JP2000100741A - Manufacturing method for semiconductor device - Google Patents
Manufacturing method for semiconductor deviceInfo
- Publication number
- JP2000100741A JP2000100741A JP10281955A JP28195598A JP2000100741A JP 2000100741 A JP2000100741 A JP 2000100741A JP 10281955 A JP10281955 A JP 10281955A JP 28195598 A JP28195598 A JP 28195598A JP 2000100741 A JP2000100741 A JP 2000100741A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- film
- concentration
- semiconductor layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Weting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,フィルム状拡散ソ
ースを用いてウェハに不純物を拡散して,半導体層を形
成させる半導体装置の製造方法に関するものである。The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor layer is formed by diffusing impurities into a wafer using a film-like diffusion source.
【0002】[0002]
【従来の技術】フィルム状拡散ソースを用いてウェハに
不純物を拡散して,半導体層を形成させる半導体装置の
製造方法(以下フィルム拡散法という)は,P型不純物
とN型不純物とを同時に拡散できる利点を有している
が,拡散後,ウェハに残さが残りこの残さを除く必要が
ある。2. Description of the Related Art In a method of manufacturing a semiconductor device in which a semiconductor layer is formed by diffusing impurities into a wafer using a film-like diffusion source (hereinafter referred to as a film diffusion method), a P-type impurity and an N-type impurity are simultaneously diffused. Although it has the advantage that it can be obtained, after diffusion, a residue remains on the wafer and it is necessary to remove this residue.
【0003】フィルム拡散法を用いてダイオードと形成
させる場合,例えば図2のようにN型で低濃度のウェハ
41の上にP型で高濃度のフィルム状拡散ソース42を
搭載し,このフィルム状拡散ソース42の上にN型で低
濃度のウェハ43を搭載する。さらに,このウェハ43
の上にN型で高濃度のフィルム状拡散ソース44を搭載
する。このフィルム状拡散ソース44の上に,N型で低
濃度のウェハ45を搭載する。さらに,このウェハ45
の上にP型で高濃度のフィルム状拡散ソース46を搭載
し,このフィルム状拡散ソース46の上にN型で低濃度
のウェハ47を搭載する。さらにこのウェハ47の上に
N型で高濃度のフィルム状拡散ソース48を搭載し,こ
のフィルム状拡散ソース48の上にN型で低濃度のN型
のウェハー49を搭載する。When a diode is formed by the film diffusion method, for example, as shown in FIG. 2, a P-type high-concentration film-type diffusion source 42 is mounted on an N-type low-concentration wafer 41, and this film-type diffusion source is mounted. An N-type low-concentration wafer 43 is mounted on the diffusion source 42. Further, the wafer 43
An N-type high-concentration film-like diffusion source 44 is mounted thereon. An N-type low-concentration wafer 45 is mounted on the film-like diffusion source 44. Further, the wafer 45
A P-type high-concentration film-type diffusion source 46 is mounted on the substrate, and an N-type low-concentration wafer 47 is mounted on the film-type diffusion source 46. Further, an N-type high-concentration film-type diffusion source 48 is mounted on the wafer 47, and an N-type low-concentration N-type wafer 49 is mounted on the film-type diffusion source 48.
【0004】このようにウェハとフィルム状拡散ソース
を重ねたブロックは,拡散炉に入れられ,高温,例えば
1250℃で90分拡散される。例えば下から3段目の
ウェハ45は,図3に示すように低濃度のN型の半導体
基板45aの下側に高濃度のN型半導体層45bが形成
し,上側には高濃度のP型半導体層45cが形成され
る。 さらに,N+半導体層45bの下部には非常に高
濃度のN++半導体層45dと,P+半導体層45cの
上部に非常に高濃度のP++半導体層45eが約数μm
で形成されている。[0004] The block in which the wafer and the film-like diffusion source are overlapped in this manner is placed in a diffusion furnace and diffused at a high temperature, for example, 1250 ° C for 90 minutes. For example, in the third wafer 45 from the bottom, as shown in FIG. 3, a high-concentration N-type semiconductor layer 45b is formed below a low-concentration N-type semiconductor substrate 45a, and a high-concentration P-type semiconductor layer 45b is formed on the upper side. The semiconductor layer 45c is formed. Further, a very high-concentration N ++ semiconductor layer 45d is formed below the N + semiconductor layer 45b, and a very high-concentration P ++ semiconductor layer 45e is formed about several μm above the P + semiconductor layer 45c.
It is formed with.
【0005】フィルム状拡散ソースの拡散後,フィルム
状拡散ソースは,フィルム残さとしてウェハとウェハと
の間に残っている。このため,図4の1に示すように,
ウェハのブロックをフッ酸に,例えば約24時間浸漬さ
せると,フィルム残さが除かれる。この時,ウェハとウ
ェハとの間に上記フッ酸が残り,隣り合うウェハが貼り
付いた状態となっている。このため,図4の2に示すよ
うに,水中で超音波放射しつつ洗浄を行い,図4の3に
示すように手作業により隣り合うウェハを分離させてい
る。After diffusion of the film-form diffusion source, the film-form diffusion source remains between the wafers as a film residue. Therefore, as shown in FIG.
When the block of the wafer is immersed in hydrofluoric acid, for example, for about 24 hours, the film residue is removed. At this time, the hydrofluoric acid remains between the wafers, and the adjacent wafers are stuck. Therefore, as shown in FIG. 4B, cleaning is performed while radiating ultrasonic waves in water, and adjacent wafers are manually separated as shown in FIG.
【0006】このようにして形成されたウェハは,図3
に示すように,N++半導体層45dの下部及びP++
半導体層45eの上部には,それぞれフィルムの有機物
を含み,半導体特性に供しない不純物層45fと45g
が形成されている。このため,図4の4で示すように弱
酸を用いて半導体特性を供しない薄い不純物層45f,
45gを含み,半導体層45d,45eをシリコンエッ
チングする。これにより,不純物層45fと非常に高濃
度のN++半導体層45dとは,高濃度のN型半導体層
45bから浮き上がった状態の被膜となっている。ま
た,不純物層45gと非常に高濃度のP++半導体層4
5eとは,高濃度のP型半導体層45cから浮き上がっ
た状態の被膜となっている。このシリコンエッチング
後,図4の5で示すように洗浄を行う。[0006] The wafer thus formed is shown in FIG.
As shown in the figure, the lower part of the N ++ semiconductor layer 45d and P ++
Above the semiconductor layer 45e, impurity layers 45f and 45g each containing a film organic substance and not providing semiconductor characteristics are provided.
Are formed. For this reason, as shown by 4 in FIG. 4, a thin impurity layer 45f which does not provide semiconductor characteristics by using a weak acid is used.
The semiconductor layers 45d and 45e are etched by silicon, including 45g. As a result, the impurity layer 45f and the very high-concentration N ++ semiconductor layer 45d form a coating that is raised from the high-concentration N-type semiconductor layer 45b. Further, the impurity layer 45g and the very high concentration P ++ semiconductor layer 4
5e is a film in a state of being lifted from the high concentration P-type semiconductor layer 45c. After this silicon etching, cleaning is performed as shown by 5 in FIG.
【0007】シリコンエッチングされ洗浄されたウェハ
のN+半導体層45bの下部と,P+半導体層45cの
上部に薄い皮膜が形成されており,この被膜は図4の6
に示すようにスクラブされて除かれ,さらに図4の7に
示すように洗浄される。この後,図4の8に示すように
ウェハはドライブ拡散され,所定のウェハが得られる。[0007] Thin films are formed on the lower portion of the N + semiconductor layer 45b and on the upper portion of the P + semiconductor layer 45c of the silicon-etched and cleaned wafer.
Then, it is scrubbed away as shown in FIG. 4 and further washed as shown in FIG. Thereafter, the wafer is drive-diffused as shown at 8 in FIG. 4 to obtain a predetermined wafer.
【0008】[0008]
【発明が解決しようとする課題】ところが,スクラブは
ウェハ一枚一枚行われるため,作業工数のかかる工程で
あった。また,不純物層45f,45gの除去精度は,
図4の4のシリコンエッチング時のエッチング量に大き
く影響されるため,エッチング量の管理が必要である。
このエッチング量の管理は非常に難しく,工程の安定が
困難であった。However, since scrubbing is performed one by one, it requires a lot of man-hours. The removal accuracy of the impurity layers 45f and 45g is as follows.
Since the amount of etching at the time of silicon etching of 4 in FIG. 4 is greatly affected, it is necessary to control the amount of etching.
It was very difficult to control the amount of etching, and it was difficult to stabilize the process.
【0009】[0009]
【課題を解決するための手段】本発明の半導体装置の製
造方法は,低濃度のウェハと高濃度のフィルム状拡散ソ
ースとを積み重ねて加熱する拡散工程と,上記拡散後フ
ッ酸により上記フィルム拡散ソースのフィルム残さを除
き,上記ウェハを分離する工程と,上記ウェハを分離
後,低温で酸化しウェハの表面に酸化膜を形成する工程
と,上記酸化膜形成後希フッ酸により上記酸化膜を除去
する工程と,上記酸化膜除去後シリコンエッチングする
エッチング工程と,エッチング後ドライブ拡散する工程
からなるものである。According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a diffusion step in which a low-concentration wafer and a high-concentration film-like diffusion source are stacked and heated; A step of separating the wafer except for the source film residue, a step of separating the wafer and then oxidizing at a low temperature to form an oxide film on the surface of the wafer, and forming the oxide film with dilute hydrofluoric acid after forming the oxide film. It comprises a removing step, an etching step of etching silicon after removing the oxide film, and a step of drive diffusion after etching.
【0010】低濃度のウェハと,高濃度のフィルム状拡
散ソースとを積み重ねて加熱し,フィルム状拡散ソース
から不純物をウェハに拡散する。拡散後,フィルム状拡
散ソースのフィルム残さを取り除き,ウェハを一枚一枚
に分離する。分離後各ウェハを低温で酸化し,ウェハの
表面に酸化膜を形成する。酸化膜形成後希フッ酸により
酸化膜とともにウェハ表面の不純物層を除去する。酸化
膜を除去後ウェハ表面の非常に高濃度に拡散された半導
体層をエッチングにより除去する。さらにエッチング後
ドライブ拡散し安定したウェハの半導体装置を得る。A low-concentration wafer and a high-concentration film-form diffusion source are stacked and heated to diffuse impurities from the film-form diffusion source to the wafer. After the diffusion, the film residue of the film-form diffusion source is removed, and the wafers are separated one by one. After the separation, each wafer is oxidized at a low temperature to form an oxide film on the surface of the wafer. After the oxide film is formed, the impurity layer on the wafer surface is removed together with the oxide film using diluted hydrofluoric acid. After removing the oxide film, the semiconductor layer diffused to a very high concentration on the wafer surface is removed by etching. Further, after etching, drive diffusion is performed to obtain a stable wafer semiconductor device.
【0011】[0011]
【発明の実施の形態】本発明を,その実施の形態を示し
た図1に基づいて説明する。図1において,図4と異な
る点は,従来の図4のものはN+半導体層45bの下部
に形成された薄い被膜と,P+半導体層45cの上部に
形成された薄い被覆をシリコンエッチング後にスクラブ
によって除かれていたのに対し,図1のものは各ウェハ
を分離した後,低温でN+半導体層45bの下部及びP
+半導体層45cの上部まで酸化膜を形成し,この酸化
膜とともに不純物を希フッ酸により除くものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 showing an embodiment thereof. In FIG. 1, the point different from FIG. 4 is that the conventional thin film shown in FIG. 4 is formed by scrubbing a thin film formed under the N + semiconductor layer 45b and a thin film formed over the P + semiconductor layer 45c after silicon etching. On the other hand, in the case of FIG. 1, after separating each wafer, the lower part of the N + semiconductor layer 45b and the P
+ An oxide film is formed up to the upper portion of the semiconductor layer 45c, and impurities are removed together with the oxide film by dilute hydrofluoric acid.
【0012】すなわち,図2に示すように,ウェハと高
濃度のN型フィルム状拡散ソースと,ウェハと高濃度の
P型フィルム状拡散ソースとを交互に重ねたブロック
を,図1の1に示すように高温,例えば1250℃で9
0分拡散する。拡散後,図1の2に示すようにブロック
をフッ酸に,例えば24時間浸漬させると,フィルム状
拡散ソースの残さが除かれる。さらに図1の3に示すよ
うに,純水中で超音波照射しつつ洗浄を行い,手作業に
より隣り合うウェハ同志を一枚一枚を分離させる。この
時,例えば図3に示すように中央の低濃度のN型半導体
層45aと,その下側に高濃度のN+型半導体層45b
が形成され,N型半導体層45aの上側に高濃度のP+
型半導体層45cが形成される。さらにN+半導体層4
5bの下部及びP+半導体層45cの上部には,それぞ
れ厚みが数μmで非常に高濃度のN++半導体層45d
及び非常に高濃度のP++半導体層45eが形成され,
さらにN++半導体層45dの下部及びP++半導体層
45eの上部にはそれぞれフィルム状拡散ソースの有機
物を含めた半導体特性に供しない不純物層45f,45
gが形成されている。That is, as shown in FIG. 2, a block in which a wafer and a high-concentration N-type film-like diffusion source and a wafer and a high-concentration P-type film-like diffusion source are alternately stacked is shown in FIG. As shown, 9 ° C at high temperature, eg 1250 ° C
Spread for 0 minutes. After diffusion, the block is immersed in hydrofluoric acid, for example, for 24 hours as shown in FIG. Further, as shown in FIG. 1C, cleaning is performed while irradiating ultrasonic waves in pure water, and adjacent wafers are manually separated one by one. At this time, for example, as shown in FIG. 3, a low-concentration N-type semiconductor layer 45a at the center and a high-concentration N +
Is formed, and a high-concentration P + is formed above the N-type semiconductor layer 45a.
A type semiconductor layer 45c is formed. Further, N + semiconductor layer 4
5b and an upper part of the P + semiconductor layer 45c, each having a thickness of several μm and a very high concentration of the N ++ semiconductor layer 45d.
And a very high concentration P ++ semiconductor layer 45e is formed,
Further, impurity layers 45f and 45 which are not used for semiconductor characteristics including an organic substance of a film-form diffusion source are provided below the N ++ semiconductor layer 45d and above the P ++ semiconductor layer 45e, respectively.
g is formed.
【0013】このウェハを図1の4に示すように,低濃
度,例えば800℃で約1時間低温酸化させる。この
時,N++半導体層45dの表面及びP++半導体層4
5eの表面に酸化膜が形成される。この後,図1の5に
示すように,希フッ酸に約5分間浸漬すると,酸化膜と
ともに不純物層45f,45gが取り除かれる。The wafer is oxidized at a low concentration, for example, at 800 ° C. for about 1 hour at a low temperature, as shown in FIG. At this time, the surface of the N ++ semiconductor layer 45d and the P ++
An oxide film is formed on the surface of 5e. Thereafter, as shown by 5 in FIG. 1, when the substrate is immersed in dilute hydrofluoric acid for about 5 minutes, the impurity layers 45f and 45g are removed together with the oxide film.
【0014】不純物45f,45gが除かれたウェハ
は,図1の6に示すようにシリコンエッチングされる
と,N++半導体層45d及びP++半導体層45eが
除かれ,図1の7に示すように洗浄される。この後,図
1の8に示すように,ウェハはドライブ拡散されて,所
定の安定した半導体のウェハが得られる。The wafer from which the impurities 45f and 45g have been removed is subjected to silicon etching as shown at 6 in FIG. 1, so that the N ++ semiconductor layer 45d and the P ++ semiconductor layer 45e are removed and the wafer is cleaned as shown at 7 in FIG. Is done. Thereafter, as shown at 8 in FIG. 1, the wafer is drive-diffused to obtain a predetermined stable semiconductor wafer.
【0015】このようにして得られたウェハは,不純物
層並びに非常に高濃度で半導体特性に供しないN++半
導体層及びP++半導体層の除去がバッチによって数多
くのウェハを一度に処理することができる。The wafer thus obtained can remove many impurity layers and N ++ semiconductor layers and P ++ semiconductor layers which do not provide semiconductor characteristics at a very high concentration, so that a large number of wafers can be processed at once by batch.
【0016】上記実施の形態では,フィルム状拡散ソー
スをN型半導体の拡散ソースと,P型の拡散ソースを交
互に行っているが,これに限定されることがなくウェハ
の両面をN型の拡散ソースにすることも,また,ウェハ
の両面をP型の拡散ソースにすることもできる。また,
上記実施の形態では,ダイオードについて説明したが,
他の半導体装置にも適用することができる。In the above embodiment, the film-type diffusion source is an N-type semiconductor diffusion source and a P-type diffusion source alternately. However, the present invention is not limited to this. A diffusion source can be used, or both sides of the wafer can be P-type diffusion sources. Also,
In the above embodiment, the diode has been described.
The present invention can be applied to other semiconductor devices.
【0017】[0017]
【発明の効果】本発明の半導体の製造方法によれば,不
純物層並びに半導体特性に供しない非常に高濃度の半導
体層の除去を一度に数多く行うことができ,製造工程が
簡潔化され安価な半導体装置を提供することができる。According to the semiconductor manufacturing method of the present invention, a large number of removals of impurity layers and very high-concentration semiconductor layers which do not contribute to semiconductor characteristics can be performed at once, and the manufacturing process is simplified and inexpensive. A semiconductor device can be provided.
【図1】本発明の半導体装置の製造方法の一実施の形態
の工程のフローチャートである。FIG. 1 is a flowchart of the steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
【図2】図1の工程中のブロックの説明図である。FIG. 2 is an explanatory diagram of a block in the process of FIG. 1;
【図3】図1により製造される半導体装置の概略断面図
である。FIG. 3 is a schematic sectional view of the semiconductor device manufactured according to FIG. 1;
【図4】従来の半導体装置の製造方法の工程フローチャ
ートである。FIG. 4 is a process flowchart of a conventional semiconductor device manufacturing method.
41,43,45,47,49 ウェハ 42,46 (高濃度のP型の)フィルム状拡散ソース 44,48 (高濃度のN型の)フィルム状拡散ソース 45a (低濃度の)N型半導体層 45b (高濃度の)N+型半導体層 45c (高濃度の)P+型半導体層 45d (非常に高濃度の)N++型半導体層 45e (非常に高濃度の)P++型半導体層 45f,45g 不純物層 41, 43, 45, 47, 49 Wafers 42, 46 (high-concentration P-type) film-type diffusion source 44, 48 (high-concentration N-type) film-type diffusion source 45a (low-concentration) N-type semiconductor layer 45b (high concentration) N + type semiconductor layer 45c (high concentration) P + type semiconductor layer 45d (very high concentration) N ++ type semiconductor layer 45e (very high concentration) P ++ type semiconductor layer 45f, 45g impurity layer
Claims (1)
散ソースとを積み重ねて加熱する拡散工程と,上記拡散
後フッ酸により上記フィルム拡散ソースのフィルム残さ
を除き,上記ウェハを分離する工程と,上記ウェハを分
離後低温で酸化し,ウェハの表面に酸化膜を形成する工
程と,上記酸化膜形成後希フッ酸により上記酸化膜を除
去する工程と,上記酸化膜除去後シリコンエッチングす
るエッチング工程と,エッチング後ドライブ拡散する工
程からなる半導体装置の製造方法。A diffusion step of stacking and heating a low-concentration wafer and a high-concentration film diffusion source; and separating the wafer by removing the film residue of the film diffusion source with hydrofluoric acid after the diffusion. Forming the oxide film on the surface of the wafer by oxidizing the wafer at a low temperature after separation, removing the oxide film with dilute hydrofluoric acid after the formation of the oxide film, and etching the silicon after removing the oxide film. A method of manufacturing a semiconductor device, comprising: a step of performing drive diffusion after etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28195598A JP3441653B2 (en) | 1998-09-17 | 1998-09-17 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28195598A JP3441653B2 (en) | 1998-09-17 | 1998-09-17 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000100741A true JP2000100741A (en) | 2000-04-07 |
JP3441653B2 JP3441653B2 (en) | 2003-09-02 |
Family
ID=17646243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28195598A Expired - Fee Related JP3441653B2 (en) | 1998-09-17 | 1998-09-17 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3441653B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013207185A (en) * | 2012-03-29 | 2013-10-07 | Tokyo Ohka Kogyo Co Ltd | Method of diffusing impurity diffusion composition and method of manufacturing solar cell |
-
1998
- 1998-09-17 JP JP28195598A patent/JP3441653B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013207185A (en) * | 2012-03-29 | 2013-10-07 | Tokyo Ohka Kogyo Co Ltd | Method of diffusing impurity diffusion composition and method of manufacturing solar cell |
Also Published As
Publication number | Publication date |
---|---|
JP3441653B2 (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2980497B2 (en) | Method of manufacturing dielectric-isolated bipolar transistor | |
JP3265493B2 (en) | Method for manufacturing SOI substrate | |
JP2006270039A (en) | Laminated wafer and manufacturing method thereof | |
US5244830A (en) | Method for manufacturing a semiconductor substrate having a compound semiconductor layer on a single-crystal silicon wafer | |
JP3441653B2 (en) | Method for manufacturing semiconductor device | |
JPH05218374A (en) | Photoelectric device | |
JP2801704B2 (en) | Semiconductor substrate manufacturing method | |
JP4581349B2 (en) | Manufacturing method of bonded SOI wafer | |
JP2721265B2 (en) | Semiconductor substrate manufacturing method | |
JPH11162874A (en) | Ohmic joint electrode and semiconductor device using the same | |
JP2807717B2 (en) | Manufacturing method of semiconductor substrate | |
JP2930194B2 (en) | SOI wafer and method for manufacturing the same | |
JPH07283381A (en) | Manufacture of pasted semiconductor base body | |
JP3173392B2 (en) | Solar cell element and method of manufacturing the same | |
JP2584639B2 (en) | Semiconductor substrate manufacturing method | |
JP3165735B2 (en) | Semiconductor substrate manufacturing method | |
WO2022001779A1 (en) | Method for manufacturing semiconductor-on-insulator structure | |
JPH0818054A (en) | Semiconductor device and its manufacture | |
JP2001144273A (en) | Method for fabricating semiconductor device | |
JPH08191138A (en) | Manufacture of soi substrate | |
CN113097068A (en) | Method for manufacturing semiconductor device | |
JPH07211876A (en) | Manufacture of semiconductor substrate | |
JPH07153972A (en) | Manufacture of semiconductor device | |
JP2004186442A (en) | Method for manufacturing power semiconductor chip | |
JPH02228061A (en) | Manufacture of soi substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |