JP2000103610A - Production of carbon powder and carbonaceous material - Google Patents

Production of carbon powder and carbonaceous material

Info

Publication number
JP2000103610A
JP2000103610A JP10277601A JP27760198A JP2000103610A JP 2000103610 A JP2000103610 A JP 2000103610A JP 10277601 A JP10277601 A JP 10277601A JP 27760198 A JP27760198 A JP 27760198A JP 2000103610 A JP2000103610 A JP 2000103610A
Authority
JP
Japan
Prior art keywords
carbon powder
producing
thermosetting resin
carbon
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10277601A
Other languages
Japanese (ja)
Inventor
Tsutomu Masuko
努 増子
Tatsuya Inada
達也 稲田
Yuichi Kamijo
祐一 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10277601A priority Critical patent/JP2000103610A/en
Publication of JP2000103610A publication Critical patent/JP2000103610A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a carbon powder useful as a polarizing electrode excellent in capacity characteristics of a capacitor by adding a thermally volatile substance capable of generating a gas at a specific temperature and a foaming agent to a thermosetting resin, foaming the thermosetting resin baking the resultant foam in a nonoxidizing atmosphere and pulverizing the baked resin. SOLUTION: A thermally volatile substance capable of generating a gas at a temperature in the region of 150-400 deg.C and a foaming agent are added to a thermosetting resin comprising a resol type phenol resin. Polyethylene, polypropylene etc., are used as the thermally volatile substance and the ratio thereof based on the thermosetting resin (solid content) is 5-50 wt.%. Trichloromonofluoromethane, etc., are used as the foaming agent in an amount of about 5-50 pts.wt. based on 100 pts.wt. of the thermosetting resin (solid content). The resultant mixture is then molded, foamed and cured at about 60-90 deg.C baked at 550-900 deg.C in a nonoxidizing atmosphere and subsequently pulverized. Thereby, a carbon powder having 2-20 μm average particle diameter and 200-800 m2/g specific surface area is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカーボン粉末、この
カーボン粉末を用いた分極性電極等の炭素材料の製造法
に関する。分極性電極は電極表面と電解液との界面に形
成される電気二重層を利用したコンデンサ、二次電池、
エレクトロクロミックディスプレイ等に利用されるもの
である。
The present invention relates to a method for producing a carbon material such as a carbon powder and a polarizable electrode using the carbon powder. Polarizing electrodes are capacitors, secondary batteries, and electric double layers formed at the interface between the electrode surface and the electrolyte.
It is used for electrochromic displays and the like.

【0002】[0002]

【従来の技術】電気二重層コンデンサを例にとり、その
基本構成を図1 に示す。図において1は電解液を含む分
極性電極であり, 一対の電極間は電気絶縁性でイオン透
過性のセパレータ2で仕切られている。そして分極性電
極1の周辺は封止材3で密閉されて一単位のコンデンサ
(単セル)が構成される。そしてこの単セルは不浸透、
且つ導電性の集電板4を介して多数積層されて使用に供
される。この種の大容量電気二重層コンデンサはキャパ
シタとも呼ばれている。電気二重層コンデンサは電解液
の種類により、大きく2つのタイプに分けられる。1つ
は硫酸水溶液を電解質としたもので、一般に水系キャパ
シタもしくは硫酸系キャパシタなどと呼ばれる。もう1
つのタイプは有機系キャパシタと呼ばれるもので第四ア
ンモニウム塩/プロピレンカーボネート溶液などが電解
液として使われている。電気二重層コンデンサ等に使用
される分極性電極( 以下単に「 電極」 と云う) は単位
体積、単位重量あたりの静電容量(以下「容量」とい
う)を大きくするために表面積がある程度大きい必要が
あることから、活性炭粉末や活性炭素繊維などが多く使
用されている。
2. Description of the Related Art The basic structure of an electric double layer capacitor is shown in FIG. In the figure, reference numeral 1 denotes a polarizable electrode containing an electrolytic solution, and a pair of electrodes is separated by an electrically insulating and ion-permeable separator 2. The periphery of the polarizable electrode 1 is hermetically sealed with a sealing material 3 to form one unit of capacitor (single cell). And this single cell is impervious,
In addition, a large number of them are stacked via the conductive current collecting plate 4 and used for use. This type of large-capacity electric double-layer capacitor is also called a capacitor. Electric double layer capacitors are roughly classified into two types depending on the type of electrolyte. One type uses an aqueous solution of sulfuric acid as an electrolyte, and is generally called an aqueous capacitor or a sulfuric acid-based capacitor. Another one
One type is called an organic capacitor, and a quaternary ammonium salt / propylene carbonate solution or the like is used as an electrolyte. Polarizable electrodes (hereinafter simply referred to as "electrodes") used in electric double-layer capacitors, etc., need to have a certain surface area to increase the capacitance per unit volume and unit weight (hereinafter referred to as "capacity"). For this reason, activated carbon powder, activated carbon fiber and the like are often used.

【0003】電極用活性炭としては椰子殻、大鋸屑、フ
ェノール樹脂、ポリ塩化ビニリデン樹脂等を出発原料と
する活性炭等が使われており、その電極の形態には次の
様なものがある。 硫酸水溶液で活性炭粉末をペースト状とした電極
(特開昭62−130506、同63−244609、
特開平2−174210)。この電極だと活性炭粉末間
の接触抵抗が高くなり、その結果、電極全体のオーミッ
ク抵抗が高くなり、大電流で使用した場合の抵抗による
容量損失が大きくなる。 ポリ塩化ビニリデンを予備熱処理後、型中で加圧焼
成した焼結電極(特開平7−249551)は高い容量
特性が得られるものの、生産性に問題がある。 多孔質の炭素成形体を賦活して電解液を含浸して使
用する方法(特開平2−297915)があるが、この
方法では充分な容量特性が得られない。 活性炭素繊維の織布等を用い電解液を含浸する炭素
繊維電極(特開昭64−82514)については原料コ
ストが高価となり実用的でない。
[0003] As activated carbon for electrodes, coconut shell, sawdust, phenol resin, polyvinylidene chloride resin and other activated carbon are used as starting materials, and the form of the electrode is as follows. An electrode in which activated carbon powder was made into a paste with a sulfuric acid aqueous solution (JP-A-62-130506 and JP-A-63-244609;
JP-A-2-174210). With this electrode, the contact resistance between the activated carbon powders increases, and as a result, the ohmic resistance of the entire electrode increases, and the capacity loss due to the resistance when used with a large current increases. A sintered electrode (JP-A-7-249551) obtained by preliminarily heat-treating polyvinylidene chloride and then sintering it in a mold under pressure has high capacity characteristics, but has a problem in productivity. There is a method in which a porous carbon molded body is activated and impregnated with an electrolytic solution (Japanese Patent Application Laid-Open No. 2-297915), but this method does not provide sufficient capacity characteristics. A carbon fiber electrode (JP-A-64-82514) in which an electrolyte is impregnated using a woven fabric of activated carbon fibers or the like is not practical because the raw material cost is high.

【0004】 活性炭粉末混抄シートをフェノール樹
脂とともに硬化し、焼成、水蒸気賦活することにより、
電気二重層用分極性電極材を製造する方法が示されてい
る(特開平5−121271、特開平6−26779
4)。この方法は生産性に優れ、電極のオーミック抵抗
も低く、均一な品質のものを生産できる優れた方法であ
るが、活性炭粉末のシートへの含有量を50重量%以上
にすると、フェノール樹脂含浸工程でのシートからの活
性炭粉末の脱離、焼成後の電極の強度低下等が問題とな
り、活性炭粉末含有量が50重量%以上の混抄シートを
用いた電極の作製は事実上不可能であった。この活性炭
粉末の配合量の制約が容量特性の向上の妨げとなってい
た。現在電気二重層コンデンサ用の電極に用いられてい
る活性炭粉末は従来の吸着用途等の活性炭とは異なり極
めて高価であり、生産性に優れた方法(特開平5−12
1271、特開平6−267794)を用いたとして
も、電極作製のために多大なコストがかかってしまい車
載用途等への実用化の妨げとなっている。 熱硬化性樹脂から得られる発泡体を非酸化性雰囲気
で焼成し粉砕するか、または該発泡体を粉砕した後焼成
することによりガラス状カーボン粉末を製造する方法が
提案されている(特開平3−164416)。
[0004] The activated carbon powder mixed sheet is cured together with the phenol resin, fired, and steam activated,
A method for producing a polarizable electrode material for an electric double layer is disclosed (JP-A-5-121271, JP-A-6-26779).
4). This method is excellent in productivity and low in ohmic resistance of the electrode, and is an excellent method for producing uniform quality. However, when the content of activated carbon powder in the sheet is 50% by weight or more, the phenol resin impregnation step However, the separation of the activated carbon powder from the sheet and the decrease in the strength of the electrode after firing caused problems, and it was virtually impossible to produce an electrode using a mixed sheet having an activated carbon powder content of 50% by weight or more. This restriction on the amount of the activated carbon powder hindered the improvement of the capacity characteristics. Activated carbon powder currently used for an electrode for an electric double layer capacitor is extremely expensive, unlike activated carbon used in conventional adsorption applications, and has a high productivity (JP-A-5-1212).
1271, Japanese Patent Application Laid-Open No. 6-267794), a great deal of cost is required for the production of electrodes, which hinders practical application to in-vehicle applications and the like. A method of producing a glassy carbon powder by firing and crushing a foam obtained from a thermosetting resin in a non-oxidizing atmosphere, or crushing and sintering the foam has been proposed (Japanese Patent Laid-Open No. Hei 3 (1994)). 164416).

【0005】[0005]

【発明が解決しようとする課題】昨今環境問題から電気
自動車(EV,エレクトリック ヴィーグル)の開発が
盛んである。しかし、二次電池のみの駆動方式のEVは
充電設備等のインフラ(ガソリンスタンドのような利便
性のある充電設備)が整備されていないこと等から未だ
本格化する兆しが見られていない。このような状況下よ
り現実的な従来のガソリンエンジンとのハイブリッド方
式であるHEVがEVに先駆けて一部商品化され始めて
いる。HEVは二次電池、大容量コンデンサ等とのハイ
ブリッド方式であり、ガソリンの消費量を従来のガソリ
ンエンジン単独駆動車の半分程度まで低減することがで
きる。このHEV用大容量コンデンサは電気二重層コン
デンサあるいはキャパシタと呼ばれるものであり、これ
らに対し産業界から更なる性能の改良と低コスト化が希
求されている。本発明の目的は性能向上と低コスト化を
実現できる大容量電気二重層コンデンサ等に使用される
分極性電極、その他の炭素材料、これらの原料等に使用
されるカーボン粉末の製造法を提供することにある。
[0005] Recently, electric vehicles (EVs, electric veins) have been actively developed due to environmental problems. However, there is no sign of a full-fledged EV driven by a secondary battery alone due to the lack of infrastructure such as a charging facility (a convenient charging facility such as a gas station). Under these circumstances, HEV, which is a more realistic hybrid system with a gasoline engine, has begun to be partially commercialized prior to EV. The HEV is a hybrid system with a secondary battery, a large-capacity capacitor, and the like, and can reduce gasoline consumption to about half that of a conventional vehicle driven by a gasoline engine alone. The large-capacity capacitor for HEV is called an electric double layer capacitor or a capacitor, and further improvement in performance and cost reduction are demanded from the industry. An object of the present invention is to provide a method for producing a polarizable electrode used for a large-capacity electric double-layer capacitor and the like, which can realize performance improvement and cost reduction, other carbon materials, and a carbon powder used for these raw materials and the like. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の方
法について更に検討した結果、熱硬化性樹脂に特定の温
度でガスを発生する物質及び発泡剤を加えて発泡させ、
その発泡体から得られるカーボン粉末を用いた分極性電
極はコンデンサ容量特性が更に優れていることを見出し
本発明に到達した。即ち本発明のカーボン粉末、炭素材
料及び分極性電極の製造法の基本構成は以下のとおりで
ある。
Means for Solving the Problems As a result of further study on the above-mentioned method, the present inventors added a substance generating gas at a specific temperature and a foaming agent to a thermosetting resin and caused the foam to foam.
The inventors have found that a polarizable electrode using a carbon powder obtained from the foam has more excellent capacitor capacity characteristics, and reached the present invention. That is, the basic configuration of the method for producing the carbon powder, the carbon material, and the polarizable electrode of the present invention is as follows.

【0007】(1)熱硬化性樹脂に、150〜400℃
の温度領域でガスを発生する加熱揮散物質及び発泡剤を
加え、発泡させ、得られた発泡体を非酸化性雰囲気で焼
成し粉砕するか、または該発泡体を粉砕後非酸化性雰囲
気で焼成することを特徴とするカーボン粉末の製造法。 (2)上記(1)の製造法により得られたカーボン粉末
と繊維状物質を含むシートに熱硬化性樹脂を含浸し、焼
成することを特徴とする炭素材料の製造法。 (3)炭素材料が分極性電極である上記(2)記載の炭
素材料の製造法。
(1) 150-400 ° C. for thermosetting resin
A heating volatile substance and a foaming agent that generates a gas in the temperature range described above are added and foamed, and the obtained foam is fired and crushed in a non-oxidizing atmosphere, or the foam is crushed and fired in a non-oxidizing atmosphere. A method for producing carbon powder. (2) A method for producing a carbon material, comprising impregnating a sheet containing carbon powder and a fibrous substance obtained by the method of the above (1) with a thermosetting resin and firing the sheet. (3) The method for producing a carbon material according to the above (2), wherein the carbon material is a polarizable electrode.

【0008】[0008]

【発明の実施の形態】上記のカーボン粉末の製造法に用
いられる熱硬化性樹脂はフェノール樹脂、フラン樹脂等
で未硬化の液状のものである。これらの中ではフェノー
ル樹脂が好ましい。またフェノール樹脂としてはレゾー
ルタイプ、ノボラックタイプの両方とも硬化可能である
が、発泡成形体の製造の容易性ではレゾールタイプが好
ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermosetting resin used in the above-mentioned method for producing carbon powder is a phenol resin, a furan resin or the like, and is an uncured liquid. Of these, phenolic resins are preferred. As the phenol resin, both the resol type and the novolak type can be cured, but the resol type is preferable in terms of the ease of production of the foamed molded article.

【0009】本発明において使用される発泡剤はフェノ
ール樹脂等の合成樹脂の発泡剤として使用されているも
のであれば有機、無機いずれの発泡剤であっても使用で
きるが、取扱いの容易性、発泡効率の面から沸点が5〜
60℃の範囲にある有機質揮発性発泡剤が好ましい。例
えば、トリクロロモノフルオロメタン、ジクロロモノフ
ルオロメタン、メチレンクロリド、トリクロロトリフル
オロエタン、アセトン、エーテル、石油エーテル、ペン
タン等を挙げることができる。有機質揮発性発泡剤の使
用量は、熱硬化性樹脂(固形分)100重量部に対し、
5〜50重量部が適当である。この範囲より少ないとき
は充分な比表面積を得ることが困難となり、またこれ以
上を使用するときは嵩高になり、ハンドリングが困難に
なったり収率が低くなる等の問題はあるが、この範囲外
でも操作の困難は増すが、不可能ではない。
As the blowing agent used in the present invention, any organic or inorganic blowing agent can be used as long as it is used as a blowing agent for synthetic resins such as phenolic resins. Boiling point is 5 from the viewpoint of foaming efficiency
Organic volatile blowing agents in the range of 60 ° C. are preferred. For example, trichloromonofluoromethane, dichloromonofluoromethane, methylene chloride, trichlorotrifluoroethane, acetone, ether, petroleum ether, pentane and the like can be mentioned. The amount of the organic volatile foaming agent is based on 100 parts by weight of the thermosetting resin (solid content).
5 to 50 parts by weight are suitable. When it is less than this range, it is difficult to obtain a sufficient specific surface area, and when it is more than this, there are problems such as bulkiness, handling becomes difficult and the yield is low, but it is out of this range. But the difficulty of operation increases, but not impossible.

【0010】本発明において加熱揮散物質は150〜4
00℃の温度領域でガスを発生する物質である。そのガ
スは上記の温度領域で該物質の揮発あるいは熱分解等に
より発生する。加熱揮散物質の存在により発泡体が焼成
炭化する過程で、発泡体内部で加熱揮散物質から発生す
るガスによりカーボン粉末の比表面積が大きくなるばか
りでなく容量特性に寄与する好適な細孔が発生するため
と考えられる。焼成過程におけるガスの発生温度は低過
ぎてもまた高過ぎても効果がなく、150〜400℃の
領域で発生することが必要である。そして400℃では
多くがガス化し、残率が少ないものがよく、好ましくは
400℃での残率(ガス発生前の重量に対する400℃
におけるガス発生後の残重量の割合)が35重量%以下
である。
In the present invention, the substance to be heated and volatilized is 150 to 4
It is a substance that generates gas in the temperature range of 00 ° C. The gas is generated by volatilization or thermal decomposition of the substance in the above temperature range. In the process of foaming and carbonizing the foam due to the presence of the heating volatile substance, the gas generated from the heating volatile substance inside the foam not only increases the specific surface area of the carbon powder but also generates suitable pores that contribute to the capacity characteristics. It is thought to be. There is no effect if the gas generation temperature in the firing process is too low or too high, and it is necessary to generate gas in the range of 150 to 400 ° C. At 400 ° C., most of the gas is gasified and the residual ratio is preferably small. Preferably, the residual ratio at 400 ° C. (400 ° C. with respect to the weight before gas generation)
Is 35% by weight or less).

【0011】加熱揮散物質としては、例えばポリエチレ
ン、ポリプロピレン、ポリメチルペンテン、ポリブテ
ン、ポリスチレン、ポリブタジエン、ポリ塩化ビニル、
ポリ酢酸ビニル、ポリ塩素化塩化ビニル、ポリ塩化ビニ
リデン、塩素化ポリプロピレン、塩素化ポリエチレン、
ポリエステル、塩化亜鉛、塩化鉄等が使用できる。これ
らは一般的には粉末にして使用される。焼成前の加熱揮
散物質の熱硬化性樹脂(固形分)に対する割合は5〜5
0重量%が望ましい。これは、加熱揮散物質が50重量
%を越えても更なる容量特性の向上は見られず、また、
原料発泡体に対する焼成後のカーボンの収率が低下し、
生産性が下がるためである。また、5重量%未満では効
果が発揮されない。
[0011] Examples of the heat volatile substances include polyethylene, polypropylene, polymethylpentene, polybutene, polystyrene, polybutadiene, polyvinyl chloride, and the like.
Polyvinyl acetate, polychlorinated polyvinyl chloride, polyvinylidene chloride, chlorinated polypropylene, chlorinated polyethylene,
Polyester, zinc chloride, iron chloride and the like can be used. These are generally used in powder form. The ratio of the heating volatile substance to the thermosetting resin (solid content) before firing is 5 to 5
0% by weight is desirable. This is because even if the heating volatile substance exceeds 50% by weight, no further improvement in the capacity characteristics is observed.
The carbon yield after firing with respect to the raw material foam is reduced,
This is because productivity decreases. If the amount is less than 5% by weight, the effect is not exhibited.

【0012】上記の原料混合物にさらに熱硬化性樹脂の
硬化剤や発泡作用を円滑に勧め、適度な大きさの気孔を
均一に分散させるため、界面活性剤を添加することがで
きる。硬化剤としては、熱硬化性樹脂を出来るだけ早く
硬化できるものがよく、通常は有機酸または無機酸の強
酸が便利である。例えば、フェノールスルホン酸、ベン
ゼンスルホン酸、パラトルエンスルホン酸、リン酸、硫
酸、ホウ酸等が使用できる。使用量は硬化剤の種類によ
り異なるが、一般に熱硬化性樹脂(固形分)100重量
部に対して1〜30重量部程度である。界面活性剤とし
ては例えばポリジメチルシロキサン−ポリアルキレンオ
キサイド−ブロックコポリマー、ビニルシラン−ポリア
ルキレンポリオール共重合体等のシリコン系界面活性剤
を挙げることができる。
A surfactant may be added to the above-mentioned raw material mixture in order to smoothly recommend a curing agent and a foaming action of the thermosetting resin and to uniformly disperse pores of an appropriate size. As the curing agent, those capable of curing the thermosetting resin as quickly as possible are preferable, and usually a strong acid such as an organic acid or an inorganic acid is convenient. For example, phenolsulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, phosphoric acid, sulfuric acid, boric acid and the like can be used. The amount used depends on the type of the curing agent, but is generally about 1 to 30 parts by weight based on 100 parts by weight of the thermosetting resin (solid content). Examples of the surfactant include a silicon-based surfactant such as a polydimethylsiloxane-polyalkylene oxide-block copolymer and a vinylsilane-polyalkylene polyol copolymer.

【0013】原料混合物は公知の方法に従い例えばパネ
ルプレス等に注入成形し、60〜90℃程度に加熱して
発泡硬化させる。発泡体は非酸化性雰囲気中でそのまま
焼成するか、または粉砕後該雰囲気中で焼成する。焼成
温度は熱硬化性樹脂の炭化温度以上であれば特に制限は
ないが、あまり高過ぎると得られるカーボン粉末の比表
面積が下がるので、550〜900℃が好ましい。
According to a known method, the raw material mixture is injection-molded into, for example, a panel press, and heated to about 60 to 90 ° C. to foam and harden. The foam is fired as it is in a non-oxidizing atmosphere, or fired in the atmosphere after pulverization. The firing temperature is not particularly limited as long as it is equal to or higher than the carbonization temperature of the thermosetting resin. However, if the firing temperature is too high, the specific surface area of the obtained carbon powder decreases.

【0014】上記の方法で平均粒径(測定法はレーザー
回折法による。以下同じ)2〜20μm、比表面積(B
ET法。以下同じ)200〜800m2 /gのカーボン
粉末が得られる。このカーボン粉末は主として熱硬化性
樹脂の炭化物であり、一般にガラス状カーボン粉末とい
われるものである。このカーボン粉末は分極性電極の原
料として好適であるが、その他活性炭素粉末として利用
することができる。
According to the above method, the average particle size is 2 to 20 μm (the measuring method is a laser diffraction method; the same applies hereinafter) and the specific surface area (B
ET method. (The same applies hereinafter.) A carbon powder of 200 to 800 m 2 / g is obtained. The carbon powder is mainly a carbide of a thermosetting resin, and is generally called a glassy carbon powder. This carbon powder is suitable as a raw material for a polarizable electrode, but can be used as other activated carbon powder.

【0015】次にこのカーボン粉末を用いた分極性電極
等の炭素材料の製造法について説明する。本発明の炭素
材料の製造法は上記のようにして得たカーボン粉末と繊
維状物を含むシートに熱硬化性樹脂を含浸し、焼成する
方法であるが、このシートとしては例えばカーボン粉末
が多くないような場合は、不織布等のシートに熱硬化性
樹脂とカーボン粉末を含浸させることも可能であるが、
以下に示す抄紙法が最も好ましい。本発明者は炭素材料
の製造法におけるシートとして生産性、特性から最も適
していると思われる抄紙法(特開平5−121271、
同6−267794)について検討した結果以下の知見
を得た。
Next, a method for producing a carbon material such as a polarizable electrode using the carbon powder will be described. The method for producing the carbon material of the present invention is a method in which a sheet containing the carbon powder and the fibrous material obtained as described above is impregnated with a thermosetting resin and calcined. If not, it is possible to impregnate the thermosetting resin and carbon powder into a sheet such as nonwoven fabric,
The following papermaking method is most preferred. The present inventor has proposed a papermaking method (JP-A-5-121271, which is considered to be most suitable from the viewpoint of productivity and characteristics as a sheet in a method of producing a carbon material.
6-267794), the following findings were obtained.

【0016】1)比表面積の小さな活性炭粉末程、抄紙
シートの中に抄き込み易くなり、高配合率の抄紙シート
が得られる。 2)比表面積が大きい(1000m2 /g以上)活性炭
は、抄紙シートの中に抄き込むのが困難になるばかりで
なく、密度が上げられないため、車載用途等で重要視さ
れる単位体積当たりでは必ずしも高容量特性が得られな
い。この原因としては活性炭粉末を多量に抄紙シートに
抄き込むためには、例えば(特開昭53−35712、
特開昭57−162630)に示されているようなカチ
オン性高分子、アニオン性高分子、硫酸アルミ等の添加
剤が必要であるが、従来キャパシタ用に主に用いられて
いる比表面積の大きな(1000m2 /g以上)活性炭
を用いるとこれら添加剤が活性炭粉末に吸収されてしま
い機能しにくくなることが考えられる。前記1)、2)
を満たす最も好適なカーボン粉末は、比表面積が200
〜800m2 /gのカーボン粉末である。
1) Activated carbon powder having a smaller specific surface area is easier to make into a papermaking sheet, and a papermaking sheet with a high blending ratio can be obtained. 2) Activated carbon having a large specific surface area (1000 m 2 / g or more) not only makes it difficult to make it into a papermaking sheet, but also does not increase the density, so that the unit volume which is regarded as important for in-vehicle use and the like is not considered. A high capacity cannot always be obtained at a hit. The reason for this is that a large amount of activated carbon powder is to be made into a papermaking sheet, for example, as described in JP-A-53-35712.
Although additives such as a cationic polymer, an anionic polymer, and aluminum sulfate as shown in JP-A-57-162630) are required, a large specific surface area conventionally used mainly for capacitors is required. When the activated carbon (1000 m 2 / g or more) is used, it is considered that these additives are absorbed by the activated carbon powder and become difficult to function. 1) and 2) above
The most preferred carbon powder that satisfies
800800 m 2 / g carbon powder.

【0017】以下、抄紙法による炭素材料の製造法につ
いて詳述する。上記カーボン粉末の平均粒径は2〜20
μmが望ましい。粒径は小さい程容量特性では有利であ
るが、2μm未満では粉砕コストが大きくなり且つ粒子
同士の凝集等が起こり均一な抄紙が難しくなる。容量特
性もそれ以上向上しない。また、20μmを越えると見
かけの表面積が小さくなるため、容量特性が十分でな
く、また抄紙時に沈降しやすくなり抄紙性が低下する。
次に上記カーボン粉末と繊維状物質から抄紙シートを作
製する。カーボン粉末を抄紙シート中に保持するために
最も好適な繊維状物質はフィブリル化が可能な繊維を主
体とするものが好ましい。具体的にはセルロース質繊
維、ポリオレフィン系繊維、アクリル繊維等であるが、
コスト、抄紙性等総合的に判断すると木材パルプを主体
とするのが好適である。抄紙はカーボン粉末、繊維状物
質、添加剤を水に分散させ、スラリーとなし、長網、円
網等の抄紙機を用いて抄紙する。また、抄紙シートの強
度強化用繊維としてガラス繊維、メタ系もしくはパラ系
のアラミド繊維、アルミナ繊維等を混合使用することに
より抄紙のハンドリング性が向上するが、これらはシー
ト中でのカーボン粉末の保持力を低下させるので、添加
量は抄紙繊維中の20重量%以下が好ましい。
Hereinafter, a method for producing a carbon material by a papermaking method will be described in detail. The average particle size of the carbon powder is 2 to 20.
μm is desirable. The smaller the particle size, the more advantageous in the capacity characteristics. However, if the particle size is less than 2 μm, the pulverization cost increases and the particles are aggregated and the like, making uniform paper making difficult. The capacity characteristics are not further improved. On the other hand, if it exceeds 20 μm, the apparent surface area becomes small, so that the capacity characteristics are not sufficient, and sedimentation tends to occur during paper making, and the paper making properties deteriorate.
Next, a papermaking sheet is prepared from the carbon powder and the fibrous substance. The most suitable fibrous substance for holding the carbon powder in the papermaking sheet is preferably a substance mainly composed of fibrillable fibers. Specifically, cellulosic fibers, polyolefin fibers, acrylic fibers, etc.
It is preferable to mainly use wood pulp when judging comprehensively such as cost and papermaking properties. Papermaking involves dispersing carbon powder, fibrous substances, and additives in water, forming a slurry, and using a paper machine such as a long net or a circular net. In addition, glass fiber, meta- or para-type aramid fiber, alumina fiber, and the like are used as a fiber for reinforcing the strength of the papermaking sheet to improve the handleability of the papermaking sheet, but these retain carbon powder in the sheet. The amount of addition is preferably 20% by weight or less in the papermaking fiber, since the force is reduced.

【0018】カーボン粉末の抄紙中の配合率は50〜9
5重量%が好ましい。50重量%未満では容量特性が低
く、95重量%を越えると抄紙が難しくなる。次に抄紙
シートに熱硬化性樹脂を未硬化の液状で含浸する。この
樹脂液中には炭素材料の電気特性即ち電気抵抗を低減さ
せるために導電性の高いカーボンフィラー、例えば黒鉛
粉末を混合することもできる。樹脂の含浸は抄紙シート
を樹脂の溶液中に浸漬し, 次いで引き上げ、必要により
ロール間を通すなどにより、含浸量を調整する。樹脂含
浸量は熱硬化性樹脂(固形分)3〜30重量%が好まし
い。3重量%未満では熱硬化性樹脂のバインダー機能が
充分発揮されず、30重量%を越えると熱硬化性樹脂が
状カーボン粉末の細孔を塞ぎ容量特性が十分でない樹脂
液を含浸したシートは次に100〜180℃程度で乾燥
し、プリプレグシートとする。プリプレグシートは厚い
場合はそのまま樹脂硬化, 焼成し、炭素材料とすること
もできるが、薄いシートを複数枚積層して圧着し、硬
化、焼成することが望ましい。シートが厚い場合は抄紙
もしにくく、また樹脂液を効率良く且つ均一に含浸させ
るのが難しい。プリプレグシートは150〜200℃程
度に加熱し、樹脂を硬化させる。この際ステンレス板、
アルミニウム板等で挟んで5〜70kg/cm2 程度に
圧縮することが好ましい。圧縮によって大きな気孔の発
生が防止され、また積層の場合は各シート間の密着性が
よくなり、炭素材料の嵩密度が大きくなることにより性
能も向上する。硬化したシートは次に不活性雰囲気下で
炭化焼成する。焼成シートが均一な温度で焼き上がるよ
うに例えば黒鉛板の間に挟んで行うのがよい。焼成温度
は500〜900℃が好ましい。500℃未満だと炭素
材料、例えば電極のオーミックな抵抗が高くなり、IR
(電流・電圧)ドロップによる容量特性の低下が起こ
る。900℃を越えると、カーボン粉末の細孔の閉塞が
起こり、その結果容量特性の低下が起こる。
The mixing ratio of carbon powder in papermaking is 50 to 9
5% by weight is preferred. If it is less than 50% by weight, the capacity characteristics are low, and if it exceeds 95% by weight, papermaking becomes difficult. Next, the papermaking sheet is impregnated with a thermosetting resin in an uncured liquid state. A highly conductive carbon filler, for example, graphite powder, may be mixed in the resin liquid in order to reduce the electric characteristics, that is, the electric resistance of the carbon material. To impregnate the resin, the amount of impregnation is adjusted by immersing the papermaking sheet in a solution of the resin, then pulling it up and passing it between rolls as necessary. The resin impregnation amount is preferably 3 to 30% by weight of the thermosetting resin (solid content). If the amount is less than 3% by weight, the binder function of the thermosetting resin is not sufficiently exhibited. If the amount exceeds 30% by weight, the sheet impregnated with the resin liquid in which the thermosetting resin blocks the pores of the carbon powder and has insufficient capacity is as follows. And dried at about 100 to 180 ° C. to obtain a prepreg sheet. When the prepreg sheet is thick, the resin material can be cured and fired as it is, and can be used as a carbon material. However, it is preferable that a plurality of thin sheets are laminated, pressed, cured, and fired. When the sheet is thick, it is difficult to make paper, and it is difficult to impregnate the resin liquid efficiently and uniformly. The prepreg sheet is heated to about 150 to 200 ° C. to cure the resin. At this time, stainless steel plate,
It is preferable to compress the film to about 5 to 70 kg / cm 2 by sandwiching it between aluminum plates or the like. The compression prevents the generation of large pores, and in the case of lamination, the adhesion between the sheets is improved, and the performance is improved by increasing the bulk density of the carbon material. The cured sheet is then carbonized and fired under an inert atmosphere. For example, it is preferable that the firing sheet is sandwiched between graphite plates so as to be baked at a uniform temperature. The firing temperature is preferably from 500 to 900C. If the temperature is lower than 500 ° C., the ohmic resistance of a carbon material, for example, an electrode increases, and IR
(Current / voltage) drop causes a drop in capacitance characteristics. When the temperature exceeds 900 ° C., the pores of the carbon powder are blocked, and as a result, the capacity characteristics are reduced.

【0019】上記で得られた炭素材料を更に賦活処理す
ることも可能である。特に有機系のキャパシタ用に用い
る場合に賦活処理することは効果的である。これは、有
機系キャパシタでは、カーボン粉末中の細孔では小さす
ぎるため、賦活処理により細孔径を大きくすることが効
果的だと推測される。賦活方法は紫外線照射賦活、グロ
ー放電賦活、ハロゲンガス賦活、硫酸、KOH、ZnC
2 等による薬品賦活、水蒸気賦活等種々方法がある
が、炭素材料が電極ならば水蒸気賦活が特性向上の上で
好ましい。しかし、より高度な電極特性を引き出すため
に、重ねて賦活する例えばハロゲンガス賦活あるいは薬
品賦活と水蒸気賦活を組み合わせる等の可能性も十分考
えられる。本発明において水蒸気賦活は次のようにして
行なうことができる。水蒸気賦活の条件は温度750〜
1100℃、時間20〜600分が好ましい。温度が7
50℃未満、時間が600分を越える場合は処理時間が
長すぎて実用的でなく、温度が1100℃を越え、時間
が20分未満の場合は不均一性が発生し強度、電気比抵
抗等の物性低下が起こる。
It is also possible to further activate the carbon material obtained above. In particular, when used for an organic capacitor, the activation treatment is effective. This is presumed that, in the case of organic capacitors, the pores in the carbon powder are too small, and thus it is effective to increase the pore diameter by activation treatment. Activation methods include UV irradiation activation, glow discharge activation, halogen gas activation, sulfuric acid, KOH, ZnC
chemical activation by l 2, etc., there is a steam-activated, etc. Various methods, steam-activated if the carbon material is the electrode is preferred over the properties improved. However, in order to bring out more advanced electrode characteristics, the possibility of activating them repeatedly, for example, combining halogen gas activation or chemical activation with water vapor activation is sufficiently conceivable. In the present invention, steam activation can be performed as follows. The condition of steam activation is 750-
It is preferable that the temperature is 1100 ° C. and the time is 20 to 600 minutes. Temperature 7
If the temperature is less than 50 ° C. and the time exceeds 600 minutes, the treatment time is too long to be practical. If the temperature exceeds 1100 ° C. and the time is less than 20 minutes, non-uniformity occurs and strength, electric resistivity, etc. The physical properties of the material decrease.

【0020】本発明の製造法により得られる炭素材料は
そのまま優れた電極(電気二重層コンデンサ、二次電
池、エレクトロクロミックディスプレイ等に使用される
分極性電極)となる。また分極性電極以外の例えば燃料
電池等の電極としての使用も可能である。
The carbon material obtained by the production method of the present invention becomes excellent electrodes (polarizable electrodes used for electric double layer capacitors, secondary batteries, electrochromic displays, etc.) as they are. In addition, it can be used as an electrode other than the polarizable electrode, for example, for a fuel cell or the like.

【0021】[0021]

【実施例】以下実施例により本発明を具体的に説明す
る。 (実施例1)液状フェノール樹脂(昭和高分子(株)製
BRL120−Z)、シリコン系界面活性剤((株)
信越化学製F−305、ジメチルポリシロキサンとポリ
エーテルのブロックコポリマー)、発泡剤としてフレオ
ン−113(1,1,2−トリフルオル−1,2,2−
トリクロルエタン)、表1の加熱揮散物質の粉末をミキ
サーにて充分混合した後、硬化剤としてフェノールスル
ホン酸を63重量%含有する水溶液を加え、更に混合し
た後、あらかじめ80℃に加熱したパネルプレス内に注
入し発砲せしめ、10分間硬化反応を行い脱型した。
尚、各成分の添加比率は表1の通りである。該発泡体を
非酸化性雰囲気で3日間かけて700℃に炭化焼成し
た。焼成体をボールミルにて粉砕し、平均粒径8μmの
カーボン粉末を得た。このカーボン粉末の比表面積は表
1に示すとおりである。表1中A,Bが本発明のカーボ
ン粉末、Cは比較例で加熱揮散物質を用いない場合のカ
ーボン粉末である。
The present invention will be described in detail with reference to the following examples. (Example 1) Liquid phenol resin (BRL120-Z, manufactured by Showa Polymer Co., Ltd.), silicon-based surfactant (Co., Ltd.)
Shin-Etsu Chemical F-305, block copolymer of dimethylpolysiloxane and polyether), and Freon-113 (1,1,2-trifluoro-1,2,2-
Trichloroethane) and the powder of the volatile substance in Table 1 were sufficiently mixed by a mixer, and then an aqueous solution containing 63% by weight of phenolsulfonic acid was added as a curing agent. After further mixing, the panel press was previously heated to 80 ° C. The mixture was injected into the flask and fired, and a curing reaction was performed for 10 minutes to remove the mold.
Table 1 shows the addition ratio of each component. The foam was carbonized and fired at 700 ° C. for 3 days in a non-oxidizing atmosphere. The fired body was pulverized with a ball mill to obtain a carbon powder having an average particle size of 8 μm. The specific surface area of this carbon powder is as shown in Table 1. In Table 1, A and B are the carbon powders of the present invention, and C is the carbon powder in the comparative example in which no heat volatile substance is used.

【0022】(実施例2〜7)次に表1のカーボン粉末
を用いて電極を作製した。先ず表2に示す割合からなる
カーボン粉末とパルプと、添加剤としてCMC(カルボ
キシメチルセルロース)、ポリアミドアミン少量を水に
分散させ、円網抄紙機で抄造して抄紙シートを得た。こ
の抄紙シートをフェノール樹脂溶液(昭和高分子(株)
製 BRL120−Z)に浸漬後、120℃で1分間乾
燥し、プリプレグシートとした。尚、フェノール樹脂含
浸量は以下の式で10重量%になるようにフェノール樹
脂液の希釈度を調整した。 フェノール樹脂含浸量計算式: フェノール樹脂固形分/(抄紙シート+フェノール樹脂
固形分)×100(重量%) このプリプレグシートを8枚積層し、テフロン系離型剤
(商品名ダイフリー)を塗布したステンレス板に挟み、
50kg/cm2 で加圧し、155℃、30分間加熱硬
化してグリーン成形シートとした。これらグリーン成形
シートを黒鉛板に挟み、非酸化性雰囲気下3日間かけて
750℃に炭化焼成した。シートは良好な外観を呈して
いた。
Examples 2 to 7 Next, electrodes were prepared using the carbon powders shown in Table 1. First, carbon powder having the proportions shown in Table 2, pulp, CMC (carboxymethylcellulose) as an additive, and a small amount of polyamidoamine were dispersed in water, and a papermaking sheet was obtained by papermaking with a circular paper machine. This papermaking sheet is applied to a phenol resin solution (Showa High Polymer Co., Ltd.)
BRL120-Z) and dried at 120 ° C. for 1 minute to obtain a prepreg sheet. The degree of dilution of the phenol resin solution was adjusted so that the phenol resin impregnation amount was 10% by weight according to the following equation. Phenolic resin impregnation amount calculation formula: Phenolic resin solid content / (papermaking sheet + phenol resin solid content) × 100 (% by weight) Eight of these prepreg sheets were laminated, and a Teflon-based release agent (trade name: DAIFREE) was applied. Sandwiched between stainless steel plates,
It was pressurized at 50 kg / cm 2 and heat-cured at 155 ° C. for 30 minutes to obtain a green molded sheet. These green molded sheets were sandwiched between graphite plates and carbonized and fired at 750 ° C. for 3 days in a non-oxidizing atmosphere. The sheet had a good appearance.

【0023】これらカーボンシートの一部を水蒸気賦活
炉内にセットし、N2 ガスでバブリングした40℃飽和
水蒸気を所定温度850℃に調整された炉内に導入し、
3時間水蒸気賦活処理した。得られたカーボンシートか
ら、10mm角の板状電極を切り出し、各物性を測定す
るとともに、電解液を電極に真空含浸した後に図1に示
した基本構成のセルを作製し、単セルでの性能を調べ
た。セル性能は30重量%硫酸電解液を使用した場合
と、有機系電解液である2モル濃度のテトラエチルメチ
ルアンモニウム4フッ化ボライド/プロピレンカーボネ
ート液(TEMABF4/PC、三菱化学(株)製ソル
ライトCAG)について調べた。セパレータはアドバン
テック(株)製ガラスフィルターGA100を用い、集
電板としては昭和電工(株)製カーボン板(商品名SG
−3、厚さ0.6mm)を使用した。封止材としてはテ
フロン製パッキンシート(ダイキン工業(株)製、PF
A)を切り出して使用した。
A part of these carbon sheets was set in a steam activation furnace, and 40 ° C. saturated steam bubbled with N 2 gas was introduced into a furnace adjusted to a predetermined temperature of 850 ° C.
A steam activation treatment was performed for 3 hours. From the obtained carbon sheet, a 10 mm square plate-shaped electrode was cut out, each physical property was measured, and a cell having the basic structure shown in FIG. Was examined. The cell performance was measured using a 30% by weight sulfuric acid electrolytic solution, and a 2 molar concentration of tetraethylmethylammonium tetrafluoride boron / propylene carbonate solution (TEMABF4 / PC, Sollite CAG manufactured by Mitsubishi Chemical Corporation) as an organic electrolytic solution. Was examined. The separator used was a glass filter GA100 manufactured by Advantech Co., Ltd., and the current collector plate was a carbon plate manufactured by Showa Denko KK (trade name: SG).
-3, thickness 0.6 mm). As a sealing material, a packing sheet made of Teflon (manufactured by Daikin Industries, Ltd., PF
A) was cut out and used.

【0024】このようにして組み立てた電気二重層コン
デンサをガラス容器に封入し、集電板の上下から約5k
g/cm2 の圧力で締め付けた状態で容量性能を調べ
た。また、内部抵抗の評価は、1KHz、10mAの定
電流を前記の電気二重層コンデンサに流し測定した等価
直列抵抗(ESR)で行った。容量測定は北斗電工
(株)製、充放電試験機を使用し、0.002Aの定電
流充電をさせた後、0.002Aの定電流で放電を行
い、硫酸系の場合は0.9Vから0.1Vまで、有機系
の場合は2.4Vから0.1Vまで電圧が降下するのに
要する時間から静電容量を算出し、この静電容量を1対
の電極の合計体積で割ることにより単位体積あたりの容
量を算出した。特性測定結果を表3に示す。
The electric double layer capacitor assembled in this manner is sealed in a glass container, and approximately 5 k
The capacity performance was examined in a state of being tightened at a pressure of g / cm 2 . The internal resistance was evaluated by an equivalent series resistance (ESR) measured by passing a constant current of 1 KHz and 10 mA through the electric double layer capacitor. The capacity was measured using a charge / discharge tester manufactured by Hokuto Denko Co., Ltd., and after a constant current charge of 0.002 A, the battery was discharged at a constant current of 0.002 A. By calculating the capacitance from the time required for the voltage to drop to 0.1 V or from 2.4 V to 0.1 V in the case of an organic system, the capacitance is divided by the total volume of a pair of electrodes. The capacity per unit volume was calculated. Table 3 shows the characteristic measurement results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】本発明によれば従来の活性炭粉末に比べ
生産性が高く低コストでカーボン粉末が得られる。この
カーボン粉末から高容量特性の分極性電極を得ることが
でき、また電極の強度も向上する。このカーボン粉末と
繊維状物質から抄紙法によりシートを得る場合に、カー
ボン粉末を多量に含有させることができ、したがってこ
のシートより製造される分極性電極は高容量とすること
ができる。抄紙法は抄紙シートが薄いにもかかわらず、
取扱いが容易であり、且つ生産性も良い。また、抄紙法
による電極は、厚み方向の面加工を行わなくても均一な
特性が得られるため、切断加工のみで電極として使用で
きる。加工コストの低減に加え、原料の消費量を最小限
に抑えることができる。
According to the present invention, a carbon powder can be obtained with higher productivity and lower cost than conventional activated carbon powder. A polarizable electrode having high capacity characteristics can be obtained from the carbon powder, and the strength of the electrode is also improved. When a sheet is obtained from the carbon powder and the fibrous material by a papermaking method, a large amount of the carbon powder can be contained, and thus the polarizable electrode manufactured from the sheet can have a high capacity. In the paper making method, although the paper making sheet is thin,
It is easy to handle and has good productivity. Further, an electrode formed by a papermaking method can obtain uniform characteristics without performing surface processing in the thickness direction, and thus can be used as an electrode only by cutting. In addition to reducing processing costs, it is possible to minimize the consumption of raw materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層コンデンサの基本構成を示す断面図
である。
FIG. 1 is a sectional view showing a basic configuration of an electric double layer capacitor.

【符号の説明】[Explanation of symbols]

1 分極性電極 2 セパレータ 3 封止材 4 集電板 1 minute polarity electrode 2 separator 3 sealing material 4 current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上條 祐一 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 Fターム(参考) 4G046 CA04 CB01 CB02 CB03 CB05 CB06 CB09 CC03 HA02 HA03 HB02 HB03 HB05 HC08 HC09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Kamijo 6850, Omachi, Omachi, Nagano Prefecture Showa Denko Co., Ltd. Omachi Plant F-term (reference) 4G046 CA04 CB01 CB02 CB03 CB05 CB06 CB09 CC03 HA02 HA03 HB02 HB03 HB05 HC08 HC09

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂に、150〜400℃の温
度領域でガスを発生する加熱揮散物質及び発泡剤を加
え、発泡させ、得られた発泡体を非酸化性雰囲気で焼成
し粉砕するか、または該発泡体を粉砕後非酸化性雰囲気
で焼成することを特徴とするカーボン粉末の製造法。
1. A thermosetting resin is added with a heating volatile substance generating a gas in a temperature range of 150 to 400 ° C. and a foaming agent, foamed, and the obtained foam is fired and pulverized in a non-oxidizing atmosphere. Or a method for producing carbon powder, characterized in that the foam is pulverized and then fired in a non-oxidizing atmosphere.
【請求項2】 加熱揮散物質が非酸化性雰囲気中400
℃での残率が35重量%以下の物質である請求項1記載
のカーボン粉末の製造法。
2. The method according to claim 1, wherein the heating volatile substance is in a non-oxidizing atmosphere.
The method for producing carbon powder according to claim 1, wherein the substance has a residual ratio at 35 ° C of 35% by weight or less.
【請求項3】 加熱揮散物質の量が熱硬化性樹脂に対し
5〜50重量%である請求項1または2記載のカーボン
粉末の製造法。
3. The method for producing carbon powder according to claim 1, wherein the amount of the volatile substance is 5 to 50% by weight based on the thermosetting resin.
【請求項4】 焼成温度が550〜900℃である請求
項1ないし3記載のカーボン粉末の製造法。
4. The method for producing carbon powder according to claim 1, wherein the firing temperature is 550 to 900 ° C.
【請求項5】 カーボン粉末の平均粒径が2〜20μ
m、比表面積が200〜800m2 /gである請求項1
ないし4記載のカーボン粉末の製造法。
5. The carbon powder has an average particle size of 2 to 20 μm.
m and a specific surface area of 200 to 800 m 2 / g.
5. The method for producing a carbon powder according to any one of items 4 to 4.
【請求項6】 カーボン粉末が分極性電極用である請求
項1ないし5記載のカーボン粉末の製造法。
6. The method for producing carbon powder according to claim 1, wherein the carbon powder is for a polarizable electrode.
【請求項7】 請求項1ないし5記載の製造法により得
られたカーボン粉末と繊維状物質を含むシートに熱硬化
性樹脂を含浸し、焼成することを特徴とする炭素材料の
製造法。
7. A method for producing a carbon material, comprising impregnating a sheet containing carbon powder and a fibrous substance obtained by the production method according to claim 1 with a thermosetting resin and firing the sheet.
【請求項8】 シートが抄紙シートである請求項7記載
の炭素材料の製造法。
8. The method for producing a carbon material according to claim 7, wherein the sheet is a papermaking sheet.
【請求項9】 カーボン粉末の量が50〜95重量%で
あり、熱硬化性樹脂の含浸量が3〜30重量%である請
求項7または8記載の炭素材料の製造法。
9. The method for producing a carbon material according to claim 7, wherein the amount of the carbon powder is 50 to 95% by weight, and the impregnation amount of the thermosetting resin is 3 to 30% by weight.
【請求項10】 熱硬化性樹脂を含浸したシートを積層
し、500〜900℃で焼成する請求項7ないし9記載
の炭素材料の製造法。
10. The method for producing a carbon material according to claim 7, wherein sheets impregnated with a thermosetting resin are laminated and fired at 500 to 900 ° C.
【請求項11】 請求項7ないし10記載の製造法で得
た炭素材料を水蒸気賦活処理することを特徴とする炭素
材料の製造法。
11. A method for producing a carbon material, comprising subjecting the carbon material obtained by the method according to claim 7 to a steam activation treatment.
【請求項12】 炭素材料が分極性電極である請求項7
ないし11記載の炭素材料の製造法。
12. The method according to claim 7, wherein the carbon material is a polarizable electrode.
12. The method for producing a carbon material according to items 11 to 11.
JP10277601A 1998-09-30 1998-09-30 Production of carbon powder and carbonaceous material Pending JP2000103610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10277601A JP2000103610A (en) 1998-09-30 1998-09-30 Production of carbon powder and carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10277601A JP2000103610A (en) 1998-09-30 1998-09-30 Production of carbon powder and carbonaceous material

Publications (1)

Publication Number Publication Date
JP2000103610A true JP2000103610A (en) 2000-04-11

Family

ID=17585714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10277601A Pending JP2000103610A (en) 1998-09-30 1998-09-30 Production of carbon powder and carbonaceous material

Country Status (1)

Country Link
JP (1) JP2000103610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
JP2006077214A (en) * 2004-09-13 2006-03-23 Lignyte Co Ltd Carbon-phenol resin composite material, carbon-phenol resin cured composite material, carbon-phenol resin carbonized composite material, fuel cell separator, conductive resin composition, cell electrode and electric double layer capacitor
WO2008013247A1 (en) * 2006-07-25 2008-01-31 Dupont Teijin Advanced Papers, Ltd. Method for producing electrode sheet
CN109264715A (en) * 2018-09-28 2019-01-25 中国石油大学(华东) A kind of method that step heating prepares active carbon
CN109411769A (en) * 2018-10-26 2019-03-01 含山县领创新材料科技有限公司 A kind of preparation method of fuel cell long-life carbon fiber paper

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
JP2006077214A (en) * 2004-09-13 2006-03-23 Lignyte Co Ltd Carbon-phenol resin composite material, carbon-phenol resin cured composite material, carbon-phenol resin carbonized composite material, fuel cell separator, conductive resin composition, cell electrode and electric double layer capacitor
JP4537809B2 (en) * 2004-09-13 2010-09-08 リグナイト株式会社 Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
WO2008013247A1 (en) * 2006-07-25 2008-01-31 Dupont Teijin Advanced Papers, Ltd. Method for producing electrode sheet
JP5057249B2 (en) * 2006-07-25 2012-10-24 デュポン帝人アドバンスドペーパー株式会社 Electrode sheet manufacturing method
CN109264715A (en) * 2018-09-28 2019-01-25 中国石油大学(华东) A kind of method that step heating prepares active carbon
CN109411769A (en) * 2018-10-26 2019-03-01 含山县领创新材料科技有限公司 A kind of preparation method of fuel cell long-life carbon fiber paper

Similar Documents

Publication Publication Date Title
JP5596254B2 (en) Carbon material for negative electrode of lithium ion secondary battery, carbon material for negative electrode of low crystalline carbon impregnated lithium ion secondary battery, negative electrode plate, and lithium ion secondary battery
JP2993343B2 (en) Polarizing electrode and method of manufacturing the same
EP3179542B1 (en) Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
WO2014208596A1 (en) Separator for electrochemical elements and lithium ion secondary battery
JPH07161588A (en) Polarizing electrode for electric double-layer capacitor, its manufacture and electric double-layer capacitor using polarizing electrode described above
JP4765109B2 (en) Carbon material for electrode and manufacturing method thereof, electrode and manufacturing method thereof, and electrochemical device and manufacturing method thereof
JP2000103610A (en) Production of carbon powder and carbonaceous material
US9812711B2 (en) Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
WO2012029918A1 (en) Porous carbon material, electrode for capacitor, electrode for hybrid capacitor, electrode for lithium ion capacitor, capacitor, hybrid capacitor, and lithium ion capacitor
JP3023379B2 (en) Electric double layer capacitor and electrode
KR102346997B1 (en) Artificial graphite powder and composite power using the same
JPH11340103A (en) Manufacture of activated carbon material
EP3997750A1 (en) A lithium-ion cell comprising three-dimensional current collectors and a method of manufacturing electrodes for this cell
TW202026236A (en) Carbon material and method for producing same, electrode material for electrical storage device, and electrical storage device
US9991517B2 (en) Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JP2018041921A (en) Nonaqueous lithium power storage element
JP2000169128A (en) Carbon sheet, conductive composite sheet and their production
JPH05217803A (en) Electric double layer capacitor, its manufacture and its use
JPH04206916A (en) Electric double layer capacitor
JP2000143225A (en) Activatated carbon material and its production
JPH05217804A (en) Electric double layer capacitor, its manufacture and its use
KR20170078760A (en) A method for making a high-density carbon material for high-density carbon electrodes
CA2364651A1 (en) Carbon-carbon composite as negative electrode for li-ion batteries
KR101815190B1 (en) Manufacturing method of electrod for electric energy storage device and electrod for electric energy storage device by the method