25.0℃であった。
Example 6 After the reaction was carried out in the same manner as in Example 2, the temperature of the reaction solution was raised to 14
The temperature was lowered to 0 ° C, and the cooling water of the condenser was switched from hot water of 70 ° C to cold water, and the reaction was carried out while dropping 157 g (2.0 mol) of n-propyl chloride over 2 hours. After cooling,
By-produced salts are removed by filtration, and the collected filtrate is distilled (~ 1).
04 ° C./0.2 mmHg) to obtain tripropyl isocyanurate in a yield of 94% by weight. The purity of tripropyl isocyanurate was 98% by weight as measured by gas chromatography, and the melting point was 25.0 ° C.

【0022】実施例7 実施例2と同様に反応を行った後、反応液の温度を14
0℃に下げ、コンデンサーの冷却水を70℃の温水から
冷水に切り替え、塩化2−メチルアリル181g(2.
0モル)を2時間かけて滴下しながら反応させた。冷却
後、副生した塩を濾過で除去し、回収した濾液を蒸留
(130℃/0.3Torr)し、収率92重量%でトリメ
タリルイソシアヌレートを得た。トリメタリルイソシア
ヌレートの純度はガスクロマトグラフィー測定の結果9
7重量%であり、融点は84.0℃であった。
Example 7 After the reaction was carried out in the same manner as in Example 2, the temperature of the reaction solution was raised to 14
The temperature was lowered to 0 ° C., and the cooling water for the condenser was changed from hot water at 70 ° C. to cold water, and 181 g of 2-methylallyl chloride (2.
(0 mol) over 2 hours. After cooling, salts produced as by-products were removed by filtration, and the collected filtrate was distilled (130 ° C./0.3 Torr) to obtain trimetaryl isocyanurate in a yield of 92% by weight. The purity of trimetalyl isocyanurate was determined by gas chromatography to be 9
7% by weight, and the melting point was 84.0 ° C.

【0023】[0023]

【発明の効果】以上説明した本発明によれば、溶融固相
反応法を利用した従来のアルカリ金属シアネートの製造
方法に比し、工業的に有利であり、シアヌル酸誘導体の
製造原料として好適な状態で得ることが出来、しかも、
純度の点でも改良されたアルカリ金属シアネートの製造
方法、および、原料として上記製造方法で得られたアル
カリ金属シアネートを利用したシアヌル酸誘導体の製造
方法が提供され、本発明の工業的価値は大きい。
According to the present invention described above, it is industrially advantageous as compared with a conventional method for producing an alkali metal cyanate using a molten solid phase reaction method, and is suitable as a raw material for producing a cyanuric acid derivative. Can be obtained in a state, and
The present invention provides a method for producing an alkali metal cyanate, which is also improved in purity, and a method for producing a cyanuric acid derivative using the alkali metal cyanate obtained by the above production method as a raw material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 恒雄 福島県いわき市小名浜字高山34番地 日本 化成株式会社内 (72)発明者 亀山 昭憲 福島県いわき市小名浜字高山34番地 日本 化成株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuneo Nakanishi 34 Takayama, Onahama, Iwaki-shi, Fukushima Japan Kasei Corporation (72) Inventor Akinori Kameyama 34 Takayama, Onahama, Iwaki-shi, Fukushima Japan Kasei Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アミド系溶媒中にてアルカリ金属カーボ
ネートと尿素とを反応させることを特徴とするアルカリ
金属シアネートの製造方法。
1. A method for producing an alkali metal cyanate, comprising reacting an alkali metal carbonate with urea in an amide solvent.
【請求項2】 アミド系溶媒中にてアルカリ金属カーボ
ネートと尿素とを反応させてアミド系溶媒中に懸濁した
アルカリ金属シアネートを得、次いで、上記の懸濁液中
のアルカリ金属シアネートと脂肪族ハロゲン化化合物と
を反応させることを特徴とするシアヌル酸誘導体の製造
方法。
2. An alkali metal carbonate and urea are reacted in an amide-based solvent to obtain an alkali metal cyanate suspended in the amide-based solvent. A method for producing a cyanuric acid derivative, comprising reacting a cyanuric acid derivative with a halogenated compound.
【請求項3】 脂肪族ハロゲン化化合物が、ハロゲン化
アリル、ハロゲン化2−メチルアリル又はハロゲン化プ
ロピルである請求項1に記載のシアヌル酸誘導体の製造
方法。
3. The method for producing a cyanuric acid derivative according to claim 1, wherein the aliphatic halogenated compound is allyl halide, 2-methylallyl halide or propyl halide.
JP28246898A 1998-10-05 1998-10-05 Method for producing cyanuric acid derivative Expired - Fee Related JP4265003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28246898A JP4265003B2 (en) 1998-10-05 1998-10-05 Method for producing cyanuric acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28246898A JP4265003B2 (en) 1998-10-05 1998-10-05 Method for producing cyanuric acid derivative

Publications (2)

Publication Number Publication Date
JP2000109314A true JP2000109314A (en) 2000-04-18
JP4265003B2 JP4265003B2 (en) 2009-05-20

Family

ID=17652830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28246898A Expired - Fee Related JP4265003B2 (en) 1998-10-05 1998-10-05 Method for producing cyanuric acid derivative

Country Status (1)

Country Link
JP (1) JP4265003B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
CN102336416A (en) * 2011-08-29 2012-02-01 湖北得力新材料有限公司 Method for cleanly producing high-purity cyanate at low temperature
JP2015166462A (en) * 2015-04-16 2015-09-24 日本化成株式会社 Crosslinking agent and sealant
EP3533789A1 (en) 2018-02-28 2019-09-04 Evonik Degussa GmbH Method for the preparation of trimethallylisocyanurate
CN114989104A (en) * 2022-08-02 2022-09-02 湖南方锐达新材料有限公司 Synthesis method of triallyl isocyanurate
CN115246794A (en) * 2022-09-21 2022-10-28 湖南立德科技新材料有限公司 Process and system for preparing cross-linking agent from calcium cyanate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
CN102336416A (en) * 2011-08-29 2012-02-01 湖北得力新材料有限公司 Method for cleanly producing high-purity cyanate at low temperature
JP2015166462A (en) * 2015-04-16 2015-09-24 日本化成株式会社 Crosslinking agent and sealant
EP3533789A1 (en) 2018-02-28 2019-09-04 Evonik Degussa GmbH Method for the preparation of trimethallylisocyanurate
CN114989104A (en) * 2022-08-02 2022-09-02 湖南方锐达新材料有限公司 Synthesis method of triallyl isocyanurate
CN114989104B (en) * 2022-08-02 2022-11-15 湖南方锐达新材料有限公司 Synthesis method of triallyl isocyanurate
CN115246794A (en) * 2022-09-21 2022-10-28 湖南立德科技新材料有限公司 Process and system for preparing cross-linking agent from calcium cyanate

Also Published As

Publication number Publication date
JP4265003B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
CA2397258C (en) Preparation of sulfonamides
CN110878084A (en) Preparation method of nicosulfuron original drug
JP2000109314A (en) Production of alkali metallic cyanate and cyanuric acid derivative
JPH0629225B2 (en) Method for producing zirconium-butyl dicarbonate
KR20100045985A (en) Process for producing toluidine compound
JP4030253B2 (en) Method for producing triazine compound
JP3101974B2 (en) Process for producing 4,6-diamino-1,3,5-triazin-2-yl-benzoic acids
JP4265004B2 (en) Method for producing cyanuric acid derivative
JP2748170B2 (en) Process for producing O-methylisourea salt
JP2003512297A (en) Method for producing aliphatic fluoroformate
JPS6257575B2 (en)
CN110655491B (en) Simple preparation method of 2-aminopyrimidine-5-formic ether
JPH08325245A (en) Production of 1,3,5-tris-(2-hydroxyalkyl)-isocyanurate
US4900826A (en) Process for preparing N6,9-disubstituted adenine
JP3276523B2 (en) Method for producing diguanamines
JPH0489466A (en) Production of 0-methylisourea sulfate
CN116082335A (en) Preparation method of diaryl ether compound
CN115197099A (en) Preparation method of N-Boc-1,4-phenylenediamine
CN113795482A (en) Process for the preparation of casalas
JPH09202751A (en) Production of di-tertiary-butyl dicarbonate
JPH07165651A (en) Production of dipentaerythritol
JP2003503393A (en) Method for producing 4,6-dichloropyrimidine using acid chloride
JPH0776541A (en) Production of dipentaerythritol
JPH0349900B2 (en)
JP2001172247A (en) Method for producing 4-cyano-2-fluorobenzyl chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees