JP2000101356A - High frequency power amplifier circuit - Google Patents

High frequency power amplifier circuit

Info

Publication number
JP2000101356A
JP2000101356A JP10271714A JP27171498A JP2000101356A JP 2000101356 A JP2000101356 A JP 2000101356A JP 10271714 A JP10271714 A JP 10271714A JP 27171498 A JP27171498 A JP 27171498A JP 2000101356 A JP2000101356 A JP 2000101356A
Authority
JP
Japan
Prior art keywords
control signal
signal
type
power amplifier
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10271714A
Other languages
Japanese (ja)
Other versions
JP3731358B2 (en
Inventor
Yoshito Masafuji
義人 正藤
Sotaro Asai
壮太郎 朝井
Masaki Shinkai
正基 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP27171498A priority Critical patent/JP3731358B2/en
Publication of JP2000101356A publication Critical patent/JP2000101356A/en
Application granted granted Critical
Publication of JP3731358B2 publication Critical patent/JP3731358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce production cost and to make a communication device small- sized by inputting a positive control signal to the gate electrode of an enhancement field effect transistor and also extracting an amplified high frequency signal from a drain electrode as an output signal. SOLUTION: A control signal S3 is inputted to the gate electrode G of an E-type FET5 via a gate terminal R4. When performing on control of the E-type FET5, a positive signal voltage is applied to the gate electrode G of the E-type FET5. Further, a drain current ID supplied to a D type FET6 is made to change according to the voltage value of the control signal S3. Thus, the amplification of a high frequency signal S1 is subjected to variable control according to the voltage value of the control signal S3. The voltage value of the control signal S3 is lowered, and the E type FET5 is cut off to stop a high-frequency power amplifier circuit 4 in the middle of an amplification operation. Then, a circuit configuration is extremely simplified, because a circuit generating positive and negative signal voltages is no longer needed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波電力増幅回
路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency power amplifier circuit.

【0002】[0002]

【従来の技術】携帯電話、コ−ドレス電話等の通信機器
に内蔵される通信回路の信号増幅部には、二個のデプレ
ッション型電界効果トランジスタ(以下「D型FET」
という)をカスコ−ド接続した高周波電力増幅回路が広
く用いられている。
2. Description of the Related Art Two depletion-type field-effect transistors (hereinafter referred to as "D-type FETs") are provided in a signal amplifier of a communication circuit built in a communication device such as a portable telephone or a cordless telephone.
) Is widely used.

【0003】まず、図2(a)を用いて、D型FETに
ついて概略説明する。D型FETでは、ゲ−ト電極Gと
ソ−ス電極S間の電圧VGSが零(V)の近傍で、ドレイ
ン電極Dとソ−ス電極S間に最大のドレイン電流IDが
流れる。さらに、電圧VGSを負の方向に大きくしていく
とドレイン電流IDが徐々に減少し、ピンチオフ電圧VP
以下ではドレイン電流IDが流れなくなるという特性を
有する。
First, a D-type FET will be schematically described with reference to FIG. In the D-type FET, the maximum drain current ID flows between the drain electrode D and the source electrode S when the voltage VGS between the gate electrode G and the source electrode S is near zero (V). Furthermore, when the voltage VGS is increased in the negative direction, the drain current ID gradually decreases, and the pinch-off voltage VP
In the following, there is a characteristic that the drain current ID stops flowing.

【0004】次に、図3を用いて、この高周波電力増幅
回路1の回路構成および回路動作について説明する。
Next, the circuit configuration and circuit operation of the high-frequency power amplifier circuit 1 will be described with reference to FIG.

【0005】高周波電力増幅回路1は、第一のD型FE
T2と第二のD型FET3とから構成される。第一のD
型FET2のソ−ス電極Sは、第二のD型FET3のド
レイン電極Dに接続される。第一のD型FET2のドレ
イン電極Dは、正の電源Vddに接続される。この結果、
第一のD型FET2には、直流電流が供給される。第二
のD型FET3のソ−ス電極Sは、接地される。なお、
電源Vddは、例えば3.6Vの直流電源である。
[0005] The high-frequency power amplifier circuit 1 comprises a first D-type FE.
It comprises T2 and a second D-type FET3. First D
The source electrode S of the type FET 2 is connected to the drain electrode D of the second D-type FET 3. The drain electrode D of the first D-type FET 2 is connected to a positive power supply Vdd. As a result,
A DC current is supplied to the first D-type FET 2. The source electrode S of the second D-type FET 3 is grounded. In addition,
The power supply Vdd is, for example, a 3.6 V DC power supply.

【0006】第二のD型FET3のゲ−ト電極Gには、
通信機器に割り当てられた周波数帯域の信号、例えば8
00MHz、900MHz等の高周波信号S1が端子T
1を介して入力される。なお、横軸tは、時間軸であ
る。
The gate electrode G of the second D-type FET 3 has:
A signal in a frequency band allocated to the communication device, for example, 8
A high frequency signal S1 such as 00 MHz or 900 MHz
1 is input. Note that the horizontal axis t is a time axis.

【0007】第一のD型FET2のゲ−ト電極Gには、
制御信号S2が端子T2を介して入力される。通常、制
御信号S2は方形波で、高周波信号S1の増幅を制御す
る。
The gate electrode G of the first D-type FET 2 has:
The control signal S2 is input via the terminal T2. Usually, the control signal S2 is a square wave, and controls the amplification of the high frequency signal S1.

【0008】また、第一のD型FET2のドレイン電極
Dからは、高周波信号S1を増幅した出力信号Voutが
端子T3を介して取り出される。
From the drain electrode D of the first D-type FET 2, an output signal Vout obtained by amplifying the high-frequency signal S1 is taken out via a terminal T3.

【0009】高周波電力増幅回路1において高周波信号
S1を増幅する場合、制御信号S2によって第一のD型
FET2をオン制御させ、第二のD型FET3に所定の
ドレイン電流IDを供給する。
When the high-frequency power amplifier 1 amplifies the high-frequency signal S1, the control signal S2 turns on the first D-type FET 2 and supplies a predetermined drain current ID to the second D-type FET 3.

【0010】例えば、時刻t1からt2の期間において
第一のD型FET2をオン制御する場合には、第一のD
型FET2のゲ−ト電極Gには、正の電圧値である制御
信号S2が供給される。なお、制御信号S2の電圧値に
より、第二のD型FET3に供給されるドレイン電流I
Dが変化する。このため、高周波信号S1の増幅度は、
制御信号S2の電圧値により可変制御される。
For example, when the first D-type FET 2 is to be turned on during the period from time t1 to t2, the first D-type FET 2 is turned on.
A control signal S2 having a positive voltage value is supplied to the gate electrode G of the type FET2. The drain current I supplied to the second D-type FET 3 depends on the voltage value of the control signal S2.
D changes. Therefore, the amplification of the high-frequency signal S1 is
It is variably controlled by the voltage value of the control signal S2.

【0011】一方、高周波電力増幅回路1において、出
力信号Voutを零とする場合には、制御信号S2によっ
て第一のD型FET2をオフ制御し、第二のD型FET
3に供給されるドレイン電流IDを零にする。
On the other hand, when the output signal Vout is set to zero in the high frequency power amplifier circuit 1, the first D-type FET 2 is turned off by the control signal S2, and the second D-type FET is turned off.
The drain current ID supplied to 3 is set to zero.

【0012】例えば、時刻t2からt3の期間において
第一のD型FET2をオフ制御する場合には、第一のD
型FET2のゲ−ト電極Gには、電圧VGSがピンチオフ
電圧Vpよりも深くなる負の電圧値である制御信号S2
が供給される。
For example, when the first D-type FET 2 is to be turned off during a period from time t2 to t3, the first D-type FET 2 is turned off.
A control signal S2 having a negative voltage value at which the voltage VGS becomes deeper than the pinch-off voltage Vp is applied to the gate electrode G of the type FET2.
Is supplied.

【0013】以下、同様の回路動作を繰り返す。Hereinafter, the same circuit operation is repeated.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、高周波
電力増幅回路1では、第一のD型FET2のゲ−ト電極
Gに入力される制御信号S2として、正負の電圧値が必
要となる。このため、高周波電力増幅回路1を利用する
場合には、正負の電圧を発生させる回路が別途必要とな
り、高周波電力増幅回路1を用いた通信回路の回路構成
が複雑となっていた。従って、部品点数が増えて生産コ
ストが高くなるという問題や、通信回路が大きくなるた
めに通信機器を小型化することができないという問題
や、生産時の検査項目が増える等、種々の問題があっ
た。
However, in the high-frequency power amplifier circuit 1, positive and negative voltage values are required as the control signal S2 input to the gate electrode G of the first D-type FET 2. Therefore, when using the high-frequency power amplifier circuit 1, a circuit for generating positive and negative voltages is separately required, and the circuit configuration of the communication circuit using the high-frequency power amplifier circuit 1 is complicated. Therefore, there are various problems such as a problem that the number of parts increases and the production cost increases, a problem that the communication device cannot be downsized due to a large communication circuit, and an increase in inspection items at the time of production. Was.

【0015】そこで、本発明は上記問題を解決するため
の高周波電力増幅回路を提供することを目的とする。
Therefore, an object of the present invention is to provide a high-frequency power amplifier circuit for solving the above problem.

【0016】[0016]

【課題を解決するための手段】本発明の高周波電力増幅
回路は、上記目的を達成するために次のように構成され
る。すなわち、エンハンスメント型電界効果トランジス
タとデプレッション型電界効果トランジスタとを有し、
該デプレッション型電界効果トランジスタのドレイン電
極と前記エンハンスメント型電界効果トランジスタのソ
−ス電極とをカスコ−ド接続し、前記デプレッション型
電界効果トランジスタのゲ−ト電極に高周波信号を入力
し、前記エンハンスメント型電界効果トランジスタのゲ
−ト電極に正の制御信号を入力するとともにドレイン電
極から増幅された高周波信号を出力信号として取り出す
ものである。
A high frequency power amplifier circuit according to the present invention is configured as follows to achieve the above object. That is, it has an enhancement type field effect transistor and a depletion type field effect transistor,
A drain electrode of the depletion type field effect transistor is cascade-connected to a source electrode of the enhancement type field effect transistor, and a high frequency signal is inputted to a gate electrode of the depletion type field effect transistor, thereby obtaining the enhancement type. A positive control signal is input to the gate electrode of the field effect transistor, and an amplified high-frequency signal is extracted from the drain electrode as an output signal.

【0017】カスコ−ド接続されたエンハンスメント型
電界効果トランジスタは、ゲ−ト電極に入力される制御
信号によってオン・オフ制御され、デプレッション型電
界効果トランジスタの増幅作用を制御する。エンハンス
メント型電界効果トランジスタのピンチオフ電圧は、正
の電圧値である。従って、制御信号は正の電位でよく、
ゲ−ト電極に正電圧を印加することにより増幅回路の増
幅動作を制御することができる。また、エンハンスメン
ト型電界効果トランジスタをオフ制御する場合には、ゲ
−ト電極に入力される制御信号はピンチオフ電圧よりも
低い電圧、すなわち正のカットオフ電圧または零電圧で
よい。さらに、制御信号の電圧値を変えることにより、
増幅回路の増幅度が可変制御される。このように、高周
波電力増幅回路の制御信号として負電圧は必要とせず、
正電圧のみでよい。
The enhancement-type field-effect transistors connected in cascade are turned on and off by a control signal input to the gate electrode, and control the amplifying action of the depletion-type field-effect transistors. The pinch-off voltage of the enhancement field effect transistor has a positive voltage value. Therefore, the control signal may be a positive potential,
The amplification operation of the amplifier circuit can be controlled by applying a positive voltage to the gate electrode. When the enhancement type field effect transistor is turned off, the control signal input to the gate electrode may be a voltage lower than the pinch off voltage, that is, a positive cutoff voltage or zero voltage. Furthermore, by changing the voltage value of the control signal,
The amplification degree of the amplifier circuit is variably controlled. Thus, a negative voltage is not required as a control signal for the high-frequency power amplifier circuit,
Only a positive voltage is required.

【0018】[0018]

【発明の実施の形態】本発明に係る高周波電力増幅回路
4は、カスコ−ド接続されたエンハンスメント型電界効
果トランジスタ(以下「E型FET」という)5とD型
FET6とから構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-frequency power amplifier circuit 4 according to the present invention comprises a cascade-connected enhancement type field effect transistor (hereinafter referred to as "E-type FET") 5 and a D-type FET 6.

【0019】まず、図2(b)を用いて、E型FETに
ついて概略説明する。E型FETのピンチオフ電圧VP
は、正の電圧値である。E型FETの電圧VGSがピンチ
オフ電圧VPを越えるとドレイン電流IDが徐々に流れ始
め、電圧VGSをさらに大きくしていくとドレイン電流I
Dは飽和する。従って、E型FETは、正電位の範囲の
電圧VGSでドレイン電流IDの電流値を変えることがで
きる。
First, an E-type FET will be schematically described with reference to FIG. E-type FET pinch-off voltage VP
Is a positive voltage value. When the voltage VGS of the E-type FET exceeds the pinch-off voltage VP, the drain current ID starts to flow gradually, and when the voltage VGS is further increased, the drain current ID increases.
D saturates. Therefore, the E-type FET can change the current value of the drain current ID at the voltage VGS in the positive potential range.

【0020】次に、図1を用いて、高周波電力増幅回路
4の回路構成および回路動作について説明する。なお、
図3における高周波電力増幅回路1との相違点は、第一
のD型FET2をE型FET5に置き換えた点である。
従って、この点についてのみ説明する。
Next, the circuit configuration and operation of the high-frequency power amplifier circuit 4 will be described with reference to FIG. In addition,
The difference from the high frequency power amplifier circuit 1 in FIG. 3 is that the first D-type FET 2 is replaced with an E-type FET 5.
Therefore, only this point will be described.

【0021】制御信号S3は、ゲ−ト端子T4を介して
E型FET5のゲ−ト電極Gに入力される。制御信号S
3は、方形波やパルス波で、増幅回路の増幅作用を制御
する。なお、方形波やパルス波により、通信機器に割り
当てられた一つの周波数チャンネルは送信用フレ−ムと
受信用フレ−ムとに交互に分割されて使用される。
The control signal S3 is input to the gate electrode G of the E-type FET 5 via the gate terminal T4. Control signal S
Reference numeral 3 denotes a square wave or a pulse wave, which controls an amplifying operation of the amplifier circuit. One frequency channel assigned to a communication device by a square wave or a pulse wave is used by being alternately divided into a transmission frame and a reception frame.

【0022】また、高周波信号S1を増幅した出力信号
Voutは、E型FET5のドレイン電極Dに接続した出
力端子T5から取り出される。
An output signal Vout obtained by amplifying the high-frequency signal S1 is taken out from an output terminal T5 connected to the drain electrode D of the E-type FET 5.

【0023】高周波電力増幅回路4の動作において、制
御信号S3の電圧値によってE型FET5の導通状態を
決める。従って、D型FET6には、E型FET5の特
性曲線で定められた所定のドレイン電流IDが供給され
る。
In the operation of the high-frequency power amplifier circuit 4, the conduction state of the E-type FET 5 is determined by the voltage value of the control signal S3. Accordingly, a predetermined drain current ID determined by the characteristic curve of the E-type FET 5 is supplied to the D-type FET 6.

【0024】例えば、時刻t1からt2の期間におい
て、E型FET5をオン制御する場合には、E型FET
5のゲ−ト電極Gには、正の信号電圧が印加される。な
お、制御信号S3の電圧値により、D型FET6に供給
されるドレイン電流IDが変化する。このため、高周波
信号S1の増幅度は、制御信号S3の電圧値により可変
制御される。例えば、通信機器の受信感度あるいは送信
感度に応じて、制御信号S3の電圧値(波高値)が設定
される。
For example, when the E-type FET 5 is to be turned on during a period from time t1 to t2, the E-type FET 5
A positive signal voltage is applied to the fifth gate electrode G. The drain current ID supplied to the D-type FET 6 changes according to the voltage value of the control signal S3. Therefore, the amplification of the high frequency signal S1 is variably controlled by the voltage value of the control signal S3. For example, the voltage value (peak value) of the control signal S3 is set according to the reception sensitivity or the transmission sensitivity of the communication device.

【0025】増幅動作中の高周波電力増幅回路4を停止
するには、制御信号S3の電圧値を下げてE型FET5
をカットオフにする。即ち、D型FET6に供給される
ドレイン電流IDを零にする。
In order to stop the high-frequency power amplifier circuit 4 during the amplification operation, the voltage value of the control signal S3 is reduced and the E-type FET 5
To cut off. That is, the drain current ID supplied to the D-type FET 6 is set to zero.

【0026】例えば、時刻t2からt3の期間において
E型FET5のゲ−ト電極Gには、電圧VGSがピンチオ
フ電圧Vpよりも小さくなるような正の電圧値または零
ボルト電圧の制御信号S3が供給される。ここに、E型
FET5はカットオフとなり、増幅回路4の増幅作用が
停止する。
For example, during the period from time t2 to time t3, a control signal S3 of a positive voltage value or a zero volt voltage is supplied to the gate electrode G of the E-type FET 5 so that the voltage VGS becomes smaller than the pinch-off voltage Vp. Is done. Here, the E-type FET 5 is cut off, and the amplification operation of the amplifier circuit 4 is stopped.

【0027】以下、同様の回路動作を繰り返す。Hereinafter, the same circuit operation is repeated.

【0028】[0028]

【発明の効果】本発明の高周波電力増幅回路では、カス
コ−ド接続のE型FETとD型FETとから構成され
る。このため、E型FETをオフ制御する場合、E型F
ETのゲ−ト電極Gに入力される制御信号として負の電
圧値は必要無く、正の電圧値または零ボルト電圧のみで
良い。従って、本発明の高周波電力増幅回路を用いた通
信回路においては、正負の信号電圧を発生させる回路が
不要となるため回路構成が極めて簡略化される。この結
果、生産コストの低減や、通信機器を小型化することが
できる等の効果を有する。
The high frequency power amplifier circuit of the present invention comprises a cascode-connected E-type FET and D-type FET. Therefore, when the E-type FET is turned off, the E-type F
A negative voltage value is not required as a control signal input to the gate electrode G of the ET, and only a positive voltage value or a zero volt voltage is required. Therefore, in a communication circuit using the high-frequency power amplifier circuit of the present invention, a circuit for generating positive and negative signal voltages is not required, so that the circuit configuration is extremely simplified. As a result, there are effects such as reduction of production cost and downsizing of communication equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高周波電力増幅回路と、高周波電
力増幅回路に入力される入力信号と、高周波電力増幅回
路から取り出される出力信号を示す図である。
FIG. 1 is a diagram illustrating a high-frequency power amplifier circuit according to the present invention, an input signal input to the high-frequency power amplifier circuit, and an output signal extracted from the high-frequency power amplifier circuit.

【図2】図2(a)はデプレッション型電界効果トラン
ジスタにおけるID-VGSの関係を示す特性図であり、図
2(b)はエンハンスメント型電界効果トランジスタに
おけるID-VGSの関係を示す特性図である。
FIG. 2A is a characteristic diagram showing a relationship between ID and VGS in a depletion type field effect transistor, and FIG. 2B is a characteristic diagram showing a relationship between ID and VGS in an enhancement type field effect transistor. is there.

【図3】従来に係る高周波電力増幅回路と、高周波電力
増幅回路に入力される入力信号と、高周波電力増幅回路
から取り出される出力信号を示す図である。
FIG. 3 is a diagram illustrating a conventional high-frequency power amplifier, an input signal input to the high-frequency power amplifier, and an output signal extracted from the high-frequency power amplifier.

【符号の説明】[Explanation of symbols]

4 高周波電力増幅回路 5 エンハンスメント型電界効果トランジスタ(E
型FET) 6 デプレッション型電界効果トランジスタ (D
型FET) S1 高周波信号 S3 制御信号 Vout 出力信号
4 High frequency power amplifier circuit 5 Enhancement type field effect transistor (E
Type FET) 6 Depletion type field effect transistor (D
Type FET) S1 High frequency signal S3 Control signal Vout Output signal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J067 AA01 AA13 AA24 AA26 AA41 AA66 CA81 CA92 FA01 FA10 HA14 HA15 HA16 KA12 KA47 KA48 KA53 MA17 MA21 MA22 SA14 TA01 TA06 5J092 AA01 AA13 AA24 AA26 AA41 AA66 CA81 CA92 FA01 FA10 HA14 HA15 HA16 KA12 KA47 KA48 KA53 MA17 MA21 MA23 SA14 TA01 TA06 VL08  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 5J067 AA01 AA13 AA24 AA26 AA41 AA66 CA81 CA92 FA01 FA10 HA14 HA15 HA16 KA12 KA47 KA48 KA53 MA17 MA21 MA22 SA14 TA01 TA06 5J092 AA01 AA13 AA24 AA26 CAA14 CA14 KA12 KA47 KA48 KA53 MA17 MA21 MA23 SA14 TA01 TA06 VL08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンハンスメント型電界効果トランジス
タとデプレッション型電界効果トランジスタとを有し、
該デプレッション型電界効果トランジスタのドレイン電
極と前記エンハンスメント型電界効果トランジスタのソ
−ス電極とをカスコ−ド接続し、前記デプレッション型
電界効果トランジスタのゲ−ト電極に高周波信号を入力
し、前記エンハンスメント型電界効果トランジスタのゲ
−ト電極に正の制御信号を入力するとともにドレイン電
極から増幅された高周波信号を出力信号として取り出す
ことを特徴とする高周波電力増幅回路。
1. An electronic device comprising: an enhancement type field effect transistor and a depletion type field effect transistor;
The drain electrode of the depletion type field effect transistor is cascade-connected to the source electrode of the enhancement type field effect transistor, and a high frequency signal is input to the gate electrode of the depletion type field effect transistor, and the enhancement type A high-frequency power amplifier circuit characterized in that a positive control signal is input to a gate electrode of a field effect transistor and a high-frequency signal amplified from a drain electrode is extracted as an output signal.
JP27171498A 1998-09-25 1998-09-25 High frequency power amplifier circuit Expired - Fee Related JP3731358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27171498A JP3731358B2 (en) 1998-09-25 1998-09-25 High frequency power amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27171498A JP3731358B2 (en) 1998-09-25 1998-09-25 High frequency power amplifier circuit

Publications (2)

Publication Number Publication Date
JP2000101356A true JP2000101356A (en) 2000-04-07
JP3731358B2 JP3731358B2 (en) 2006-01-05

Family

ID=17503828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27171498A Expired - Fee Related JP3731358B2 (en) 1998-09-25 1998-09-25 High frequency power amplifier circuit

Country Status (1)

Country Link
JP (1) JP3731358B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023634A2 (en) * 2000-09-15 2002-03-21 Atheros Communications, Inc. Cmos transceiver having an integrated power amplifier
US7113744B1 (en) 1999-10-21 2006-09-26 Broadcom Corporation Adaptive radio transceiver with a power amplifier
WO2011097302A2 (en) * 2010-02-05 2011-08-11 Transphorm Inc. Semiconductor electronic components and circuits
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US8455931B2 (en) 2009-11-02 2013-06-04 Transphorm Inc. Package configurations for low EMI circuits
US8508281B2 (en) 2008-02-12 2013-08-13 Transphorm Inc. Bridge circuits and their components
US8648643B2 (en) 2012-02-24 2014-02-11 Transphorm Inc. Semiconductor power modules and devices
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9209176B2 (en) 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
US9537425B2 (en) 2013-07-09 2017-01-03 Transphorm Inc. Multilevel inverters and their components
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US10200030B2 (en) 2015-03-13 2019-02-05 Transphorm Inc. Paralleling of switching devices for high power circuits
US10319648B2 (en) 2017-04-17 2019-06-11 Transphorm Inc. Conditions for burn-in of high power semiconductors
JP2019138701A (en) * 2018-02-07 2019-08-22 株式会社東芝 Radar device and guiding device

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014719B2 (en) 1999-10-21 2011-09-06 Broadcom Corporation Adaptive radio transceiver with a power amplifier
US7113744B1 (en) 1999-10-21 2006-09-26 Broadcom Corporation Adaptive radio transceiver with a power amplifier
US7860454B2 (en) 1999-10-21 2010-12-28 Broadcom Corporation Adaptive radio transceiver with a power amplifier
WO2002023634A3 (en) * 2000-09-15 2002-06-20 Atheros Comm Inc Cmos transceiver having an integrated power amplifier
US6504433B1 (en) 2000-09-15 2003-01-07 Atheros Communications, Inc. CMOS transceiver having an integrated power amplifier
US6504431B2 (en) 2000-09-15 2003-01-07 Atheros Communications, Inc. CMOS transceiver having an integrated power amplifier
US6850117B2 (en) 2000-09-15 2005-02-01 Atheros Communications, Inc. CMOS transceiver having an integrated power amplifier
KR100823241B1 (en) * 2000-09-15 2008-04-18 애서러스 커뮤니케이션즈 인코포레이티드 A breakdown resistant transistor structure for amplifying communication signals
WO2002023634A2 (en) * 2000-09-15 2002-03-21 Atheros Communications, Inc. Cmos transceiver having an integrated power amplifier
US9899998B2 (en) 2008-02-12 2018-02-20 Transphorm Inc. Bridge circuits and their components
US8912839B2 (en) 2008-02-12 2014-12-16 Transphorm Inc. Bridge circuits and their components
US8508281B2 (en) 2008-02-12 2013-08-13 Transphorm Inc. Bridge circuits and their components
US9690314B2 (en) 2008-09-23 2017-06-27 Transphorm Inc. Inductive load power switching circuits
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US8816751B2 (en) 2008-09-23 2014-08-26 Transphorm Inc. Inductive load power switching circuits
US8493129B2 (en) 2008-09-23 2013-07-23 Transphorm Inc. Inductive load power switching circuits
US8531232B2 (en) 2008-09-23 2013-09-10 Transphorm Inc. Inductive load power switching circuits
US8890314B2 (en) 2009-11-02 2014-11-18 Transphorm, Inc. Package configurations for low EMI circuits
US9190295B2 (en) 2009-11-02 2015-11-17 Transphorm Inc. Package configurations for low EMI circuits
US8592974B2 (en) 2009-11-02 2013-11-26 Transphorm Inc. Package configurations for low EMI circuits
US8455931B2 (en) 2009-11-02 2013-06-04 Transphorm Inc. Package configurations for low EMI circuits
US9401341B2 (en) 2010-01-08 2016-07-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
WO2011097302A3 (en) * 2010-02-05 2011-11-17 Transphorm Inc. Semiconductor electronic components and circuits
WO2011097302A2 (en) * 2010-02-05 2011-08-11 Transphorm Inc. Semiconductor electronic components and circuits
CN102754206A (en) * 2010-02-05 2012-10-24 特兰斯夫公司 Semiconductor electronic components and circuits
US8624662B2 (en) 2010-02-05 2014-01-07 Transphorm Inc. Semiconductor electronic components and circuits
US9293458B2 (en) 2010-02-05 2016-03-22 Transphorm Inc. Semiconductor electronic components and circuits
US9041435B2 (en) 2011-02-28 2015-05-26 Transphorm Inc. Method of forming electronic components with reactive filters
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US9818686B2 (en) 2011-12-07 2017-11-14 Transphorm Inc. Semiconductor modules and methods of forming the same
US9209176B2 (en) 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
US9741702B2 (en) 2012-02-24 2017-08-22 Transphorm Inc. Semiconductor power modules and devices
US9224721B2 (en) 2012-02-24 2015-12-29 Transphorm Inc. Semiconductor power modules and devices
US8648643B2 (en) 2012-02-24 2014-02-11 Transphorm Inc. Semiconductor power modules and devices
US8952750B2 (en) 2012-02-24 2015-02-10 Transphorm Inc. Semiconductor power modules and devices
US9171910B2 (en) 2012-07-16 2015-10-27 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9443849B2 (en) 2012-07-16 2016-09-13 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9362903B2 (en) 2013-04-01 2016-06-07 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9537425B2 (en) 2013-07-09 2017-01-03 Transphorm Inc. Multilevel inverters and their components
US9660640B2 (en) 2014-07-03 2017-05-23 Transphorm Inc. Switching circuits having ferrite beads
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9991884B2 (en) 2014-07-03 2018-06-05 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US10063138B1 (en) 2014-07-17 2018-08-28 Transphorm Inc. Bridgeless power factor correction circuits
US10200030B2 (en) 2015-03-13 2019-02-05 Transphorm Inc. Paralleling of switching devices for high power circuits
US10319648B2 (en) 2017-04-17 2019-06-11 Transphorm Inc. Conditions for burn-in of high power semiconductors
JP2019138701A (en) * 2018-02-07 2019-08-22 株式会社東芝 Radar device and guiding device
JP7000185B2 (en) 2018-02-07 2022-01-19 株式会社東芝 Radar and guidance system

Also Published As

Publication number Publication date
JP3731358B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2000101356A (en) High frequency power amplifier circuit
US5907259A (en) Operational amplification circuit capable of driving a high load
JP2807853B2 (en) Output circuit
JP2007053734A (en) Differential superposition circuit for linearization
WO2004047351B1 (en) Radio frequency power amplifier adaptive bias control circuit
US6353344B1 (en) High impedance bias circuit
US6208199B1 (en) Pulse amplifier with low duty cycle errors
JPH04227103A (en) Driver circuit
US6985028B2 (en) Programmable linear-in-dB or linear bias current source and methods to implement current reduction in a PA driver with built-in current steering VGA
EP0618674B1 (en) Voltage-to-current conversion circuit
JP3105489B2 (en) amplifier
GB2593279A (en) Dual bootstrapping for an open-loop pulse width modulation driver
US6570450B2 (en) Efficient AC coupled CMOS RF amplifier
KR20050026921A (en) Current shutdown circuit for active bias circuit having process variation compensation
KR100336808B1 (en) Operational Amplifier
JP2001102877A (en) Amplifier circuit and radio equipment using the same
CN102118138A (en) Low distortion mos attenuator
US4956613A (en) Differential amplifier having externally controllable power consumption
US6452370B1 (en) Low noise biasing technique
JPH09162657A (en) Microwave power amplifier circuit
JP3052039B2 (en) Input amplifier circuit
JP3153970B2 (en) Single balance mixer circuit
JPS5819855Y2 (en) FET amplifier
JPH0292005A (en) Voltage buffer amplifier
KR19980020815U (en) High frequency power amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees