JP2000099935A - Intra-surface magnetic recording medium - Google Patents

Intra-surface magnetic recording medium

Info

Publication number
JP2000099935A
JP2000099935A JP10272816A JP27281698A JP2000099935A JP 2000099935 A JP2000099935 A JP 2000099935A JP 10272816 A JP10272816 A JP 10272816A JP 27281698 A JP27281698 A JP 27281698A JP 2000099935 A JP2000099935 A JP 2000099935A
Authority
JP
Japan
Prior art keywords
underlayer
recording medium
magnetic recording
centered cubic
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10272816A
Other languages
Japanese (ja)
Inventor
Tomonori Ueno
友典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10272816A priority Critical patent/JP2000099935A/en
Publication of JP2000099935A publication Critical patent/JP2000099935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intra-surface magnetic recording medium having a multilayered structure which is excellent in magnetic characteristics. SOLUTION: This medium is the intra-surface magnetic recording medium formed by forming regular lattices of a body centered cubic system represented by B2 regular lattices of an Ni-al system, etc., as a first ground surface layer on a nonmagnetic substrate side and a nonmagnetic second ground surface layer having an hcp structure represented by a CoCr alloy formed on this first ground surface layer as the ground surface layers on a nonmagnetic substrate and arranging a Co magnetic layer as a magnetic layer thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク装置
用などの面内磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a longitudinal magnetic recording medium for a magnetic disk drive or the like.

【0002】[0002]

【従来の技術】従来、磁気記録媒体は、高密度な磁気記
録が可能なように発展してきており、その一つの手段と
して、下地層の改良が行われている。最近、IEEE
Trans.Magn.、vol.30、3951(1
994)、IEEE Trans.Magn.、vo
l.31、2728(1995)等に、NiとAlとの
B2規則構造の層を下地層に用いることにより、膜結晶
粒が微細になり、高保磁力および低ノイズの磁気記録媒
体が得られることが報告されている。
2. Description of the Related Art Conventionally, magnetic recording media have been developed so as to enable high-density magnetic recording, and as one of the means, an underlayer has been improved. Recently, IEEE
Trans. Magn. , Vol. 30, 3951 (1
994), IEEE Trans. Magn. , Vo
l. 31, 2728 (1995) and others report that the use of a layer having a B2 ordered structure of Ni and Al as an underlayer makes the film crystal grains fine, and a magnetic recording medium with high coercive force and low noise can be obtained. Have been.

【0003】また、IEEE Trans.Mag
n.,33,5,(1997)に六方最密充填構造をも
つCoCr合金を下地層に用いることにより、Co系磁
性層との結晶的な整合性が良くなり、高保磁力および低
ノイズの磁気記録媒体が得られることが報告されてい
る。
[0003] IEEE Trans. Mag
n. , 33, 5, (1997), the use of a CoCr alloy having a hexagonal close-packed structure for the underlayer improves the crystalline consistency with the Co-based magnetic layer, and provides a high coercive force and low noise magnetic recording medium. Is reported to be obtained.

【0004】[0004]

【発明が解決しようとする課題】発明者が、上述のNi
Al系合金下地層および六方最密充填構造をもつCoC
r合金下地層を検討したところ、高保磁力および低ノイ
ズの磁気記録媒体として良好であることを確認した。し
かし、近年の磁気ディスクの高記録密度化に伴い、さら
なる高保磁力および低ノイズを達成する手段が求められ
ている。本発明の目的は、Co系磁性層の磁気特性を改
善し、高密度記録化に適した磁気記録媒体を提供するこ
とである。
SUMMARY OF THE INVENTION The inventor of the present invention
CoC with Al-based alloy underlayer and hexagonal close-packed structure
Examination of the r-alloy underlayer confirmed that it was good as a magnetic recording medium with high coercive force and low noise. However, with the recent increase in recording density of magnetic disks, means for achieving higher coercive force and lower noise are required. An object of the present invention is to provide a magnetic recording medium that improves the magnetic characteristics of a Co-based magnetic layer and is suitable for high-density recording.

【0005】[0005]

【課題を解決するための手段】本発明者は、下地層の結
晶粒径を微細にし、かつ、磁性層との整合性を高めるこ
とにより、Co系磁性層の磁気特性を改善することを検
討した結果、基板側に体心立方系の規則格子を持つ第1
下地層、hcp構造を持つ非磁性の第2下地層の順で成
膜し、その下地層上にCo系磁性層を成膜する事により
目的を達成できることを見いだした。
Means for Solving the Problems The present inventors have studied to improve the magnetic characteristics of a Co-based magnetic layer by reducing the crystal grain size of the underlayer and increasing the consistency with the magnetic layer. As a result, the first with a body-centered cubic regular lattice on the substrate side
It has been found that the object can be achieved by forming an underlayer, a nonmagnetic second underlayer having an hcp structure in this order, and forming a Co-based magnetic layer on the underlayer.

【0006】すなわち、本発明は、非磁性基板上に、下
地層を介して形成された磁性層を有する面内磁気記録媒
体において、前記下地層は前記非磁性基板側に体心立方
系の規則格子を持つ第1下地層と、該第1下地層上に形
成されたhcp構造を持つ非磁性の第2下地層とを具備
し、前記磁性層はCo系磁性層である面内磁気記録媒体
である。
That is, the present invention relates to an in-plane magnetic recording medium having a magnetic layer formed on a nonmagnetic substrate with an underlayer interposed therebetween, wherein the underlayer has a body-centered cubic rule on the nonmagnetic substrate side. A longitudinal magnetic recording medium, comprising: a first underlayer having a lattice; and a nonmagnetic second underlayer having an hcp structure formed on the first underlayer, wherein the magnetic layer is a Co-based magnetic layer. It is.

【0007】本発明においては、第1下地層と第2下地
層の間に、Crを主体とする体心立方系金属層を具備す
ることができる。
In the present invention, a body-centered cubic metal layer mainly composed of Cr can be provided between the first underlayer and the second underlayer.

【0008】また、本発明における第1下地層として
は、体心立方系の規則格子としてB2規則格子であるこ
とが好ましく、Ni−Al系合金のB2規則格子である
ことがより好ましい。本発明における第2下地層として
は、hcp構造を持つCoCr系合金もしくはRu系合
金であることが好ましい。
The first underlayer according to the present invention is preferably a B2-ordered lattice as a body-centered cubic ordered lattice, and more preferably a B2-ordered lattice of a Ni-Al alloy. The second underlayer according to the present invention is preferably a CoCr-based alloy or a Ru-based alloy having an hcp structure.

【0009】本発明におけるCo系磁性層としては、添
加元素として、(Cr、Pt、Pd、Ni、Ti、V、
Ta、W、B)のいずれか1種または2種以上で合計で
15at%以上含むことができる。
In the Co-based magnetic layer of the present invention, (Cr, Pt, Pd, Ni, Ti, V,
Ta, W, B), and at least 15 at% in total.

【0010】[0010]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、下地層を結晶粒径を微細とすることができる微
細な体心立方系の規則格子を第1下地層とし、磁性層と
整合性の良いhcp構造を持つ非磁性の第2下地層とし
たことで、磁性膜の結晶粒径の微細化と磁性層と下地膜
との整合性を改善したことにある。面内磁気記録媒体に
おけるCo系磁性層は、hcp構造を持っており、磁化
容易方向であるc軸方向を面内に配向させている。通
常、Co系磁性層を成膜するとc軸方向が面に対して垂
直方向に配向し易いため、下地層からエピタキシャル成
長をさせることによって配向を制御している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that a sublayer having a fine body-centered cubic regular lattice capable of reducing the crystal grain size is used as a first sublayer, The non-magnetic second underlayer having the hcp structure having good coordination with the layer is used to reduce the crystal grain size of the magnetic film and improve the coordination between the magnetic layer and the underlayer. The Co-based magnetic layer in the in-plane magnetic recording medium has an hcp structure, and the c-axis direction, which is the direction of easy magnetization, is oriented in the plane. Usually, when a Co-based magnetic layer is formed, the c-axis direction is easily oriented in the direction perpendicular to the plane. Therefore, the orientation is controlled by epitaxial growth from the underlayer.

【0011】本発明では、微細な体心立方系の規則格子
の第1下地層を形成し、その上に磁性層と整合性のよい
hcp構造を持つ非磁性の第2下地層をエピタキシャル
成長により微細かつc軸方向を面内に配向させると、さ
らにその上のCo系磁性層も微細で配向良く成膜される
のである。本発明では体心立方系の規則格子を持つ第1
下地層とhcp構造を持つ非磁性の第2下地層の整合性
がよいことが要求される。
According to the present invention, a first underlayer having a fine body-centered cubic ordered lattice is formed, and a second nonmagnetic underlayer having an hcp structure having good consistency with a magnetic layer is formed thereon by epitaxial growth. When the c-axis direction is oriented in the plane, the Co-based magnetic layer thereon is also formed with a fine and well-oriented orientation. In the present invention, the first having a body-centered cubic regular lattice
Good matching between the underlayer and the nonmagnetic second underlayer having the hcp structure is required.

【0012】このような体心立方系の規則格子として
は、B2規則格子、L2規則格子、DO規則格子、
C11b規則格子などが挙げられる。なかでも、NiA
l系のB2規則格子は整合性を考えると好ましい。ま
た、格子定数の整合や膜結晶粒経の微細化のため、添加
元素を加えることも可能である。特にNiAl系のB2
規則格子では、主に膜結晶粒径微細化のためにB、C、
O、Nといった軽元素、IVa族およびVa族の元素を加
えることや、主に格子定数整合のためにVIa族、VIIa族
および白金族の元素を加えることは有効である。また、
これらの添加元素を2種以上添加することも可能であ
る。
As such a body-centered cubic regular lattice, B2 regular lattice, L2 1 regular lattice, DO 3 regular lattice,
C11b regular lattice and the like. Above all, NiA
The 1-system B2 regular lattice is preferable in consideration of matching. Further, it is also possible to add an additional element for matching the lattice constant and miniaturizing the film crystal grain size. Especially NiAl-based B2
In the regular lattice, B, C,
It is effective to add light elements such as O and N, elements of the IVa group and Va group, and to add elements of the VIa group, VIIa group and platinum group mainly for lattice constant matching. Also,
Two or more of these additional elements can be added.

【0013】非磁性のhcp構造を持つものとしてはC
o合金、Ru合金、Os合金、Re合金、Ti合金、Z
r合金などが挙げられる。なかでも、Co系磁性層と整
合性のよいCoCr系合金およびRu合金が好ましい。
また、格子定数の整合や膜結晶粒経の微細化のため、添
加元素を加えることも可能である。特に、CoCr系合
金では、主に膜結晶粒径の微細化のため、B、C、O、
Nといった軽元素、IVa族およびVa族の元素を加える
こと、主に格子定数整合のためにCr以外のVIa族、VII
a族および白金族の元素を加えることは有効であり、R
u系合金においても主に膜結晶粒径の微細化のため、
B、C、O、Nといった軽元素、IVa族およびVa族の元
素を加えること、主に格子定数整合のためにVIa族、VII
a族およびRu以外の白金族の元素を加えることは有効
である。また、これらの添加元素を2種以上添加するこ
とも可能である。
As a material having a nonmagnetic hcp structure, C
o alloy, Ru alloy, Os alloy, Re alloy, Ti alloy, Z
r alloy and the like. Among them, a CoCr-based alloy and a Ru alloy that have good compatibility with the Co-based magnetic layer are preferable.
Further, it is also possible to add an additional element for matching the lattice constant and miniaturizing the film crystal grain size. In particular, in the case of CoCr-based alloys, B, C, O,
Adding light elements such as N, and elements of the IVa and Va groups;
It is effective to add group a and platinum group elements,
In the case of u-based alloys, mainly for miniaturization of the film crystal grain size,
Addition of light elements such as B, C, O, and N, elements of group IVa and group Va, and group VIa and VII mainly for lattice constant matching.
It is effective to add a platinum group element other than group a and Ru. It is also possible to add two or more of these additional elements.

【0014】ここで、非磁性のhcp構造としたのは、
下地層が磁性を持っていると、カップリング等の影響に
より、例えば、磁気ヒステリシス曲線が2段や扁平とな
ったりするなど、Co系磁性層に影響を及ぼし、Co系
磁性層の磁気特性を十分に引き出せないためである。C
o系磁性層としては保磁力等の磁気特性を考えるとCo
系磁性層の添加元素として(Cr、Pt、Pd、Ni、
Ti、V、Ta、W、B)のいずれか1種または2種以
上で合計で15at%以上含むCo系合金が好ましい。
Here, the non-magnetic hcp structure is as follows.
If the underlayer has magnetic properties, the magnetic properties of the Co-based magnetic layer may be affected by the coupling or the like, for example, the magnetic hysteresis curve may have a two-step or flattened shape. This is because they cannot be pulled out sufficiently. C
Considering magnetic properties such as coercive force for the o-based magnetic layer, Co
(Cr, Pt, Pd, Ni,
A Co-based alloy containing at least one of Ti, V, Ta, W, and B) and a total of 15 at% or more is preferable.

【0015】hcp構造、B2規則格子、L2規則格
子、DO規則格子、C11b規則格子の結晶構造をそ
れぞれ図1〜5に示す。hcp構造として、代表的なC
o−Cr−Ta−Pt、Co−Cr、Ru、Ru−C
r、Ru−Mn、Ru−Coの格子定数aおよびcを表
1に示す。B2規則格子の例としてNiAl、RuAl
の格子定数aを表2に示す。L2規則格子の例として
CoAlTi、DO規則格子としてMnSiの格
子定数aを表2に示す。整合させるCo系磁性層との格
子定数cと、体心立方系の規則格子の対角距離が近い方
が好ましい。ここで、体心立方系の規則格子の対角距離
とは、B2規則格子ではa×20.5、L2規則格子
およびDO規則格子では(a/2)×20.5であ
る。
[0015] hcp structure, B2 superlattice shows L2 1 ordered lattice, DO 3 ordered lattice, the crystal structure of the C11b ordered lattice in FIGS 1-5. As an hcp structure, a typical C
o-Cr-Ta-Pt, Co-Cr, Ru, Ru-C
Table 1 shows the lattice constants a and c of r, Ru—Mn, and Ru—Co. NiAl, RuAl as examples of B2 ordered lattice
Table 2 shows the lattice constant a. Co 2 AlTi Examples of L2 1 ordered lattice, Table 2 shows the lattice constant a of Mn 3 Si as a DO 3 ordered lattice. It is preferable that the lattice constant c with the Co-based magnetic layer to be matched and the diagonal distance of the body-centered cubic ordered lattice be short. Here, the diagonal distance of the regular lattice of the body-centered cubic system is a × 2 0.5 in the B2 regular lattice, and (a / 2) × 2 0.5 in the L2 1 regular lattice and the DO 3 regular lattice. .

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】本発明においては、第1下地層と第2下地
層との間に図6に示すようなCrを主体とする体心立方
系金属層を配置することができる。体心立方系の金属間
化合物相は、hcp構造を持つ金属と相性が悪い場合が
あり、エピタキシャル成長がうまく出来ないことがあ
る。Crを主体とする体心立方金属層は、hcp構造を
持つ金属と相性がいいため、第1下地層と第2下地層間
に挿入することにより、エピタキシャル成長がうまく出
来やすくなることがある。代表的なCrを主体とする体
心立方系金属層の格子定数aを表3に示す。
In the present invention, a body-centered cubic metal layer mainly composed of Cr as shown in FIG. 6 can be arranged between the first underlayer and the second underlayer. The body-centered cubic intermetallic compound phase may have poor compatibility with the metal having the hcp structure, and the epitaxial growth may not be performed well. Since the body-centered cubic metal layer mainly composed of Cr has good compatibility with the metal having the hcp structure, epitaxial growth may be easily performed by inserting the metal layer between the first underlayer and the second underlayer. Table 3 shows the lattice constant a of a typical body-centered cubic metal layer mainly composed of Cr.

【0019】[0019]

【表3】 [Table 3]

【0020】第1下地層と第2下地層間にCrを主体と
する体心立方系金属層を挿入する場合においても、Cr
を主体とする体心立方系金属層の格子定数aを整合させ
ておく方が好ましい。さらに、第1下地膜と第2下地膜
の間に挿入可能なCrを主体とする体心立方系金属層
も、主に膜結晶粒径微細化のためB、C、O、Nといっ
た軽元素、IVa族およびVa族の元素を加えること、主
に格子定数整合のためにCr以外のVIa族、VIIa族およ
び白金族の元素を加えることは有効である。また、これ
らの添加元素を2種以上添加することも可能である。
Even when a body-centered cubic metal layer mainly composed of Cr is inserted between the first underlayer and the second underlayer, Cr
It is preferable to match the lattice constant a of the body-centered cubic metal layer mainly composed of Further, a body-centered cubic metal layer mainly composed of Cr that can be inserted between the first underlayer and the second underlayer is also made of a light element such as B, C, O, or N mainly for the purpose of reducing the film crystal grain size. , IVa and Va elements, and addition of elements of the VIa, VIIa and platinum groups other than Cr for lattice constant matching are effective. It is also possible to add two or more of these additional elements.

【0021】[0021]

【実施例】第1下地層用としてNi−50at%Al、
Ru−50at%Al、Co−25at%Al−25a
t%Tiのターゲットを準備した。第2下地層用として
Co−37at%Cr、Co−37at%Cr−1at
%B、Co−37at%Cr−2at%Ti、Co−3
7at%Cr−2at%Nb、Co−37at%Cr−
2at%W、Co−37at%Cr−5at%Ru、R
u、Ru−40at%Cr、Ru−50at%Mn、R
u−50at%Co、Ru−50at%−1at%B、
Ru−50at%Co−2at%Zr、Ru−50at
%Co−2at%TaおよびRu−50at%Co−2
at%Moのターゲットを準備した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Ni-50 at% Al for the first underlayer,
Ru-50at% Al, Co-25at% Al-25a
A target of t% Ti was prepared. Co-37 at% Cr, Co-37 at% Cr-1 at for the second underlayer
% B, Co-37 at% Cr-2 at% Ti, Co-3
7at% Cr-2at% Nb, Co-37at% Cr-
2 at% W, Co-37 at% Cr-5 at% Ru, R
u, Ru-40 at% Cr, Ru-50 at% Mn, R
u-50at% Co, Ru-50at% -1at% B,
Ru-50at% Co-2at% Zr, Ru-50at
% Co-2 at% Ta and Ru-50 at% Co-2
A target of at% Mo was prepared.

【0022】Crを主体とする体心立方系金属層用とし
て純Cr、Cr−10at%TiおよびCr−10at
%Moのターゲットを準備した。Co系磁性層用として
Co−18at%Cr−5at%Ta−4at%Ptの
ターゲットを準備した。
Pure Cr, Cr-10 at% Ti and Cr-10 at for a body-centered cubic metal layer mainly composed of Cr
A% Mo target was prepared. A Co-18 at% Cr-5 at% Ta-4 at% Pt target was prepared for a Co-based magnetic layer.

【0023】表4〜表7に示す組み合わせで、Ar圧
0.66Pa、DC電力500Wの条件で、Ni−Pメ
ッキをしたAl基板上に第1下地層用のターゲットを5
0nmスパッタし、それぞれの基板上に第2ターゲット
をAr圧0.66Pa、DC電力500Wの条件で10
0nmスパッタし、さらにCo系磁性層のターゲットを
40nmスパッタし磁性層を形成した。また、Crを主
体とする体心立方系金属層を設ける場合には、Crを主
体とする体心立方系金属層用ターゲットを100nmス
パッタした。比較例として表7〜8中に示す組み合わせ
で第1下地層に純Crを用いて上記と同様に、また、第
2下地層を設けないで上記と同様に作製した。
In the combinations shown in Tables 4 to 7, under the conditions of an Ar pressure of 0.66 Pa and a DC power of 500 W, a target for the first underlayer was formed on an Ni-P plated Al substrate.
0 nm is sputtered, and a second target is formed on each substrate under the conditions of an Ar pressure of 0.66 Pa and a DC power of 500 W.
0 nm was sputtered, and a Co-based magnetic layer target was further sputtered to 40 nm to form a magnetic layer. When providing a body-centered cubic metal layer mainly composed of Cr, a target for a body-centered cubic metal layer mainly composed of Cr was sputtered at 100 nm. As comparative examples, the same combinations as shown in Tables 7 and 8 were used, except that pure Cr was used for the first underlayer, and the same as above without the second underlayer.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】[0027]

【表7】 [Table 7]

【0028】[0028]

【表8】 [Table 8]

【0029】それぞれの基板のVSM(振動試料型磁力
計)で測定した保磁力Hcおよびノイズを評価する目的
で保磁力角形比S(=Hc’/Hc)の計測結果を表
4中に示す。ただし、Hc’とは磁気ヒステリシス曲線
においてHcの点での接線と残留磁化Mrの点での垂線
の交点のHである。表4〜8より、試料No.1〜27
は試料No.28〜36と比較し、高保磁力かつ高保磁
力角形比であることがわかる。故に、非磁性基板上に体
心立方系の規則格子を持つ第1下地層と該第1下地層上
に形成されたhcp構造を持つ非磁性の第2下地層とい
った下地層上にCo系磁性層を形成することにより高保
磁力および低ノイズの磁気記録媒体が達成できることが
わかる。
Table 4 shows the measurement results of the coercive force squareness ratio S * (= Hc '/ Hc) for evaluating the coercive force Hc and noise of each substrate measured by a VSM (vibrating sample magnetometer). . Here, Hc ′ is H at the intersection of the tangent at the point Hc and the perpendicular at the point of the residual magnetization Mr in the magnetic hysteresis curve. From Tables 4 to 8, Sample No. 1-27
Is the sample No. It can be seen that the coercive force and the coercive force squareness ratio are higher than those of Nos. 28 to 36. Therefore, a Co-based magnetic layer is formed on an underlayer such as a first underlayer having a body-centered cubic regular lattice on a nonmagnetic substrate and a nonmagnetic second underlayer having an hcp structure formed on the first underlayer. It is understood that a magnetic recording medium having high coercive force and low noise can be achieved by forming the layer.

【0030】[0030]

【発明の効果】本発明によれば、基板側に形成された体
心立方系の規則格子を持つ第1下地層と第1下地層上に
形成されたhcp構造を持つ非磁性の第2下地層とを具
備することにより、最近の高記録密度化に対応できる高
保磁力かつ低ノイズの磁気記録媒体を提供することが可
能となった。
According to the present invention, a first underlayer having a body-centered cubic regular lattice formed on the substrate side and a nonmagnetic second underlayer having an hcp structure formed on the first underlayer. By providing the underlayer, it has become possible to provide a magnetic recording medium having a high coercive force and low noise which can respond to recent high recording density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】hcpの結晶構造を示す図である。FIG. 1 is a view showing a crystal structure of hcp.

【図2】B2規則格子の結晶構造を示す図である。FIG. 2 is a view showing a crystal structure of a B2 ordered lattice.

【図3】L2規則格子の結晶構造を示す図である。FIG. 3 is a diagram showing a crystal structure of an L2 1 ordered lattice.

【図4】DO規則格子の結晶構造を示す図である。FIG. 4 is a diagram showing a crystal structure of a DO 3 regular lattice.

【図5】C11b規則格子の結晶構造を示す図である。FIG. 5 is a diagram showing a crystal structure of a C11b ordered lattice.

【図6】純Crの結晶構造を示す図である。FIG. 6 is a view showing a crystal structure of pure Cr.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、下地層を介して形成さ
れた磁性層を有する面内磁気記録媒体において、前記下
地層は前記非磁性基板側に体心立方系の規則格子を持つ
第1下地層と、該第1下地層上に形成されたhcp構造
を持つ非磁性の第2下地層とを具備し、前記磁性層はC
o系磁性層であることを特徴とする面内磁気記録媒体。
1. An in-plane magnetic recording medium having a magnetic layer formed on a nonmagnetic substrate via an underlayer, wherein the underlayer has a body-centered cubic regular lattice on the nonmagnetic substrate side. A first underlayer, and a nonmagnetic second underlayer having an hcp structure formed on the first underlayer.
An in-plane magnetic recording medium, which is an o-based magnetic layer.
【請求項2】 前記第1下地層と前記第2下地層の間
に、Crを主体とする体心立方系金属層を具備すること
を特徴とする請求項1に記載の面内磁気記録媒体。
2. The longitudinal magnetic recording medium according to claim 1, further comprising a body-centered cubic metal layer mainly composed of Cr between the first underlayer and the second underlayer. .
【請求項3】 前記第1下地層である体心立方系の規則
格子がB2規則格子であることを特徴とする請求項1ま
たは2に記載の面内磁気記録媒体。
3. The longitudinal magnetic recording medium according to claim 1, wherein the body-centered cubic regular lattice as the first underlayer is a B2 regular lattice.
【請求項4】 前記第1下地層がNiAl系合金のB2
規則格子であることを特徴とする請求項1または2に記
載の面内磁気記録媒体。
4. The method according to claim 1, wherein the first underlayer is made of a NiAl alloy B2.
3. The longitudinal magnetic recording medium according to claim 1, wherein the medium is a regular lattice.
【請求項5】 前記第2下地層がCoCr系合金である
ことを特徴とする請求項1乃至4のいずれかに記載の面
内磁気記録媒体。
5. The longitudinal magnetic recording medium according to claim 1, wherein the second underlayer is made of a CoCr-based alloy.
【請求項6】 前記第2下地層がRu系合金であること
を特徴とする請求項1乃至4のいずれかに記載の面内磁
気記録媒体。
6. The longitudinal magnetic recording medium according to claim 1, wherein the second underlayer is made of a Ru-based alloy.
【請求項7】 Co系磁性層の添加元素として、(C
r、Pt、Pd、Ni、Ti、V、Ta、W、B)のい
ずれか1種または2種以上で合計で15at%以上含む
ことを特徴とする請求項1乃至6のいずれかに記載の面
内磁気記録媒体。
7. The method according to claim 7, wherein (C) is an additive element of the Co-based magnetic layer.
7. The composition according to claim 1, wherein at least one of r, Pt, Pd, Ni, Ti, V, Ta, W, and B) is contained in a total of 15 at% or more. In-plane magnetic recording medium.
JP10272816A 1998-09-28 1998-09-28 Intra-surface magnetic recording medium Pending JP2000099935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272816A JP2000099935A (en) 1998-09-28 1998-09-28 Intra-surface magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272816A JP2000099935A (en) 1998-09-28 1998-09-28 Intra-surface magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2000099935A true JP2000099935A (en) 2000-04-07

Family

ID=17519162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272816A Pending JP2000099935A (en) 1998-09-28 1998-09-28 Intra-surface magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2000099935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
JP2002167668A (en) * 2000-11-30 2002-06-11 Toshiba Corp Sputtering target
JP2004046990A (en) * 2002-07-12 2004-02-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
SG108903A1 (en) * 2002-02-28 2005-02-28 Fuji Electric Co Ltd Magnetic recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
US6607848B1 (en) 1999-09-01 2003-08-19 Showa Denko K.K. Magnetic recording medium and magnetic recording device
JP2002167668A (en) * 2000-11-30 2002-06-11 Toshiba Corp Sputtering target
JP4503817B2 (en) * 2000-11-30 2010-07-14 株式会社東芝 Sputtering target and thin film
SG108903A1 (en) * 2002-02-28 2005-02-28 Fuji Electric Co Ltd Magnetic recording medium
US6936352B2 (en) 2002-02-28 2005-08-30 Fuji Electric Co., Ltd. Magnetic recording medium with controlled lattice spacing and method of forming thereof
JP2004046990A (en) * 2002-07-12 2004-02-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JP4169663B2 (en) Perpendicular magnetic recording medium
US6335103B1 (en) Magnetic recording media for longitudinal recording
JP2561655B2 (en) In-plane magnetic recording medium
US6689495B1 (en) Magnetic recording medium and magnetic storage apparatus
US6537684B1 (en) Antiferromagnetically coupled magnetic recording media with boron-free first ferromagnetic film as nucleation layer
JP2005276410A (en) Magnetic recording disk provided with antiferromagnetically coupled magnetic layer having ferromagnetically coupled multiple lower layer
JP2002100030A (en) Perpendicular magnetic recording medium
JP2003085727A (en) Magnetic recording medium and magnetic memory device
KR100699761B1 (en) Magnetic recording medium and magnetic storage device
JP2003123239A (en) Perpendicular magnetic recording medium
JP3848079B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2005032352A (en) Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device
JP3684231B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US6613460B1 (en) Magnetic recording medium and magnetic storage apparatus
US7976964B2 (en) Disk drive with laminated magnetic thin films with sublayers for magnetic recording
JP3822387B2 (en) Magnetic recording medium
JP2001143250A5 (en)
JP2000099935A (en) Intra-surface magnetic recording medium
US6872478B2 (en) Magnetic thin film media with a pre-seed layer of CrTiAl
US6689497B1 (en) Stabilized AFC magnetic recording media with reduced lattice mismatch between spacer layer(s) and magnetic layers
JP2005243220A (en) Magnetic recording disk provided with antiferromagnetically coupled magnetic layer having multilayered lower layer
JP2001056921A (en) Magnetic recording medium
JP2001056925A (en) Magnetic recording medium and magnetic storage device
JP4090437B2 (en) Magnetic recording medium using antiferromagnetically coupled CoCrFe alloy first ferromagnetic thin film
JPH11126322A (en) Magnetic record medium