JP2000104576A - Power transmission device for automobile and control method therefor - Google Patents
Power transmission device for automobile and control method thereforInfo
- Publication number
- JP2000104576A JP2000104576A JP10272898A JP27289898A JP2000104576A JP 2000104576 A JP2000104576 A JP 2000104576A JP 10272898 A JP10272898 A JP 10272898A JP 27289898 A JP27289898 A JP 27289898A JP 2000104576 A JP2000104576 A JP 2000104576A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- control means
- engine
- motor
- output shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title abstract description 9
- 230000008859 change Effects 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101001125854 Homo sapiens Peptidase inhibitor 16 Proteins 0.000 description 1
- 102100029324 Peptidase inhibitor 16 Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/442—Series-parallel switching type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/105—Output torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エンジン,電動モ
ータ及び動力伝達装置から成るパワートレイン系の構造
及びその制御方法に関し、特に大気圧の変動に対応して
も運転者が要求する運転性を実現する動力伝達装置及び
その制御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a power train system including an engine, an electric motor and a power transmission device and a control method thereof, and more particularly, to a drivability required by a driver even in response to a change in atmospheric pressure. The present invention relates to a power transmission device to be realized and a control method thereof.
【0002】[0002]
【従来の技術】運転者が要求する運転性と自動車の実際
の運転性の間に充分な一致感が得られる自動車の動力伝
達装置の公知例として特開平4−19337号公報に記載され
たものがある。2. Description of the Related Art Japanese Unexamined Patent Publication No. 19337/1992 discloses a known example of a vehicle power transmission device which provides a sufficient sense of agreement between the drivability required by the driver and the actual drivability of the vehicle. There is.
【0003】この公報には、自動車のエンジンから出力
されるエンジントルクを制御するエンジントルク制御手
段と、前記エンジントルクと変速機の変速位置の組合せ
から自動車を駆動する駆動軸トルクを制御する駆動軸ト
ルク制御手段と、運転者が要求するトルクに対してエン
ジントルクあるいは駆動軸トルクをもしくはエンジント
ルクと駆動軸トルクの組合せでトルク制御を行うべく前
記エンジントルク制御手段および/あるいは駆動軸トル
ク制御手段を機能させるトルク制御手段とよりなる自動
車の駆動力制御装置が記載されている。This publication discloses an engine torque control means for controlling an engine torque output from an engine of a vehicle, and a drive shaft for controlling a drive shaft torque for driving the vehicle based on a combination of the engine torque and a shift position of a transmission. A torque control means, and the engine torque control means and / or the drive shaft torque control means for performing torque control by engine torque or drive shaft torque or a combination of engine torque and drive shaft torque with respect to the torque requested by the driver. A driving force control device for an automobile, comprising a torque control means to be operated, is described.
【0004】この装置はスロットル全開領域を多用し、
また高変速段を使う頻度が広く、このためエンジン回転
数を低く保てるので、燃費が良い。さらに、変速時に駆
動軸トルクが急変しないようにスロットル開度を制御す
るために、変速時のショックを低減できる。[0004] This device makes heavy use of the throttle fully open area,
In addition, the high gear is frequently used, and the engine speed can be kept low, so that the fuel efficiency is good. Furthermore, since the throttle opening is controlled so that the drive shaft torque does not suddenly change during shifting, shock during shifting can be reduced.
【0005】[0005]
【発明が解決しようとする課題】当該公知例では、高地
走行等で大気圧が通常よりも低くなった場合、エンジン
トルクが下がり、スロットル全開領域付近では前記制御
方式を適用しても効果が薄い。よって、このような運転
状態では運転手の要求するトルクを発生できず運転手は
違和感を覚える。In this known example, when the atmospheric pressure becomes lower than usual during high altitude running or the like, the engine torque decreases, and the effect is small even when the above-described control method is applied in the vicinity of the throttle fully open region. . Therefore, in such a driving state, the torque required by the driver cannot be generated, and the driver feels discomfort.
【0006】本発明は、高地走行等で大気圧が通常より
も低くなりエンジントルクが下がった場合でも、運転手
の要求する駆動軸トルクを発生し、快適な走行を実現す
ることを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to generate a driving shaft torque required by a driver and realize comfortable driving even when the atmospheric pressure is lower than usual and the engine torque is reduced in high altitude running or the like. .
【0007】[0007]
【課題を解決するための手段】自動車のエンジンから出
力されるエンジントルクを制御するエンジントルク制御
手段と、前記エンジントルクと変速機の変速比の組合せ
から求まる出力軸トルクを制御する出力軸トルク制御手
段と、電動モータから出力されるモータトルクを制御す
るモータトルク制御手段と、前記出力軸トルクとモータ
トルクを加算し、駆動軸トルクとして出力する加算手段
と、前記エンジントルク制御手段と前記出力軸トルク制
御手段と前記モータトルク制御手段を機能させるトルク
制御手段と、前記動力伝達装置がさらされている大気圧
を検出する大気圧検出手段と、前記大気圧が変化した場
合、前記トルク制御手段で前記モータトルク制御手段を
機能させ、出力軸トルクの変化を補正するモータトルク
を発生する手段を有する自動車の動力伝達装置である。An engine torque control means for controlling an engine torque output from an automobile engine, and an output shaft torque control for controlling an output shaft torque obtained from a combination of the engine torque and a transmission gear ratio. Means, motor torque control means for controlling the motor torque output from the electric motor, addition means for adding the output shaft torque and the motor torque and outputting the result as drive shaft torque, the engine torque control means and the output shaft A torque control unit that functions as a torque control unit and the motor torque control unit; an atmospheric pressure detection unit that detects an atmospheric pressure to which the power transmission device is exposed; and the torque control unit when the atmospheric pressure changes. Means for generating motor torque for correcting the change in output shaft torque by causing the motor torque control means to function. A power transmission device of an automobile to be.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施例を図面に基
づき詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0009】図1は本発明の一実施例に係るハイブリッ
ド自動車システムの理論的構成図である。少なくともア
クセルペダル踏み込み量αと車速Vspからトルク制御
手段500で目標駆動軸トルクTtarを求める。そし
て実際に自動車を駆動する駆動軸トルクToが目標駆動
軸トルクTtarになるようにエンジントルク制御手段
100,出力軸トルク制御手段200,モータトルク制
御手段300へ指令を出す。この時大気圧検出手段60
0で検出した大気圧Paに応じてトルク指令Teta
r,Tmtarの分配割合と変速指令Sn1,Sn2を決
める。エンジントルク制御手段100は指令Tetar
に応じたエンジントルクTeを出力し、出力軸トルク制
御手段200は変速指令Sn1,Sn2の変速比でエン
ジントルクTeを出力軸トルクTtにする。モータトル
ク制御手段300は指令Tmtarに応じたモータトルクT
mを出力する。加算手段400は出力軸トルクTtとモ
ータトルクTmを加算して駆動軸トルクToとして出力
する。エンジントルクTeとモータトルクTmを加算手
段400で加算し、出力軸トルク制御手段200へ入力
し、出力軸トルクTtを駆動軸トルクToとして用いて
も良い。FIG. 1 is a theoretical configuration diagram of a hybrid vehicle system according to one embodiment of the present invention. A target drive shaft torque Ttar is obtained by the torque control means 500 from at least the accelerator pedal depression amount α and the vehicle speed Vsp. Then, a command is issued to the engine torque control means 100, the output shaft torque control means 200, and the motor torque control means 300 so that the drive shaft torque To that actually drives the vehicle becomes the target drive shaft torque Ttar. At this time, the atmospheric pressure detecting means 60
Torque command Teta according to the atmospheric pressure Pa detected at 0
The distribution ratio of r and Tmtar and the shift commands Sn1 and Sn2 are determined. The engine torque control means 100 receives the command Tetar
And the output shaft torque control means 200 sets the engine torque Te to the output shaft torque Tt at the speed ratio of the shift commands Sn1 and Sn2. The motor torque control means 300 controls the motor torque T according to the command Tmtar.
Output m. The adding means 400 adds the output shaft torque Tt and the motor torque Tm and outputs the result as a drive shaft torque To. The engine torque Te and the motor torque Tm may be added by the adding means 400 and input to the output shaft torque control means 200, and the output shaft torque Tt may be used as the drive shaft torque To.
【0010】図2は本発明の一実施例に係るハイブリッ
ド自動車システムのハードウェア構成図である。図2に
示されているシステムは、エンジン1の出力軸2には、
噛み合い歯車3を有する低速用エンジン側歯車4,噛み
合い歯車5を有する高速用エンジン側歯車6,前記低速
用エンジン側歯車4及び高速用エンジン側歯車6と前記
出力軸2を直結するハブ7及びスリーブ8が設けられて
いる。前記低速用エンジン側歯車4及び高速用エンジン
側歯車6が前記出力軸2の軸方向に移動しないようスト
ッパー(図示しない)が設けられている。前記ハブ7の
内側には、前記出力軸2の複数の溝9と噛み合う溝(図
示しない)が設けてあり、前記ハブ7は前記出力軸2の
軸方向には移動可能になっているが、前記出力軸2の回
転方向への移動は制限される。よって、前記エンジン1
から出力されるトルクは、前記ハブ及びスリーブに伝達
される。前記エンジン1からのトルクを前記低速用エン
ジン側歯車4及び高速用エンジン側歯車6へ伝達するた
めには、前記スリーブ8を前記出力軸2の軸方向に移動
させ、前記噛み合い歯車3あるいは5と前記ハブ7とを
直結する必要がある。前記噛み合い歯車3及び5と前記
ハブ7には、同一の溝が設けてあり、前記スリーブ8の
内側には前記ハブ7に噛み合う溝(図示しない)が設け
てある。前記スリーブ8の移動には、ラック11、ラッ
ク11と噛み合う小歯車12及びステッピングモータ
(1)13から成るリニアアクチュエータが用いられ
る。また、前記スリーブ8の外周部を前記出力軸2の回
転方向にはフリーになっており、前記スリーブ8の回転
に対して回転しないレバー14が設けられている。前記
ハブ7,前記スリーブ8,前記噛み合い歯車3,前記噛
み合い歯車5から成るクラッチ機構をドッグクラッチと
称している。この機構は、前記エンジン1などの動力源
からのエネルギーを高効率でタイヤ10に伝達すること
が可能になり燃費低減が図れる。また、前記ステッピン
グモータ(1)13は、予め設定されたステップ数によ
り回転角度が認識できるため、前記ラック11の移動位
置が判断できる。よって、現在、前記低速用エンジン側
歯車4が使われているか高速用エンジン側歯車6なの
か、あるいは中立位置なのかの判断が可能になる。前記
ステッピングモータの代わりに前記ラックの位置を検出
するセンサと直流モータの組合わせでも上記判断が可能
である。FIG. 2 is a hardware configuration diagram of a hybrid vehicle system according to one embodiment of the present invention. In the system shown in FIG. 2, the output shaft 2 of the engine 1 includes:
A low-speed engine-side gear 4 having a meshing gear 3, a high-speed engine-side gear 6 having a meshing gear 5, a hub 7 and a sleeve directly connecting the low-speed engine-side gear 4 and high-speed engine-side gear 6 to the output shaft 2. 8 are provided. A stopper (not shown) is provided so that the low-speed engine-side gear 4 and the high-speed engine-side gear 6 do not move in the axial direction of the output shaft 2. A groove (not shown) that engages with the plurality of grooves 9 of the output shaft 2 is provided inside the hub 7, and the hub 7 is movable in the axial direction of the output shaft 2. The movement of the output shaft 2 in the rotation direction is restricted. Therefore, the engine 1
Is transmitted to the hub and the sleeve. In order to transmit the torque from the engine 1 to the low-speed engine-side gear 4 and the high-speed engine-side gear 6, the sleeve 8 is moved in the axial direction of the output shaft 2, and the meshing gear 3 or 5 is moved. It is necessary to directly connect to the hub 7. The meshing gears 3 and 5 and the hub 7 have the same groove, and a groove (not shown) that meshes with the hub 7 is provided inside the sleeve 8. To move the sleeve 8, a linear actuator including a rack 11, a small gear 12 meshing with the rack 11, and a stepping motor (1) 13 is used. Further, an outer peripheral portion of the sleeve 8 is free in the rotation direction of the output shaft 2, and a lever 14 that does not rotate with respect to the rotation of the sleeve 8 is provided. A clutch mechanism including the hub 7, the sleeve 8, the meshing gear 3, and the meshing gear 5 is called a dog clutch. This mechanism enables the energy from the power source such as the engine 1 to be transmitted to the tires 10 with high efficiency, thereby reducing fuel consumption. Further, since the rotation angle of the stepping motor (1) 13 can be recognized based on a preset number of steps, the moving position of the rack 11 can be determined. Therefore, it is possible to determine whether the low-speed engine-side gear 4 is currently used, the high-speed engine-side gear 6, or the neutral position. The above determination can be made by a combination of a DC motor and a sensor for detecting the position of the rack instead of the stepping motor.
【0011】上記のクラッチ機構及びリニアアクチュエ
ータは、前記エンジン1の出力軸2と発電機15の出力
軸16との直結のためにも適用される。前記出力軸2に
は、前記出力軸2と一体になって回転する、噛み合い歯
車17を有する前記エンジン1の回転数Ne検出用歯車
18が設けられている。また、前記出力軸16には、前
記出力軸16と一体になって回転し、かつ前記出力軸1
6の軸方向に溝19に沿って移動可能なハブ20と噛み
合い歯車21を有する前記発電機15の回転数Ng検出
用歯車22が設けられている。前記ハブ20の外周には
スリーブ23が設けられている。さらに、前記出力軸2
及び前記出力軸16の間には、スラストベアリング24
が設けられており、前記2つの出力軸の接触による摩擦
抵抗を低減し、かつ軸の芯づれを防止している。リニア
アクチュエータ部は、レバー25,ラック26,小歯車
27及びステッピングモータ(2)28から構成され
る。車両(図示しない)駆動用のモータ29の出力軸3
0には、前記低速用エンジン側歯車4及び前記高速用エ
ンジン側歯車6と噛み合う低速用モータ側歯車31及び
高速用モータ側歯車32が設けられている。前記低速用
モータ側歯車31は、前記モータ29の回転数Nm検出
用としても用いられる。また、前記出力軸30には、最
終減速歯車33が設けられ、前記モータ29のみでの走
行が可能になっている。The above-mentioned clutch mechanism and linear actuator are also applied for directly connecting the output shaft 2 of the engine 1 and the output shaft 16 of the generator 15. The output shaft 2 is provided with a rotation speed Ne detection gear 18 of the engine 1 having a meshing gear 17 that rotates integrally with the output shaft 2. Further, the output shaft 16 rotates integrally with the output shaft 16 and the output shaft 1
6, a gear 22 for detecting the rotational speed Ng of the generator 15 having a meshing gear 21 with a hub 20 movable along the groove 19 in the axial direction. A sleeve 23 is provided on the outer periphery of the hub 20. Further, the output shaft 2
And a thrust bearing 24 between the output shaft 16
Are provided to reduce the frictional resistance due to the contact between the two output shafts and prevent the shafts from being misaligned. The linear actuator section includes a lever 25, a rack 26, a small gear 27, and a stepping motor (2) 28. Output shaft 3 of motor 29 for driving a vehicle (not shown)
0 is provided with a low-speed motor-side gear 31 and a high-speed motor-side gear 32 that mesh with the low-speed engine-side gear 4 and the high-speed engine-side gear 6. The low-speed motor-side gear 31 is also used for detecting the rotation speed Nm of the motor 29. The output shaft 30 is provided with a final reduction gear 33 so that the vehicle can travel only with the motor 29.
【0012】前記エンジン1では、吸気管34に設けら
れた電子制御スロットル35(スロットルバルブ36,
駆動モータ37,スロットルセンサ38から成る)によ
り吸入空気量が制御され、前記空気量に見合う燃料量が
燃料噴射装置39から噴射される。また、前記空気量及
び燃料量から決定される空燃比,エンジン回転数などの
信号から点火時期が決定され、点火装置40により点火
される。前記燃料噴射装置39には、燃料が吸気ポート
に噴射される吸気ポート噴射方式あるいはシリンダ内に
直接噴射される筒内噴射方式があるが、エンジンに要求
される運転域(エンジントルク,エンジン回転数で決定
される領域)を比較して燃費が低減でき、かつ排気性能
が良い方式のエンジンを選択することが望ましい。In the engine 1, an electronically controlled throttle 35 (a throttle valve 36,
The amount of intake air is controlled by a drive motor 37 and a throttle sensor 38), and a fuel amount corresponding to the air amount is injected from the fuel injection device 39. Further, the ignition timing is determined from signals such as the air-fuel ratio and the engine speed determined from the air amount and the fuel amount. The fuel injection device 39 includes an intake port injection system in which fuel is injected into an intake port and an in-cylinder injection system in which fuel is directly injected into a cylinder. It is desirable to select an engine of a type that can reduce fuel consumption and have good exhaust performance.
【0013】次に、前記エンジン1,前記発電機15及
び前記モータ29の制御装置について図3の制御ブロッ
ク図、図4の目標駆動軸トルク特性及び図5の変速指令
特性を用いて説明する。まず、図1のパワートレイン制
御ユニット41には、アクセルペダル踏み込み量α,ブ
レーキ踏力β,大気圧Pa,シフトレバー位置Ii,バ
ッテリー容量Vb,モータ回転検出器42から検出され
た前記モータ29回転数Nm,エンジン回転検出器43
から検出されたエンジン回転数Ne及び発電機回転検出
器44から検出された発電機回転数Ngが入力される。
そして、前記パワートレイン制御ユニット41では前記
エンジン1のトルクが演算され、通信手段であるLAN
によりエンジン制御ユニット45に送信される。前記エ
ンジン制御ユニット45内では、前記エンジントルクを
達成するスロットルバルブ開度,燃料量及び点火時期が
演算され、それぞれのアクチュエータが制御される。ま
た、前記パワートレイン制御ユニット41では、前記モ
ータ29及び前記発電機15のトルク、前記ステッピン
グモータ(1)13及び前記ステッピングモータ(2)
28のステップ数が演算され、それぞれLANによりモ
ータ制御ユニット46に送信され各アクチュエータが制
御される。前記モータ制御ユニット46は前記発電機1
5から得られた電力をバッテリー47に充電したり、前
記モータ29などを駆動するため前記バッテリー47か
ら電力を供給したりする。図3において、前記パワート
レイン制御ユニット41では、まず、処理48で、前記
モータ回転数Nmから車速Vspが関数fにより演算さ
れる。次に、処理49では、前記車速Vsp,アクセル
ペダル踏み込み量α,ブレーキ踏力β,シフトレバー位
置Iiから運転者が意図する目標駆動軸トルクTtar
が演算される。そして、処理50で前記目標駆動軸トル
クTtarと前記車速Vspから変速指令Ssが演算さ
れ、低速用の噛み合い歯車3か高速用の噛み合い歯車6
かが選択される。最後に、処理51で前記目標駆動軸ト
ルクTtar,前記車速Vsp,バッテリー容量Vb,
エンジン回転数Ne及び発電機回転数Ngから各アクチ
ュエータのトルク指令(エンジントルク指令Tetar,
モータトルク指令Tmtar,発電機トルク指令Tgt
ar,ステッピングモータ(1)のステップ数Sn1,
ステッピングモータ(2)のステップ数Sn2が演算さ
れ出力される。この時大気圧Paに応じて変速指令Ss
演算50で変速指令Ss,各アクチュエータトルク&ス
テップ数演算51ではトルク指令Tetar,Tmta
r,Tgtarの分配割合と変速指令Sn1,Sn2を
決める。Next, a control device of the engine 1, the generator 15, and the motor 29 will be described with reference to a control block diagram of FIG. 3, a target drive shaft torque characteristic of FIG. 4, and a shift command characteristic of FIG. First, the power train control unit 41 shown in FIG. 1 includes an accelerator pedal depression amount α, a brake depression force β, an atmospheric pressure Pa, a shift lever position Ii, a battery capacity Vb, and the motor rotation speed detected by the motor rotation detector 42. Nm, engine rotation detector 43
And the generator speed Ng detected from the generator speed detector 44 are input.
In the power train control unit 41, the torque of the engine 1 is calculated, and the LAN as a communication means is calculated.
Is transmitted to the engine control unit 45. In the engine control unit 45, a throttle valve opening, a fuel amount, and an ignition timing for achieving the engine torque are calculated, and respective actuators are controlled. In the power train control unit 41, the torque of the motor 29 and the generator 15, the stepping motor (1) 13 and the stepping motor (2)
The number of steps of 28 is calculated and transmitted to the motor control unit 46 via the LAN to control each actuator. The motor control unit 46 includes the generator 1
The power obtained from the battery 5 is charged into the battery 47, and power is supplied from the battery 47 to drive the motor 29 and the like. In FIG. 3, in the power train control unit 41, first, in a process 48, a vehicle speed Vsp is calculated by a function f from the motor rotation speed Nm. Next, in a process 49, the target drive shaft torque Ttar intended by the driver is determined from the vehicle speed Vsp, the accelerator pedal depression amount α, the brake depression force β, and the shift lever position Ii.
Is calculated. In a process 50, a shift command Ss is calculated from the target drive shaft torque Ttar and the vehicle speed Vsp, and the low-speed meshing gear 3 or the high-speed meshing gear 6 is calculated.
Is selected. Finally, in a process 51, the target drive shaft torque Ttar, the vehicle speed Vsp, the battery capacity Vb,
From the engine speed Ne and the generator speed Ng, a torque command (engine torque command Tetar,
Motor torque command Tmtar, generator torque command Tgt
ar, the number of steps Sn1, of the stepping motor (1)
The number of steps Sn2 of the stepping motor (2) is calculated and output. At this time, the shift command Ss is set according to the atmospheric pressure Pa.
In the calculation 50, the speed change command Ss, and in each actuator torque & step number calculation 51, the torque commands Tetar, Tmta
The distribution ratio of r and Tgtar and the shift commands Sn1 and Sn2 are determined.
【0014】図4において、横軸は前記車速Vsp,縦
軸は前記目標駆動軸トルクTtarである。前記2つの
軸の交点より上側が前記駆動軸トルクTtarが正、下
側が負を表わす。また、前記交点より右側が前進,左側
が後退を表わす。実線が前記アクセルペダル踏み込み量
α(%表示),斜線がブレーキ踏力βである。前記アク
セルペダル踏み込み量αの%が大きいほど運転者は大き
な加速感を要求するため前記目標駆動軸トルクTtar
が大きくなる。ここで、後退の場合は、前進走行ほど車
速を上昇させる必要がないため、前記目標駆動軸トルク
Ttarが小さくなっている。前記ブレーキ踏力βは図
3の下に行くほど大きな値を示し、運転者が大きな減速
度を要求していることを示している。また、前記アクセ
ルペダル踏み込み量αが0%の低車速では、トルクコン
バータ使用時のストールトルク発生を模擬するように前
記目標駆動軸トルクTtarを正にし前記モータ29の
トルクを発生する。In FIG. 4, the horizontal axis represents the vehicle speed Vsp, and the vertical axis represents the target drive shaft torque Ttar. Above the intersection of the two shafts, the drive shaft torque Ttar is positive, and below is the negative. The right side of the intersection represents forward movement, and the left side represents backward movement. The solid line is the accelerator pedal depression amount α (indicated in%), and the hatched line is the brake depression force β. The greater the% of the accelerator pedal depression amount α, the greater the driver demands a feeling of acceleration, so the target drive shaft torque Ttar
Becomes larger. Here, in the case of retreat, the target drive shaft torque Ttar is small because the vehicle speed does not need to be increased as much as the forward traveling. The brake depression force β shows a larger value toward the bottom of FIG. 3, indicating that the driver is requesting a large deceleration. At a low vehicle speed where the accelerator pedal depression amount α is 0%, the target drive shaft torque Ttar is made positive to generate the torque of the motor 29 so as to simulate the generation of stall torque when the torque converter is used.
【0015】次に、前記エンジン1と前記モータ2の適
用運転域について説明する。網掛け領域がモータ駆動
域、斜線領域がエンジン駆動域である。通常、前記エン
ジン1及び前記モータ2の小型・軽量化及び高効率運転
による燃費低減の点で前記前進,後退時の前記目標駆動
軸トルクTtarが小さい領域では、前記モータ2のみ
の駆動する必要がある。また、前記目標駆動軸トルクT
tarが負の場合は、前記モータ2による回生運転を実
行し、運転者が要求する減速度とエネルギー回収による
燃費低減を両立させる。Next, the applicable operating range of the engine 1 and the motor 2 will be described. The shaded area is the motor drive area, and the shaded area is the engine drive area. Normally, in a region where the target drive shaft torque Ttar at the time of the forward and backward movements is small in terms of reducing the size and weight of the engine 1 and the motor 2 and reducing fuel consumption by high-efficiency operation, it is necessary to drive only the motor 2. is there. Further, the target drive shaft torque T
When tar is negative, the regenerative operation by the motor 2 is executed to achieve both the deceleration required by the driver and the reduction in fuel consumption by energy recovery.
【0016】図5から図9の図面を用いて、図2に示し
たシステム構成の動作原理を説明する。図5にエンジン
トルクマップ、図6にモータトルク制御無しでの平地と
高地での駆動軸トルク比較タイムチャート、図7に高地
でのモータトルク制御有りと無しでの駆動軸トルク比較
タイムチャート、図8に変速比制御無しでの平地と高地
での駆動軸トルク比較タイムチャート、図9に高地での
変速比制御有りと無しでの駆動軸トルク比較タイムチャ
ートを示す。図5での条件はスロットル開度TVOが全
開WOTで、平地(大気圧が通常)と高地(大気圧が通
常より低い)場合である。大気圧の低い場所では大気圧
とエンジンシリンダ内の圧力差が少なく、空気密度も低
いためエンジントルクTeは低くなる。特にエンジン回
転数NeがNeL1のように高回転の場合にTe1から
Te2と激しく落ち込む。The principle of operation of the system configuration shown in FIG. 2 will be described with reference to FIGS. FIG. 5 shows an engine torque map, FIG. 6 shows a drive shaft torque comparison time chart without motor torque control between flat and high altitudes, and FIG. 7 shows a drive shaft torque comparison time chart with and without motor torque control at high altitude. 8 shows a drive shaft torque comparison time chart between flat ground and high altitude without speed ratio control, and FIG. 9 shows a drive shaft torque comparison time chart with and without speed ratio control at high altitude. The condition in FIG. 5 is a case where the throttle opening TVO is a fully open WOT and the flat ground (the atmospheric pressure is normal) and the high ground (the atmospheric pressure is lower than normal). At a place where the atmospheric pressure is low, the difference between the atmospheric pressure and the pressure in the engine cylinder is small, and the air density is low, so that the engine torque Te is low. In particular, when the engine speed Ne is high, such as NeL1, the engine speed drops sharply from Te1 to Te2.
【0017】図6にモータトルク制御無しでの平地と高
地での駆動軸トルク比較タイムチャートを示す。高地で
モータトルクTmを補正せずに走行すると、エンジント
ルクTeが低下しているので駆動軸トルクToは目標駆
動軸トルクTtarより低くなり、運転者の要求する運
転性を満足できない。そこで図3の各アクチュエータト
ルク&ステップ数演算51でモータトルク指令Tmta
rを大気圧Paにより求めたエンジントルクTeの低下
に応じて増加する。このモータトルク制御の有りと無し
での駆動軸トルク比較タイムチャートを図7に示す。モ
ータトルク制御をすることにより大気圧が通常より低い
場所でも目標駆動軸トルクTtarに追従した駆動軸ト
ルクToが出力でき、運転者の要求を満足する運転性を
実現できる。FIG. 6 is a time chart for comparing the drive shaft torque between flat ground and highland without motor torque control. When the vehicle travels at a high altitude without correcting the motor torque Tm, the drive shaft torque To becomes lower than the target drive shaft torque Ttar because the engine torque Te is reduced, and the driving performance required by the driver cannot be satisfied. Therefore, the motor torque command Tmta is calculated in each actuator torque & step number calculation 51 of FIG.
r increases as the engine torque Te obtained from the atmospheric pressure Pa decreases. FIG. 7 shows a drive shaft torque comparison time chart with and without the motor torque control. By performing the motor torque control, the drive shaft torque To that follows the target drive shaft torque Ttar can be output even in a place where the atmospheric pressure is lower than normal, and drivability that satisfies the driver's requirements can be realized.
【0018】また、図5からわかるように高地ではエン
ジン回転数Neを高回転で運転し続けるとエンジントル
クTeの低い領域で長時間走行することになり燃費が平
地以上に悪化する。例えば、図8のように変速をする運
転状態では変速点が一定の場合、高地では高回転でも車
速が上がりにくいので高回転での運転時間が長くなり、
エンジントルクTeの低い領域で走行することになり燃
費が平地以上に悪化する。そこで図9のようにエンジン
回転数NeをNeL2以上にはしないようにリミッタを
設け、図3の変速指令Ss演算50で変速比を決めるよ
うにする。このようにすることによりエンジントルクT
eが低い領域を使わないので燃費が良い。エンジン回転
数の替わりに車速Vspをリミッタとして用いても良
い。また、この時目標駆動軸トルクTtarに足らない
トルクは図7で示したようにモータトルク制御を用い、
モータトルクTmを増加し補正する。この変速比制御と
モータトルク制御を併用することにより、エンジントル
クTeが高トルクの領域が使えるので、モータトルクT
mの補正分も少なくてすむ。Further, as can be seen from FIG. 5, when the engine is continuously driven at a high engine speed Ne at a high altitude, the vehicle travels for a long time in an area where the engine torque Te is low, and the fuel efficiency is worse than that on a flat ground. For example, when the shift point is constant in a driving state in which a shift is performed as shown in FIG. 8, the driving time at a high rotation becomes longer because the vehicle speed hardly increases even at a high rotation at a high altitude,
Since the vehicle travels in a region where the engine torque Te is low, the fuel efficiency is worse than that of a flat ground. Therefore, as shown in FIG. 9, a limiter is provided so that the engine speed Ne does not exceed NeL2, and the gear ratio is determined by the gear shift command Ss calculation 50 in FIG. By doing so, the engine torque T
Fuel efficiency is good because a region with low e is not used. The vehicle speed Vsp may be used as a limiter instead of the engine speed. At this time, the torque that is less than the target drive shaft torque Ttar is determined by using the motor torque control as shown in FIG.
The motor torque Tm is increased and corrected. By using the speed ratio control and the motor torque control together, a region where the engine torque Te is high can be used.
The amount of correction of m is also small.
【0019】また、図10のようなハイブリッド車でな
い構成の自動車でも図8,図9で示したように変速比制
御は有効である。The gear ratio control is effective even in a vehicle having a configuration other than the hybrid vehicle as shown in FIG. 10, as shown in FIGS.
【0020】図11は本発明の一実施例に係るハイブリ
ッド自動車システムの理論的構成図である。少なくとも
アクセルペダル踏み込み量αと車速Vspからトルク制
御手段500で目標駆動軸トルクTtarを求める。そ
して実際に自動車を駆動する駆動軸トルクToが目標駆
動軸トルクTtarになるようにエンジントルク制御手
段100,出力軸トルク制御手段200,モータトルク
制御手段300へ指令を出す。この時エンジントルク検
出手段700で目標エンジントルクTetarとエンジ
ントルクTeを比較し、モータトルク制御手段300へ
指令を出す。エンジントルクTeが目標エンジントルク
Tetarよりも小さい場合はその差を補うような補正
モータトルクTmtar1をモータトルク制御手段30
0へ指令を出す。エンジントルクTeは出力軸トルクT
tから求めたものを使用しても良い。モータトルク制御
手段300は目標モータトルクTmtarと補正モータ
トルクTmtar1を加算したトルクに応じたモータト
ルクTmを出力する。加算手段400は出力軸トルクT
tとモータトルクTmを加算して駆動軸トルクToとし
て出力する。エンジントルク手段700で求めた補正モ
ータトルクTmtarをトルク制御手段500へ渡し、それ
を考慮した目標モータトルクTmtarをモータトルク
制御手段300へ指令として出してもよい。また、エン
ジントルクTeとモータトルクTmを加算手段400で
加算し、出力軸トルク制御手段200へ入力し、出力軸ト
ルクTtを駆動軸トルクToとして用いても良い。FIG. 11 is a theoretical configuration diagram of a hybrid vehicle system according to one embodiment of the present invention. A target drive shaft torque Ttar is obtained by the torque control means 500 from at least the accelerator pedal depression amount α and the vehicle speed Vsp. Then, a command is issued to the engine torque control means 100, the output shaft torque control means 200, and the motor torque control means 300 so that the drive shaft torque To that actually drives the vehicle becomes the target drive shaft torque Ttar. At this time, the engine torque detecting means 700 compares the target engine torque Tetar with the engine torque Te, and issues a command to the motor torque control means 300. When the engine torque Te is smaller than the target engine torque Tetar, the motor torque control means 30 supplies a corrected motor torque Tmtar1 to make up for the difference.
Send a command to 0. The engine torque Te is the output shaft torque T
The value obtained from t may be used. The motor torque control means 300 outputs a motor torque Tm corresponding to a torque obtained by adding the target motor torque Tmtar and the corrected motor torque Tmtar1. The adding means 400 outputs the output shaft torque T
t and the motor torque Tm are added and output as the drive shaft torque To. The corrected motor torque Tmtar obtained by the engine torque means 700 may be transferred to the torque control means 500, and a target motor torque Tmtar considering the corrected motor torque Tmtar may be output to the motor torque control means 300 as a command. Further, the engine torque Te and the motor torque Tm may be added by the adding means 400, input to the output shaft torque control means 200, and the output shaft torque Tt may be used as the drive shaft torque To.
【0021】[0021]
【発明の効果】本発明によれば、高地走行等で大気圧が
通常よりも低くなりエンジントルクが下がった場合で
も、運転手の要求する駆動軸トルクを発生し、快適な走
行を実現することが可能である。According to the present invention, even when the atmospheric pressure is lower than usual and the engine torque is reduced in high altitude running or the like, the driving shaft torque required by the driver is generated, and comfortable running is realized. Is possible.
【図1】本発明の一実施形態をなすハイブリッド自動車
のブロック構成図を示す。FIG. 1 is a block diagram showing a hybrid vehicle according to an embodiment of the present invention.
【図2】図1の機構図を示す。FIG. 2 shows a mechanism diagram of FIG. 1;
【図3】図1の制御ブロック図を示す。FIG. 3 shows a control block diagram of FIG.
【図4】目標駆動軸トルク特性の一例を示す。FIG. 4 shows an example of a target drive shaft torque characteristic.
【図5】変速指令特性の一例を示す。FIG. 5 shows an example of a shift command characteristic.
【図6】モータトルク制御無しでの駆動軸トルク比較タ
イムチャート例を示す。FIG. 6 shows an example of a drive shaft torque comparison time chart without motor torque control.
【図7】モータトルク制御有りでの駆動軸トルク比較タ
イムチャート例を示す。FIG. 7 shows an example of a drive shaft torque comparison time chart with motor torque control.
【図8】変速制御無しでの駆動軸トルク比較タイムチャ
ート例を示す。FIG. 8 shows an example of a drive shaft torque comparison time chart without gear shift control.
【図9】高地での変速比制御有りと無しでの駆動軸トル
ク比較タイムチャート例を示す。FIG. 9 shows an example of a drive shaft torque comparison time chart with and without gear ratio control at high altitude.
【図10】ハイブリッド車以外の実施例を示す。FIG. 10 shows an embodiment other than a hybrid vehicle.
【図11】ハイブリッド自動車システムの理論的構成図
の例を示す。FIG. 11 shows an example of a theoretical configuration diagram of a hybrid vehicle system.
1…エンジン、3,5…噛み合い歯車、4…低速用エン
ジン側歯車、6…高速用エンジン側歯車、7…ハブ、8
…スリーブ、11…ラック、12…小歯車、13…ステ
ッピングモータ、15…発電機、29…モータ、41…
パワートレイン制御ユニット、45…エンジン制御ユニ
ット、46…モータ制御ユニット、47…バッテリー、
100…エンジントルク制御手段、200…出力軸トル
ク制御手段、300…モータトルク制御手段、400…
加算手段、500…トルク制御手段、600…大気圧検
出手段。DESCRIPTION OF SYMBOLS 1 ... Engine, 3, 5 ... Intermeshing gear, 4 ... Low speed engine side gear, 6 ... High speed engine side gear, 7 ... Hub, 8
... Sleeve, 11 ... Rack, 12 ... Small gear, 13 ... Stepping motor, 15 ... Generator, 29 ... Motor, 41 ...
Power train control unit, 45 ... engine control unit, 46 ... motor control unit, 47 ... battery,
100: engine torque control means, 200: output shaft torque control means, 300: motor torque control means, 400:
Addition means, 500: torque control means, 600: atmospheric pressure detection means.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 印南 敏之 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 門向 裕三 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 箕輪 利通 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3G093 AA07 DA01 DA06 DB01 DB05 DB08 DB11 DB15 EA02 EA05 EA09 EA13 EB02 EB03 EB08 FA05 FA07 FA10 5H115 PG04 PI16 PI22 PI29 PO17 PU01 PU24 PU25 QI04 RB08 RE03 SE05 SE08 TB01 TE02 TE03 TO21 TO23 TO30 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiyuki Inami 502, Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. (72) Inventor Yuzo Monmuki 502, Kandate-cho, Tsuchiura-shi, Ibaraki, Japan Inside the Machinery Research Laboratory (72) Inventor Toshimichi Minowa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in the Hitachi Research Laboratory, Hitachi Ltd. 3G093 AA07 DA01 DA06 DB01 DB05 DB08 DB11 DB15 EA02 EA05 EA09 EA13 EB02 EB03 EB08 FA05 FA07 FA10 5H115 PG04 PI16 PI22 PI29 PO17 PU01 PU24 PU25 QI04 RB08 RE03 SE05 SE08 TB01 TE02 TE03 TO21 TO23 TO30
Claims (5)
トルクを制御するエンジントルク制御手段と、前記エン
ジントルクと変速機の変速比の組合せから求まる出力軸
トルクを制御する出力軸トルク制御手段と、電動モータ
から出力されるモータトルクを制御するモータトルク制
御手段と、前記出力軸トルクとモータトルクを加算し、
駆動軸トルクとして出力する加算手段と、前記エンジン
トルク制御手段と前記出力軸トルク制御手段と前記モー
タトルク制御手段を機能させるトルク制御手段と、前記
動力伝達装置がさらされている大気圧を検出する大気圧
検出手段と、前記大気圧が変化した場合、前記トルク制
御手段で前記モータトルク制御手段を機能させ、出力軸
トルクの変化を補正するモータトルクを発生する手段と
を有する自動車の動力伝達装置。1. An engine torque control means for controlling an engine torque output from an automobile engine; an output shaft torque control means for controlling an output shaft torque obtained from a combination of the engine torque and a transmission gear ratio; Motor torque control means for controlling the motor torque output from the motor, and adding the output shaft torque and the motor torque,
Adding means for outputting as drive shaft torque; torque control means for causing the engine torque control means, the output shaft torque control means and the motor torque control means to function; and detecting an atmospheric pressure to which the power transmission device is exposed. A power transmission device for an automobile, comprising: an atmospheric pressure detecting unit; and a unit that, when the atmospheric pressure changes, causes the torque control unit to function the motor torque control unit and generates a motor torque for correcting a change in output shaft torque. .
段は大気圧に応じてエンジントルクが最大となる変速比
を選択する自動車の動力伝達装置。2. A power transmission system for an automobile according to claim 1, wherein said torque control means selects a gear ratio that maximizes an engine torque according to an atmospheric pressure.
段は大気圧とエンジントルクと変速比の関係のデータ及
び関数を有する自動車の動力伝達装置。3. A power transmission system for an automobile according to claim 1, wherein said torque control means has data and a function of a relationship between an atmospheric pressure, an engine torque and a gear ratio.
トルクを制御するエンジントルク制御手段と、前記エン
ジントルクと変速機の変速比の組合せから求まる出力軸
トルクを制御する出力軸トルク制御手段と、前記エンジ
ントルク制御手段と前記出力軸トルク制御手段を機能さ
せるトルク制御手段と、前記動力伝達装置がさらされて
いる大気圧を検出する大気圧検出手段と、前記大気圧が
変化した場合、大気圧に応じてエンジントルクが最大と
なる変速比を選択する手段とを有する自動車の動力伝達
装置。4. An engine torque control means for controlling an engine torque output from an automobile engine; an output shaft torque control means for controlling an output shaft torque obtained from a combination of the engine torque and a transmission gear ratio; Torque control means for functioning the engine torque control means and the output shaft torque control means; atmospheric pressure detection means for detecting the atmospheric pressure to which the power transmission device is exposed; and Means for selecting a gear ratio that maximizes the engine torque in response to the request.
トルクを制御するエンジントルク制御手段と、前記エン
ジントルクと変速機の変速比の組合せから求まる出力軸
トルクを制御する出力軸トルク制御手段と、電動モータ
から出力されるモータトルクを制御するモータトルク制
御手段と、前記出力軸トルクとモータトルクを加算し、
駆動軸トルクとして出力する加算手段と、前記エンジン
トルク制御手段と前記出力軸トルク制御手段と前記モー
タトルク制御手段を機能させるトルク制御手段と、前記
トルク制御手段のエンジントルク出力指令と実際のエン
ジントルクを比較するエンジントルク比較手段と、前記
エンジントルク比較手段の比較結果に応じて前記モータ
トルク制御手段を機能させ、出力軸トルクの変化を補正
するモータトルクを発生する手段とを有する自動車の動
力伝達装置。5. An engine torque control means for controlling an engine torque output from an automobile engine; an output shaft torque control means for controlling an output shaft torque obtained from a combination of the engine torque and a transmission gear ratio; Motor torque control means for controlling the motor torque output from the motor, and adding the output shaft torque and the motor torque,
Adding means for outputting as drive shaft torque; torque control means for causing the engine torque control means, the output shaft torque control means and the motor torque control means to function; an engine torque output command of the torque control means and an actual engine torque Power transmission of an automobile, comprising: engine torque comparing means for comparing the motor torque control means, and means for generating motor torque for correcting a change in output shaft torque by causing the motor torque control means to function according to the comparison result of the engine torque comparing means. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10272898A JP2000104576A (en) | 1998-09-28 | 1998-09-28 | Power transmission device for automobile and control method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10272898A JP2000104576A (en) | 1998-09-28 | 1998-09-28 | Power transmission device for automobile and control method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000104576A true JP2000104576A (en) | 2000-04-11 |
Family
ID=17520305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10272898A Pending JP2000104576A (en) | 1998-09-28 | 1998-09-28 | Power transmission device for automobile and control method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000104576A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100373038B1 (en) * | 2000-11-30 | 2003-02-15 | 현대자동차주식회사 | Method for controlling kick down at high ground of automatic transmission |
JP2009220765A (en) * | 2008-03-18 | 2009-10-01 | Toyota Motor Corp | Control device for hybrid vehicle |
JP2014234047A (en) * | 2013-05-31 | 2014-12-15 | 富士重工業株式会社 | Vehicle control device |
JP2015171318A (en) * | 2014-03-04 | 2015-09-28 | ゼネラル・エレクトリック・カンパニイ | System and method for controlling energy usage |
-
1998
- 1998-09-28 JP JP10272898A patent/JP2000104576A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100373038B1 (en) * | 2000-11-30 | 2003-02-15 | 현대자동차주식회사 | Method for controlling kick down at high ground of automatic transmission |
JP2009220765A (en) * | 2008-03-18 | 2009-10-01 | Toyota Motor Corp | Control device for hybrid vehicle |
JP2014234047A (en) * | 2013-05-31 | 2014-12-15 | 富士重工業株式会社 | Vehicle control device |
JP2015171318A (en) * | 2014-03-04 | 2015-09-28 | ゼネラル・エレクトリック・カンパニイ | System and method for controlling energy usage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3336951B2 (en) | Automotive power transmission | |
US6932176B2 (en) | Control system for hybrid vehicle | |
US7228926B2 (en) | Apparatus for controlling hybrid vehicle | |
US7498757B2 (en) | Control device for a hybrid electric vehicle | |
US7434641B2 (en) | Control apparatus of hybrid vehicle | |
US5376869A (en) | Electric vehicle drive train with rollback detection and compensation | |
US6299563B1 (en) | Control system for hybrid vehicle | |
US7877184B2 (en) | Control apparatus and control method for hybrid vehicle | |
US6315068B1 (en) | Drive control system for hybrid vehicles | |
JP2006076566A (en) | Device and method for controlling and regulating component of hybrid power train in automobile | |
US8160763B2 (en) | Method and apparatus for controlling creep torque in a vehicle equipped with a hybrid powertrain system | |
US20100063704A1 (en) | Hybrid electric vehicle powertrain with enhanced reverse drive performance | |
US20080215201A1 (en) | Method for Controlling a Hybrid Electric Vehicle Powertrain with Divided Power Flow Paths | |
US8210985B2 (en) | Vehicular power transmission control apparatus | |
US20150210262A1 (en) | Method and apparatus for controlling a torque converter clutch in a multi-mode powertrain system | |
US20100036574A1 (en) | Controlling a Throttle for Fuel Cut Acquisition | |
WO2008026480A1 (en) | Drive source control device for vehicle | |
JP2000104576A (en) | Power transmission device for automobile and control method therefor | |
US11807237B2 (en) | Vehicle control system | |
JP4830987B2 (en) | Braking / driving force control device | |
JP3552708B2 (en) | Power transmission device for hybrid vehicle | |
JP2020040449A (en) | Control device of hybrid vehicle | |
JP2000245011A (en) | Controller for hybrid automobile | |
JP3552707B2 (en) | Power transmission device for hybrid vehicle | |
CN111717188A (en) | Control method of driving motor, related device and related system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |