JP2000105165A - Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method - Google Patents

Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method

Info

Publication number
JP2000105165A
JP2000105165A JP10275104A JP27510498A JP2000105165A JP 2000105165 A JP2000105165 A JP 2000105165A JP 10275104 A JP10275104 A JP 10275104A JP 27510498 A JP27510498 A JP 27510498A JP 2000105165 A JP2000105165 A JP 2000105165A
Authority
JP
Japan
Prior art keywords
temperature
air
inspected
pressure
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10275104A
Other languages
Japanese (ja)
Inventor
Akio Furuse
昭男 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP10275104A priority Critical patent/JP2000105165A/en
Publication of JP2000105165A publication Critical patent/JP2000105165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the temperature difference of air in pressurization time and the completion time of inspection, and to correct drift that is the fluctuation in pressure being generated by temperature difference by applying pressure to an object to be inspected and fitting a temperature sensor to an exhaust passage from the object to be inspected. SOLUTION: In the drift correction of leakage inspection, temperature measurement being applied to a leakage detection device is made, for example, by applying pneumatic pressure to an object 2 to be inspected from an air source 1, by providing a branch path 13 at piping 12 for the exhaust of the object 2 to be inspected, and connecting a temperature measurement part 14 where a temperature sensor 11 is fitted to the branch path 13. When the pressure is to be applied, an opening/closing valve 15 is opened for a fixed amount of time for measuring the temperature of air when the pressure is applied. On the completion of inspection, the opening/closing valve 15 is opened for measuring the temperature of the air being evacuated from the object 2 to be inspected. Two temperature sensors may be independently used for the press and exhaust passages. The object 2 to be inspected without leakage is used, specific leakage inspection is made, and pressure and temperature are measured, thus obtaining a temperature correction coefficient used for calculating a drift correction value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば各種の防水
構造の機器或いはガス危惧等の洩れがあってはならない
器具の洩れの有無を検査する洩れ検査装置と、この洩れ
検査装置に用いられている温度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a leak inspection apparatus for inspecting the presence or absence of leaks of various waterproof devices or instruments which should not leak such as gas fear, and the like. It relates to a temperature measuring method.

【0002】[0002]

【従来の技術】従来より洩れがあってはならない容器等
の洩れの有無を検査する方法として図7に示す方法と、
図8に示す方法とがある。 図6に示す方法は空圧源1から空気圧を被検査体2
に印加し、印加後に遮断弁3を遮断し、圧力計4で被検
査体2内の圧力を計測し、その圧力値が所定時間一定値
を維持するか否かにより被検査体2に洩れがあるか否か
を判定する方法である。尚、5は3方電磁弁を示し、検
査後にB−C間を導通させて被検査体2に印加した空気
圧を大気に排気する手段として動作する。
2. Description of the Related Art A method shown in FIG.
There is a method shown in FIG. In the method shown in FIG. 6, the air pressure is
Is applied, the shutoff valve 3 is shut off after the application, the pressure in the test object 2 is measured by the pressure gauge 4, and the test object 2 leaks depending on whether or not the pressure value maintains a constant value for a predetermined time. This is a method of determining whether or not there is. Reference numeral 5 denotes a three-way solenoid valve, which operates as a means for conducting electricity between B and C after the inspection and exhausting the air pressure applied to the device under test 2 to the atmosphere.

【0003】また空気圧源1はコンプレッサと調圧弁と
圧力計を装備し、一定圧力の空気圧を出力するものとす
る。 図8に示す方法は空圧源1から被検査体2と洩れの
無い基準タンク6に空気圧を印加し、印加後に遮断弁3
Aと3Bを遮断している間に被検査体2と基準タンク6
との間の圧力差を差圧計7で測定し、差圧の発生の有無
により被検査体2の洩れの有無を判定する方法である。
The air pressure source 1 is equipped with a compressor, a pressure regulating valve, and a pressure gauge, and outputs a constant pressure air pressure. In the method shown in FIG. 8, air pressure is applied from the air pressure source 1 to the test object 2 and the reference tank 6 having no leakage, and after the application, the shutoff valve 3
Inspection object 2 and reference tank 6 while A and 3B are shut off
Is measured by the differential pressure gauge 7 to determine whether or not the test object 2 has leaked based on whether or not a differential pressure has occurred.

【0004】、の何れの方法においても、被検査体
2の温度が環境温度(空気の温度)に等しければ特に問
題なく洩れの検査を行う事ができる。然し乍ら現実には
被検査体は加工工程を経て検査工程に運ばれるため加工
工程で溶接或いは洗浄等により加熱又は冷却されている
場合が多い。被検査体の温度が環境温度と異なる場合、
被検査体に印加された空気は被検査体の温度により膨張
又は収縮し、この膨張又は収縮によって印加した空気圧
が変動するから、誤った判定が下される恐れがある。
In any of the methods, if the temperature of the test object 2 is equal to the environmental temperature (air temperature), it is possible to perform a leak test without any particular problem. However, in actuality, the inspection object is carried to the inspection process through the processing process, and thus is often heated or cooled by welding or washing in the processing process. If the temperature of the test object is different from the ambient temperature,
The air applied to the test object expands or contracts depending on the temperature of the test object, and the applied air pressure fluctuates due to the expansion or contraction, so that an erroneous determination may be made.

【0005】被検査体の温度によって発生する圧力変動
を従来からドリフトと称し、このドリフトによる影響を
除去する方法が各種提案されている。その一例として例
えば本出願人により提案した特開昭59−206737
号公報に提示した温度補償機能を有する洩れ検査装置が
ある。先に提示した洩れ検査装置は上記したの方法で
説明しているから以下の方法で説明する。従来は被検
査体及び基準タンクの表面に温度センサを接触させ、被
検査体2及び基準タンク6の表面温度を測定しこの表面
温度の差から被検査体2に印加した空気が受けた温度変
化を推定し、その温度変化から熱の影響により発生する
であろう差圧値を予めドリフト補正値として記憶させて
用意する。
[0005] Pressure fluctuations caused by the temperature of an object to be inspected are conventionally referred to as drifts, and various methods have been proposed for eliminating the effects of the drifts. For example, Japanese Patent Application Laid-Open No. Sho 59-206737 proposed by the present applicant is an example.
There is a leak inspection device having a temperature compensation function presented in Japanese Patent Application Laid-Open No. H10-260, 1988. Since the leak inspection apparatus presented above has been described in the above-described method, it will be described in the following method. Conventionally, a temperature sensor is brought into contact with the surface of the test object and the reference tank, and the surface temperature of the test object 2 and the reference tank 6 is measured. Is estimated, and a differential pressure value that would be generated due to the influence of heat from the temperature change is stored and prepared in advance as a drift correction value.

【0006】実際の検査動作時には測定された被検査体
2と基準タンク6の表面温度の差から、その温度差に対
応するドリフト補正値を読み出し、このドリフト補正値
を検査時に測定した差圧値から差し引いて補正し、この
補正された差圧値が規定の範囲内か否かにより洩れの有
無を判定している。
At the time of the actual inspection operation, a drift correction value corresponding to the temperature difference is read from the difference between the surface temperature of the test object 2 and the surface temperature of the reference tank 6 measured, and the drift correction value is measured at the time of inspection. Is subtracted from the correction value, and the presence or absence of leakage is determined based on whether or not the corrected differential pressure value is within a specified range.

【0007】[0007]

【発明が解決しようとする課題】上記したように従来は
被検査体の表面温度を測定し、この表面温度により内部
の空気温度を測定したものとして取り扱っている。従っ
て必ずしも正確な測定値を保証するものではないことは
明らかである。然し乍ら、被検査体の内部の温度変化、
特に空気の加圧時の温度と洩れ検査終了時点の温度との
差を測定することは技術的に極めて難しいことである。
As described above, conventionally, the surface temperature of an object to be inspected is measured, and the inside air temperature is measured based on the surface temperature. Thus, it is clear that accurate measurements are not always guaranteed. However, temperature changes inside the test object,
Particularly, it is technically extremely difficult to measure the difference between the temperature at the time of pressurizing the air and the temperature at the end of the leak test.

【0008】この発明の目的は被検査体に印加した空気
の温度変化を測定する方法と、この温度測定方法を用い
た洩れ検査装置を提案するものである。
An object of the present invention is to propose a method for measuring a temperature change of air applied to an object to be inspected and a leak inspection apparatus using the temperature measuring method.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1で提
示する温度測定方法は上記したの方法で洩れ検査を実
行する洩れ検査装置に適用した温度測定方法を提示する
もので、被検査体に正又は負の空気圧を与えこの空気圧
が一定値を維持するか否かを計測して被検査体に洩れが
有るか否かを検査する洩れ検査装置において、検査体に
空気圧を与える加圧通路及び被検査体に与えた空気圧を
被検査体から排気する排気通路に温度センサを装着し、
この温度センサによって加圧時に与える空気の温度及び
被検査体から排気される空気の温度をそれぞれ測定する
洩れ検査装置の温度測定方法を提案するものである。
According to a first aspect of the present invention, there is provided a temperature measuring method applied to a leakage inspection apparatus for performing a leakage inspection by the above method. In a leak tester for applying a positive or negative air pressure to a test object to measure whether or not this air pressure maintains a constant value and to check whether or not the test object has a leak, a pressurizing passage for applying air pressure to the test object And, a temperature sensor is attached to an exhaust passage for exhausting the air pressure given to the test object from the test object,
The present invention proposes a temperature measuring method of a leak inspection device for measuring the temperature of air given at the time of pressurization and the temperature of air exhausted from an object to be inspected by the temperature sensor.

【0010】この発明による温度測定方法によれば空気
が被検査体の内部に滞在した時間内に受けた空気の温度
変化を実際に測定することができる。従ってこの測定値
を用いることにより、洩れ検査の正しいドリフト補正を
行うことができる。請求項2では請求項1で提案する温
度測定方法を用いた洩れ検査装置を提案するものであ
る。
According to the temperature measuring method of the present invention, it is possible to actually measure the temperature change of the air received during the time when the air stays inside the test object. Therefore, by using this measured value, correct drift correction of the leak inspection can be performed. Claim 2 proposes a leak inspection apparatus using the temperature measurement method proposed in claim 1.

【0011】請求項3では上記したの方法で洩れ検査
を実行する洩れ検査装置の温度測定方法によれば基準タ
ンクを用いることから、この基準タンクに注入されて排
気される空気の温度は環境温度として見ることができ
る。従ってこの場合には被検査体と基準タンクから排気
される空気の温度をそれぞれ測定するだけで、被検査体
に加圧するときの空気の温度と、排気時の空気の温度を
測定できる事になる。
According to a third aspect of the present invention, a reference tank is used according to the temperature measuring method of the leak inspection apparatus for performing the leak inspection by the above method. Therefore, the temperature of the air injected into and exhausted from the reference tank depends on the environmental temperature. Can be seen as Therefore, in this case, it is possible to measure the temperature of the air when the test object is pressurized and the temperature of the air during the discharge only by measuring the temperature of the air exhausted from the test object and the reference tank, respectively. .

【0012】請求項5ではの方法で洩れ検査を実行す
る洩れ検査装置において、被検査体側だけに温度センサ
を設け、この温度センサによって加圧時の空気温度と排
気時の空気温度とを測定する温度測定方法を提案するも
のである。請求項6ではこの請求項5で提案した温度測
定方法を用いた洩れ検査装置を提案するものである。
According to a fifth aspect of the present invention, there is provided a leak inspection apparatus for performing a leak inspection by a method, wherein a temperature sensor is provided only on an object to be inspected, and the temperature sensor measures the air temperature during pressurization and the air temperature during exhaust. It proposes a temperature measurement method. Claim 6 proposes a leak inspection apparatus using the temperature measuring method proposed in claim 5.

【0013】[0013]

【発明の実施の形態】図1にこの発明の請求項1で提案
する洩れ検査装置の温度測定法方と、請求項2で提案す
る洩れ検査装置の実施例を示す。図6と対応する部分に
は同一符号を付し、重複説明は省略するが、この発明の
請求項1で提案する洩れ検査装置の温度測定方法は、空
圧源1から被検査体2に空気圧を印加する加圧通路及び
被検査体に与えられた空気圧を被検査体から排気する排
気通路の双方に温度センサ11を装着する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a method for measuring the temperature of a leakage inspection device proposed in claim 1 of the present invention and an embodiment of a leakage inspection device proposed in claim 2. The parts corresponding to those in FIG. 6 are denoted by the same reference numerals, and the duplicate description is omitted. However, the temperature measuring method of the leak inspection apparatus proposed in claim 1 of the present invention uses an air pressure The temperature sensor 11 is mounted on both the pressurizing passage for applying the pressure and the exhaust passage for exhausting the air pressure given to the test object from the test object.

【0014】図1に示す実施例では遮断弁3と被検査体
2との間を結ぶ配管12に分岐路13を接続し、この分
岐路13に温度測定部14と開閉弁15を接続し、温度
測定部14に温度センサ11を装着し、加圧時に一定時
間開閉弁15を開に制御して加圧時の空気の温度を測定
するとともに、検査終了時点においては開閉弁15を開
に制御して被検査体2から排気される空気の一部(排気
は主に3方電磁弁5で行われる)を温度測定部14を通
じて排気し、被検査体2から排気される空気の温度を1
個の温度センサ11で測定する構造とした場合を示す。
但し、この発明では加圧通路及び排気通路の双方に温度
センサを装着することを特徴とするものであり、2個の
温度センサを用いる構成としてもよい。
In the embodiment shown in FIG. 1, a branch 13 is connected to a pipe 12 connecting the shut-off valve 3 and the device under test 2, and a temperature measuring unit 14 and an on-off valve 15 are connected to this branch 13; The temperature sensor 11 is mounted on the temperature measuring unit 14, and the on-off valve 15 is controlled to be open for a certain period of time during pressurization to measure the temperature of the air at the time of pressurization. Then, a part of the air exhausted from the test object 2 (exhaust is mainly performed by the three-way solenoid valve 5) is exhausted through the temperature measuring unit 14, and the temperature of the air exhausted from the test object 2 is set to 1
This shows a case where the structure is such that measurement is performed by the individual temperature sensors 11.
However, the present invention is characterized in that temperature sensors are attached to both the pressurizing passage and the exhaust passage, and may be configured to use two temperature sensors.

【0015】この温度測定方法を用いて被検査体2の空
気の温度変化を測定した場合の校正方法を以下に説明す
る。つまり、ドリフト補正値を求めるにはまず常温の状
態にある洩れの無い被検査体2を用意し、この被検査体
2を配管12に接続し、この状態で加圧時の空気温度T
0と、排気時の空気温度T1とを測定する。さらに加圧
時に遮断弁3を遮断して一定の平衡時間を経てから一定
時間(数秒程度)経過した時点までの圧力差ΔP1を圧
力計4で測定する。これらの測定により常温における空
気の温度差(断熱圧縮、排気による温度差)ΔT1が、 ΔT1=T1−T0 ………(1) で求められる。
A calibration method when the temperature change of the air of the device under test 2 is measured using this temperature measurement method will be described below. That is, in order to obtain the drift correction value, first, a leak-free test object 2 in a normal temperature state is prepared, and this test object 2 is connected to the pipe 12.
0 and the exhaust air temperature T1 are measured. Further, the pressure difference ΔP1 from the time when a certain time (about several seconds) elapses after a certain equilibrium time after the shutoff valve 3 is shut off during pressurization is measured by the pressure gauge 4. From these measurements, the temperature difference ΔT1 of the air at normal temperature (temperature difference due to adiabatic compression and exhaust) is obtained by ΔT1 = T1−T0 (1).

【0016】次に高温、例えば数10度程度に加熱され
た洩れの無い被検査体2を用意し、この被検査体2を配
管12に接続する。この接続状態で加圧時の空気温度T
0と、排気時の空気温度T2と、遮断弁3を遮断した時
点から一定の平衡時間を経て排気開始までの間の圧力変
化(圧力差ΔP2)をそれぞれ測定する。これらの測定
から高温の被検査体で受ける空気の温度差ΔT2が、 ΔT2=T2−T0 ………(2) で求めることができる。
Next, a leak-free test object 2 heated to a high temperature, for example, about several tens of degrees, is prepared, and this test object 2 is connected to a pipe 12. In this connection state, the air temperature T
0, the air temperature T2 at the time of exhaust, and the pressure change (pressure difference ΔP2) from the time when the shut-off valve 3 is shut off to the start of exhaust after a certain equilibrium time. From these measurements, the temperature difference ΔT2 of the air received by the high-temperature test object can be obtained by ΔT2 = T2−T0 (2).

【0017】次に温度補正係数を求める。2つの条件が
異なる測定により、空気温度と差圧値の違いは、 ΔT2−ΔT1=Δt ………(3) ΔP2−ΔP1=Δp ………(4) これらの値Δt、Δpから温度補正係数Kは K=Δp/Δt ………(5) で求めることができる。
Next, a temperature correction coefficient is obtained. The difference between the air temperature and the differential pressure value obtained by measurement under two different conditions is as follows: ΔT2−ΔT1 = Δt (3) ΔP2−ΔP1 = Δp (4) From these values Δt and Δp, the temperature correction coefficient is obtained. K can be obtained by the following equation: K = Δp / Δt (5)

【0018】この温度補正係数Kが求められることによ
り、実際の洩れ検査時には加圧時の空気温度と排気時の
空気温度の差ΔTを測定することによりドリフト補正値
ΔPを ΔP=K(ΔT−ΔT1) ………(6) で求めることができる。
When the temperature correction coefficient K is obtained, the drift correction value ΔP is determined by measuring the difference ΔT between the air temperature at the time of pressurization and the air temperature at the time of exhaustion at the time of an actual leak test, so that the drift correction value ΔP = K (ΔT− ΔT1)... (6)

【0019】現実的なドリフト補正値ΔPsとしては ΔPs=K(ΔT−ΔT1)+ΔP1 ………(7) となる。従って、予め温度補正係数Kを求めて記憶して
おくことにより、爾後任意の温度の被検査体2の洩れを
検査する場合でも、加圧時の空気温度と排気時の空気温
度の差ΔTを求めることによりドリフト補正値ΔP又は
ΔPsを算出することができる。このようにして求めた
ドリフト補正値は実際に空気の温度を測定して求めた結
果であるから、正確であり、検査精度をたかめることが
できる。
The actual drift correction value ΔPs is as follows: ΔPs = K (ΔT−ΔT1) + ΔP1 (7) Therefore, by previously calculating and storing the temperature correction coefficient K, even when subsequently inspecting the test object 2 for leakage at an arbitrary temperature, the difference ΔT between the air temperature during pressurization and the air temperature during exhaustion can be calculated. By calculating, the drift correction value ΔP or ΔPs can be calculated. Since the drift correction value thus obtained is a result obtained by actually measuring the temperature of the air, the drift correction value is accurate and the inspection accuracy can be increased.

【0020】図1に示した実施例では温度センサ11を
設けるために特別に分岐路13と温度測定部14、開閉
弁15、絞り16とを設けた構成とした場合を示した
が、図2に示すように、配管12の内部に温度センサ1
1を装着することも考えられる。このためには例えば図
3に示すように配管12の途中に接続することができる
分岐管17を用意し、この分岐管17に分岐口17Aを
形成し、この分岐口17Aに絶縁体で形成したセンサ支
持板18をオーリング18Cを介して装着し、分岐口1
7Aを封止すると共に、センサ支持板18の中央に円柱
部18Dを突設し、この円柱部18Dの丁面に温度セン
サ11を搭載し、円柱部18Dの両側に2本の導電端子
18A,18Bを植設し、この2本の導電端子18A,
18Bの先端部分に例えばサーミスタのような温度セン
サ11を半田付して支持させる。この支持位置は加圧及
び排気通路のほぼ軸芯位置の近傍に選定し、加圧時及び
排気時に配管12を通過する空気に温度センサ11が直
接接触し、空気の温度を測定する。
The embodiment shown in FIG. 1 shows a case where the temperature sensor 11 is provided and the branch path 13, the temperature measuring section 14, the on-off valve 15, and the throttle 16 are specially provided. As shown in FIG.
It is also conceivable to attach 1. For this purpose, for example, as shown in FIG. 3, a branch pipe 17 that can be connected in the middle of the pipe 12 is prepared, a branch port 17A is formed in the branch pipe 17, and an insulator is formed in the branch port 17A. Attach the sensor support plate 18 via the O-ring 18C,
7A, a cylindrical portion 18D protrudes from the center of the sensor support plate 18, and the temperature sensor 11 is mounted on the right side of the cylindrical portion 18D. Two conductive terminals 18A and 18A are provided on both sides of the cylindrical portion 18D. 18B, and the two conductive terminals 18A,
A temperature sensor 11 such as, for example, a thermistor is soldered and supported on the tip of 18B. This supporting position is selected near the position of the axis of the pressurizing and exhausting passages, and the temperature sensor 11 directly contacts the air passing through the pipe 12 at the time of pressurizing and exhausting, and measures the temperature of the air.

【0021】図4はこの発明の請求項3及び請求項4で
提案する洩れ検査装置の温度測定法方とこの温度測定法
方を用いた洩れ検査装置の実施例を示す。請求項3で提
案する洩れ検査装置の温度測定法方は上記したの方法
で洩れの有無を検査する洩れ検査装置において加圧時の
空気の温度と排気時の空気の温度を測定する温度測定法
方を提案するものである。
FIG. 4 shows an embodiment of a temperature measuring method of a leak inspection apparatus proposed in claims 3 and 4 of the present invention and a leak inspection apparatus using this temperature measuring method. A method for measuring the temperature of a leak inspection device proposed in claim 3 is a temperature measurement method for measuring the temperature of air at the time of pressurization and the temperature of air at the time of exhaust in a leak inspection device for inspecting the presence or absence of leakage by the above method. The one that suggests.

【0022】図4において、図8と対応する部分には同
一符号を付し、その重複する部分の説明は省略するが、
この発明では被検査体2に加圧空気を供給し、また圧力
変化検出終了時点で被検査体2から排気する空気を通過
させる配管12Aと、基準タンク6に加圧空気と排気さ
れる空気を通過させる配管12Bにそれぞれ分岐路13
A,13Bと、この分岐路13A,13Bの先に温度測
定部14A,14Bを接続し、更に温度測定部14A,
14Bの先に開閉弁15A,15Bと、絞り16A,1
6Bを接続し、温度測定部14A,14Bのそれぞれの
内部に温度センサ11A,11Bを装着して温度測定手
段を構成した場合を示す。
In FIG. 4, portions corresponding to those in FIG. 8 are denoted by the same reference numerals, and the description of the overlapping portions will be omitted.
In the present invention, pressurized air is supplied to the test object 2 and the pipe 12A through which the air exhausted from the test object 2 is passed at the end of the pressure change detection, and the pressurized air and the air exhausted are supplied to the reference tank 6. Each of the branch paths 13
A, 13B and the temperature measuring units 14A, 14B are connected to the ends of the branch paths 13A, 13B.
Opening / closing valves 15A, 15B and throttles 16A, 1 are provided before 14B.
6B are connected, and temperature sensors 11A and 11B are mounted inside the temperature measuring units 14A and 14B to form a temperature measuring unit.

【0023】この構成によれば基準タンク6と被検査体
2から排気される空気の温度は常温下の温度T0とT1
の温度に等しいと見ることができる。従ってこの実施例
では基準タンク6から排気される空気の温度と被検査体
2から排気される空気の温度を測定すれば加圧時の空気
の温度と排気時の空気の温度を測定できることになる。
According to this configuration, the temperature of the air exhausted from the reference tank 6 and the test object 2 is maintained at the normal temperature T0 and T1.
Can be seen as equal to the temperature of Therefore, in this embodiment, if the temperature of the air exhausted from the reference tank 6 and the temperature of the air exhausted from the device under test 2 are measured, the temperature of the air during pressurization and the temperature of the air during exhaust can be measured. .

【0024】従ってこの構造の洩れ検査装置では校正時
でも被検査体2と基準タンク6からの排気される空気の
温度を測定するだけで校正に必要な測定値を求めること
ができる。つまり、校正時には洩れのない常温状態にあ
る被検査体2を用意し、この接続状態で被検査体2と基
準タンク6に空圧源1から空気圧を印加する。印加後、
遮断弁3Aと3Bを閉じ、検査に要する時間(数秒程
度)経過した時点で一定時間開閉弁15A,15Bを開
に制御し、これにより常温下における排気の空気温度T
0とT1が求められる。T0は基準タンク6から排気さ
れる空気の温度とし、T1は被検査体2から排気される
空気の温度とする。この測定により(1)式に示したΔ
T1を求めることができる。また、この排気の開閉時点
で差圧計7に発生する差圧値ΔP1を測定する。排気温
度測定後3方電磁弁5をB−C間を連通させて被検査体
2と基準タンク6から排気させる。
Therefore, in the leak inspection apparatus having this structure, the measured value required for the calibration can be obtained only by measuring the temperature of the air exhausted from the test object 2 and the reference tank 6 even during the calibration. That is, at the time of calibration, the test object 2 in a normal temperature state with no leakage is prepared, and in this connection state, air pressure is applied from the pneumatic source 1 to the test object 2 and the reference tank 6. After applying
The shut-off valves 3A and 3B are closed, and the on-off valves 15A and 15B are controlled to be opened for a certain period of time after the time required for the inspection (about several seconds).
0 and T1 are determined. T0 is the temperature of the air exhausted from the reference tank 6, and T1 is the temperature of the air exhausted from the device under test 2. From this measurement, Δ shown in equation (1)
T1 can be determined. Further, a differential pressure value ΔP1 generated in the differential pressure gauge 7 at the time of opening and closing the exhaust gas is measured. After the measurement of the exhaust gas temperature, the three-way solenoid valve 5 is communicated between B and C to exhaust air from the test object 2 and the reference tank 6.

【0025】次に、高温状態にある洩れのない被検査体
を用意し、この被検査体2を配管12Aに接続し、その
接続状態で被検査体2と基準タンク6に加圧空気を印加
する。遮断弁3A,3Bを閉じ検査に要する時間を経過
した時点で差圧計7に発生する差圧値ΔP2を測定する
と共に、一定時間開閉弁15A,15Bを開に制御し、
温度測定部14A,14Bを通じて大気に排気し、排気
される空気の温度を計測する。その後3方電磁弁5を排
気状態に制御し、被検査体2と基準タンク6から空気を
排気させる。このとき測定される空気の温度は(2)式
に示したT2とT0に相当する。尚、T2は高温状態に
ある被検査体2から排気される空気の温度、T0は基準
タンク6から排気される空気の温度である。
Next, a test object in a high temperature state without leakage is prepared, this test object 2 is connected to the pipe 12A, and pressurized air is applied to the test object 2 and the reference tank 6 in the connected state. I do. At the time when the time required for the inspection has passed after closing the shutoff valves 3A and 3B, the differential pressure value ΔP2 generated in the differential pressure gauge 7 is measured, and the open / close valves 15A and 15B are controlled to be open for a certain period of time.
The air is exhausted to the atmosphere through the temperature measuring units 14A and 14B, and the temperature of the exhausted air is measured. Thereafter, the three-way solenoid valve 5 is controlled to the exhaust state, and the air is exhausted from the test object 2 and the reference tank 6. The temperature of the air measured at this time corresponds to T2 and T0 shown in equation (2). Here, T2 is the temperature of the air exhausted from the test object 2 in the high temperature state, and T0 is the temperature of the air exhausted from the reference tank 6.

【0026】これらの校正動作により(1)式、(2)
式に示したΔT1とΔT2を求めることができ、また測
定した差圧値ΔP1とΔP2により(3)式と(4)式
に示したΔtとΔpを求めることができる。この結果、
(5)式に示した温度補正係数Kを求めることができ
る。温度補正係数Kが求められたことにより、この温度
補正係数Kを記憶させて校正を終了する。
By these calibration operations, the equations (1) and (2)
ΔT1 and ΔT2 shown in the equations can be obtained, and Δt and Δp shown in the equations (3) and (4) can be obtained from the measured differential pressure values ΔP1 and ΔP2. As a result,
The temperature correction coefficient K shown in the equation (5) can be obtained. When the temperature correction coefficient K is obtained, the temperature correction coefficient K is stored, and the calibration is completed.

【0027】温度補正係数Kを記憶することにより、実
際の検査モードでは任意の温度の被検査体2が配管12
に接続されても、排気時に被検査体2と基準タンク6か
ら排気される空気の温度差ΔTを測定することにより
(6)式に示したようにドリフト補正値ΔPを求めるこ
とができる。また、正確を期するためには(7)式に示
したドリフト補正値ΔPsを求めればよい。
By storing the temperature correction coefficient K, the test object 2 having an arbitrary temperature can be connected to the pipe 12 in the actual test mode.
, The drift correction value ΔP can be obtained as shown in Expression (6) by measuring the temperature difference ΔT between the test object 2 and the air exhausted from the reference tank 6 at the time of exhaustion. In order to ensure accuracy, the drift correction value ΔPs shown in the equation (7) may be obtained.

【0028】以上説明したように、基準タンク6を用い
る洩れ検査装置の場合は基準タンク6から排気される空
気の温度を加圧時の空気の温度として取り扱う事ができ
るから、排気時点で被検査体2と基準タンク6から排気
される空気の温度を測定するだけで済む利点が得られ
る。尚、図5は図4に示した実施例の変形実施例を示
す。この実施例では図3に示した分岐管17を用いて排
気時の空気の温度を測定する構成とした場合を示す。
As described above, in the case of the leak inspection apparatus using the reference tank 6, the temperature of the air exhausted from the reference tank 6 can be treated as the temperature of the air at the time of pressurization. The advantage is obtained that only the temperature of the air exhausted from the body 2 and the reference tank 6 needs to be measured. FIG. 5 shows a modification of the embodiment shown in FIG. In this embodiment, a case is shown in which the temperature of air at the time of exhaustion is measured using the branch pipe 17 shown in FIG.

【0029】図6は請求項5及び6で提案する洩れ検査
装置の温度測定方法とこの温度測定方法を用いた洩れ検
査装置の実施例を示す。請求項5及び6で提案する温度
測定方法及び洩れ検査装置は被検査体2と基準タンク6
とを備えた洩れ検査装置において、被検査体2側にのみ
温度センサ11を装着し、この温度センサ11で加圧時
の空気の温度と、排気時の空気の温度を測定する温度測
定方法と、その温度差からドリフト補正値ΔPを求める
構成とした洩れ検査装置を提案するものである。
FIG. 6 shows an embodiment of a temperature measuring method of a leak inspection device proposed in claims 5 and 6, and a leak inspection device using this temperature measuring method. The temperature measuring method and the leakage inspection device proposed in claims 5 and 6 are the inspection object 2 and the reference tank 6.
And a temperature measuring method for measuring the temperature of air at the time of pressurization and the temperature of air at the time of exhaust by using the temperature sensor 11. The present invention proposes a leak inspection apparatus configured to obtain a drift correction value ΔP from the temperature difference.

【0030】この請求項5と6で提案する温度測定方法
及び洩れ検査装置によれば温度センサを1個で済ませる
ことができるから構成を簡素化できる利点が得られる。
According to the temperature measuring method and the leak inspection apparatus proposed in the fifth and sixth aspects, only one temperature sensor can be used, so that the advantage that the configuration can be simplified can be obtained.

【0031】[0031]

【発明の効果】上述したように、この発明によれば被検
査体2から排気される空気の温度を測定したから、被検
査体2の温度による影響を忠実に捕らえることができ
る。この結果、校正値として求めた温度補正係数Kの信
頼性は高く、精度の高いドリフト補正を実現することが
できる。
As described above, according to the present invention, since the temperature of the air exhausted from the device under test 2 is measured, the influence of the temperature of the device under test 2 can be accurately grasped. As a result, the reliability of the temperature correction coefficient K obtained as the calibration value is high, and highly accurate drift correction can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の請求項1と2で提案する洩れ検査装
置の温度測定方法と装置の実施例を説明するための接続
図。
FIG. 1 is a connection diagram for explaining an embodiment of a method and an apparatus for measuring a temperature of a leakage inspection device proposed in claims 1 and 2 of the present invention.

【図2】図1に示した実施例の変形実施例を説明するた
めの接続図。
FIG. 2 is a connection diagram for explaining a modified embodiment of the embodiment shown in FIG. 1;

【図3】図2に示した実施例に用いる温度センサの装着
構造の一例を説明するための断面図。
FIG. 3 is a sectional view for explaining an example of a mounting structure of a temperature sensor used in the embodiment shown in FIG. 2;

【図4】この発明の請求項3と4で提案する洩れ検査装
置の温度測定方法と装置の一実施例を説明するための接
続図。
FIG. 4 is a connection diagram for explaining one embodiment of a method and an apparatus for measuring a temperature of a leakage inspection device proposed in claims 3 and 4 of the present invention.

【図5】図4に示した実施例の変形実施例を説明するた
めの接続図。
FIG. 5 is a connection diagram for explaining a modification of the embodiment shown in FIG. 4;

【図6】この発明の請求項5と6で提案する洩れ検査装
置の温度測定方法と装置の一実施例を説明するための接
続図。
FIG. 6 is a connection diagram for explaining one embodiment of a method and an apparatus for measuring a temperature of a leakage inspection device proposed in claims 5 and 6 of the present invention.

【図7】従来の技術を説明するための接続図。FIG. 7 is a connection diagram for explaining a conventional technique.

【図8】図6と同様の接続図。FIG. 8 is a connection diagram similar to FIG. 6;

【符号の説明】[Explanation of symbols]

1 空圧源 2 被検査体 3,3A,3B 遮断弁 4 圧力計 5 3方電磁弁 6 基準タンク 7 差圧計 11,11A,11B 温度センサ 12,12A,12B 配管 13,13A,13B 分岐路 14,14A,14B 温度測定部 15,15A,15B 開閉弁 16,16A,16B 絞り 17 分岐管 17A 分岐口 DESCRIPTION OF SYMBOLS 1 Pneumatic pressure source 2 Inspection object 3, 3A, 3B Shut-off valve 4 Pressure gauge 5 3-way solenoid valve 6 Reference tank 7 Differential pressure gauge 11, 11A, 11B Temperature sensor 12, 12A, 12B Pipe 13, 13A, 13B Branch path 14 , 14A, 14B Temperature measuring unit 15, 15A, 15B On-off valve 16, 16A, 16B Restrictor 17 Branch pipe 17A Branch port

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検査体に正又は負の空気圧を与え、こ
の空気圧が一定値を維持するか否かを測定して被検査体
に洩れが有るか否かを検査する洩れ検査装置において、 上記被検査体に空気圧を与える加圧通路及び、上記被検
査体に与えた空気圧を被検査体から開放する排気通路に
温度センサを装着し、この温度センサによって加圧時に
上記被検査体に与える空気の温度及び上記被検査体から
開放される空気の温度をそれぞれ測定することを特徴と
する洩れ検査装置の温度測定方法。
1. A leak inspection apparatus for applying a positive or negative air pressure to an object to be inspected and measuring whether or not the air pressure maintains a constant value to inspect whether or not the object to be inspected has a leak. A temperature sensor is mounted on a pressurizing passage for applying air pressure to the object to be inspected and an exhaust passage for releasing the air pressure applied to the object to be inspected from the object to be inspected. A temperature measuring method for a leak inspection apparatus, comprising: measuring a temperature of air and a temperature of air released from the test object.
【請求項2】 請求項1記載の温度測定方法によって測
定した加圧時の空気の温度と、排気時の空気の温度との
差を求め、この温度差によりドリフト補正値を算出し、
このドリフト補正値により上記被検査体の内部における
空気の熱膨張又は収縮による圧力変動成分を除去するこ
とを特徴とする洩れ検査装置。
2. A difference between the temperature of air at the time of pressurization measured by the temperature measuring method according to claim 1 and the temperature of air at the time of exhaustion is calculated, and a drift correction value is calculated based on the temperature difference.
A leak inspection apparatus characterized in that a pressure fluctuation component due to thermal expansion or contraction of air inside the inspection object is removed by the drift correction value.
【請求項3】 被検査体と洩れのない基準タンクとに正
又は負の空気圧を与え、これらの間の空気圧に差が発生
するか否かにより被検査体に洩れが有るか否かを検査す
る洩れ検査装置において、 上記被検査体と基準タンクの空気開放通路に温度センサ
を装着し、上記被検査体と基準タンクから開放される空
気の温度を測定することを特徴とする洩れ検査装置の温
度測定方法。
3. A method for applying a positive or negative air pressure to an object to be inspected and a reference tank having no leakage, and inspecting whether or not the object to be inspected has a leak based on whether or not a difference occurs in the air pressure therebetween. A leak inspection device, wherein a temperature sensor is attached to an air release passage between the test object and the reference tank, and a temperature of air released from the test object and the reference tank is measured. Temperature measurement method.
【請求項4】 請求項3記載の温度測定方法によって測
定した上記被検査体から開放される空気の温度と上記基
準タンクから開放される空気の温度差を求め、この温度
差によりドリフト補正値を算出し、このドリフト補正値
により上記被検査体の内部における上記空気の熱膨張又
は収縮による圧力変動成分を除去することを特徴とする
洩れ検査装置。
4. A difference between the temperature of the air released from the test object and the temperature of the air released from the reference tank measured by the temperature measuring method according to claim 3, and a drift correction value is calculated based on the temperature difference. A leak inspection apparatus that calculates and removes a pressure fluctuation component due to thermal expansion or contraction of the air inside the inspection object by using the drift correction value.
【請求項5】 被検査体と洩れのない基準タンクとに正
又は負の空気圧を与え、これらの間の空気圧に差が発生
するか否かにより被検査体に洩れが有るか否かを検査す
る洩れ検査装置において、 上記被検査体に空気圧を与える加圧通路及び被検査体か
ら空気圧を排気する排気通路に温度センサを装着し、こ
の温度センサによって加圧時に上記被検査体に与える空
気の温度及び上記被検査体から排気される空気の温度を
それぞれ測定することを特徴とする洩れ検査装置の温度
測定方法。
5. A method for applying a positive or negative air pressure to an object to be inspected and a reference tank having no leakage, and inspecting whether or not the object to be inspected has a leak based on whether or not there is a difference in air pressure between them. In a leak inspection apparatus, a temperature sensor is mounted on a pressurized passage for applying air pressure to the object to be inspected and an exhaust passage for exhausting air pressure from the object to be inspected. A temperature measuring method for a leak inspection device, comprising: measuring a temperature and a temperature of air exhausted from the inspection object.
【請求項6】 請求項5記載の温度測定方法によって測
定した上記被検査体に印加する加圧時の空気の温度と、
排気時の空気の温度との差を求め、この温度差によりド
リフト補正値を算出し、このドリフト補正値により上記
被検査体の内部における空気の熱膨張又は収縮による圧
力変動成分を除去することを特徴とする洩れ検査装置。
6. A temperature of air at the time of pressurization applied to the test object measured by the temperature measuring method according to claim 5,
Obtain the difference between the temperature of the air at the time of the exhaust and the temperature difference, calculate the drift correction value based on the temperature difference, and remove the pressure fluctuation component due to the thermal expansion or contraction of the air inside the test object using the drift correction value. Leakage inspection device characterized.
JP10275104A 1998-09-29 1998-09-29 Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method Pending JP2000105165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275104A JP2000105165A (en) 1998-09-29 1998-09-29 Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275104A JP2000105165A (en) 1998-09-29 1998-09-29 Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method

Publications (1)

Publication Number Publication Date
JP2000105165A true JP2000105165A (en) 2000-04-11

Family

ID=17550818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275104A Pending JP2000105165A (en) 1998-09-29 1998-09-29 Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method

Country Status (1)

Country Link
JP (1) JP2000105165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501876A (en) * 2015-01-09 2015-04-08 攀钢集团攀枝花钢铁研究院有限公司 Method for dynamically monitoring air leakage of titanium dioxide production clinker sensible heat recovery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501876A (en) * 2015-01-09 2015-04-08 攀钢集团攀枝花钢铁研究院有限公司 Method for dynamically monitoring air leakage of titanium dioxide production clinker sensible heat recovery system

Similar Documents

Publication Publication Date Title
JP4673918B2 (en) Leak inspection method and leak inspection apparatus using the same
KR102093571B1 (en) Leak test device and method
US4272985A (en) Method of and apparatus for compensating for temperature in leak testing
KR101560145B1 (en) Batch measurement method for gas permeation, penetration damage and mechanical property, apparatus using thereof
JP2004061201A (en) Method and system for leakage test
JP5806462B2 (en) Leak inspection apparatus and method
CN115326303A (en) System and method for testing leakage rate of sealing gasket in high-temperature and high-pressure environment
JP4364218B2 (en) Leak inspection method and leak inspection apparatus
JP2011191157A (en) Leakage inspection device of glove
JP2000105165A (en) Temperature measurement method of leakage inspection device and leakage inspection device for correcting temperature by using the temperature measurement method
JP2008026016A (en) Leak inspection device and method
JP2004198396A (en) Method for obtaining drift value of leak detector, method for obtaining zero-point fluctuation value, method for obtaining humidity correction coefficient, and method for calibrating leakage detector and the leakage detector
JP3186644B2 (en) Gas leak inspection method
JP4087773B2 (en) Leak inspection device calibration method, leak inspection device
JP3751958B2 (en) Leak inspection device calibration method, leak inspection device
JP3422348B2 (en) Leak inspection method and device
JP3382727B2 (en) Leak test equipment
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JPH0240515Y2 (en)
JPH07286928A (en) Helium leak detector
JP2004177275A (en) Method of leak test and device for leak test
JP2017067714A (en) Leakage inspection device and method
JP5340802B2 (en) Leak test apparatus and method
JP2003106923A (en) Method for obtaining drift value of leak inspection device, method for obtaining method for obtaining drift value of leak inspection device, method for obtaining zero point fluctuation value, method for compensating drift of leak inspection device, and leak inspection device
JPH0843241A (en) Leakage measuring method