JP2000099926A - Magnetic head and magnetic disk device as well as its manufacture - Google Patents

Magnetic head and magnetic disk device as well as its manufacture

Info

Publication number
JP2000099926A
JP2000099926A JP10270917A JP27091798A JP2000099926A JP 2000099926 A JP2000099926 A JP 2000099926A JP 10270917 A JP10270917 A JP 10270917A JP 27091798 A JP27091798 A JP 27091798A JP 2000099926 A JP2000099926 A JP 2000099926A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
electrode
electrode film
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270917A
Other languages
Japanese (ja)
Inventor
Matahiro Komuro
又洋 小室
Nobuo Yoshida
伸雄 芳田
Moriaki Fuyama
盛明 府山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10270917A priority Critical patent/JP2000099926A/en
Publication of JP2000099926A publication Critical patent/JP2000099926A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To permit a reproducing track width of high accuracy by consisting electrode films on a megaromagneto-resistance effect film or magneto-resistance effect film of >=2 layers, using the film of the upper layer of the electrode films as a mask of the lower layer electrode film and consisting the upper layer of the electrode film of a film contg. elements which are more hardly etched than the lower layer. SOLUTION: A magnetic domain control film 3 is formed after processing of an SV (GMR) film 4 and the lower layer electrode film 2 is formed on the SV film 4 and the magnetic domain control film 3. The lower layer electrode film 2 is formed and a resist for determining the reproducing track width is patterned and formed by using a photolithography process, by which the upper layer electrode film 1 is formed. The upper layer electrode film 1 is a film containing at least one kind of Ru, Ir, Cr, Au, Pt, Cu and Ag. The lower layer electrode film 2 is formed of an alloy containing at least >=1 kinds among Ta, Nb, Mo, Al and W. The retreating quantity at the time of etching of the lower layer electrode film 2 may be decreased and the electrode processing of the narrow track reproducing head is made effective.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気ヘッド及び磁気
ディスク装置に関する。
The present invention relates to a magnetic head and a magnetic disk drive.

【0002】[0002]

【従来の技術】磁気ディスク装置用薄膜磁気ヘッドは高
速回転するディスク上で保持されたスライダ上に形成さ
れる。再生ヘッドは強磁性材料の薄膜である磁気抵抗効
果膜あるいは巨大磁気抵抗効果膜を有し、エアベアリン
グ面には磁気抵抗効果膜あるいは巨大磁気抵抗効果膜の
上下に下部シールド膜と上部シールド膜がある。上部シ
ールド膜は記録ヘッドの下部磁極層と兼用する場合もあ
る。記録密度を高めるためには磁気ディスクの表面に多
くのデータを書き込む必要がある。
2. Description of the Related Art A thin-film magnetic head for a magnetic disk drive is formed on a slider held on a disk which rotates at a high speed. The reproducing head has a magneto-resistive film or giant magneto-resistive film, which is a thin film of ferromagnetic material. is there. The upper shield film may also serve as the lower magnetic pole layer of the recording head. In order to increase the recording density, it is necessary to write a lot of data on the surface of the magnetic disk.

【0003】このためには、トラック間隔及びトラック
幅を狭くして記録密度を高める方法がある。再生ヘッド
のシールド間隔及びトラック幅は高記録密度と共に狭く
なる。シールド間隔が狭くなるに従いギャップ膜や巨大
磁気抵抗効果膜の膜厚を薄くする必要がある。
[0003] For this purpose, there is a method of increasing the recording density by reducing the track interval and track width. The shield interval and track width of the reproducing head become narrower with higher recording density. It is necessary to reduce the thickness of the gap film and the giant magnetoresistive film as the shield interval becomes smaller.

【0004】従来の方法では平坦な下部シールド上に下
部ギャップ膜を形成し、巨大磁気抵抗効果膜を形成後レ
ジスト(下層レジスト/上層レジスト)をパターニング
し、下層レジストにウェット法でアンダーカットを形成
し巨大磁気抵抗効果膜(以下SV膜と呼ぶ)をイオンミ
リング法でエッチング後、磁区制御膜及び電極膜を形成
後下層レジストから剥離し上層レジスト上の磁区制御膜
や電極膜を除去する。次に上部ギャップ膜をスパッタリ
ング法で形成し、上部シールド膜をめっきあるいはスパ
ッタリング法で形成する。
In the conventional method, a lower gap film is formed on a flat lower shield, a giant magnetoresistive film is formed, and then a resist (lower resist / upper resist) is patterned, and an undercut is formed in the lower resist by a wet method. After the giant magnetoresistive film (hereinafter referred to as SV film) is etched by an ion milling method, a magnetic domain control film and an electrode film are formed, and then separated from the lower resist to remove the magnetic domain control film and the electrode film on the upper resist. Next, an upper gap film is formed by a sputtering method, and an upper shield film is formed by plating or a sputtering method.

【0005】SV膜の下層レジストのアンダーカットは
ウェット法で形成されアンダーカット量は下層レジスト
のベーク条件や膜厚により変動する。下層レジストの膜
厚変動及びアンダーカット量の変動はトラック幅が狭く
なると、下層レジストの下にあるSV膜の幅、磁区制御
膜の間隔及び電極間隔の変動の原因となる。
The undercut of the lower resist of the SV film is formed by a wet method, and the amount of undercut varies depending on the baking conditions and the film thickness of the lower resist. When the track width is reduced, the variation in the film thickness of the lower resist and the variation in the amount of undercut cause a variation in the width of the SV film, the interval between the magnetic domain control films, and the electrode interval below the lower resist.

【0006】従来の方法ではトラック幅は上層及び下層
レジストの幅や膜厚とミリング条件で決定され、トラッ
ク幅が狭くなるとともに形状のバラツキが大きくなる。
電極間隔が磁区制御膜の間隔より狭い例が米国特許5438
470 に記載されており、Au50−300nm/Ta1
0nmの2層電極の例が記載されている。
In the conventional method, the track width is determined by the width and thickness of the upper and lower resist layers and the milling conditions, and the track width is reduced and the variation in the shape is increased.
U.S. Pat.
470, and Au50-300 nm / Ta1
An example of a 0 nm two-layer electrode is described.

【0007】しかし反応性のエッチング方法に関する記
載はなく、電極の最上層を下層のマスクに用いる点につ
いても説明がない。また、マスクとして用いる最上層の
膜はマスク以外の下層の電極膜の膜厚よりも薄くした方
が高精度に加工できる。上記公知例ではAuの方がTa
よりも膜厚が厚いためエッチング時のシフト量が大きく
なるため狭い再生トラック幅を高精度に加工するのは困
難である。そこで本特許に記載するようにマスク膜の膜
厚は、下層膜の膜厚よりも薄くすることが重要である。
However, there is no description about a reactive etching method, and there is no description about using the uppermost layer of an electrode as a lower layer mask. In addition, if the uppermost film used as a mask is thinner than the lower electrode film other than the mask, processing can be performed with higher precision. In the above known example, Au is Ta.
It is difficult to process a narrow reproduction track width with high accuracy because the film thickness is thicker than that, and the shift amount during etching is large. Therefore, as described in this patent, it is important that the thickness of the mask film is smaller than the thickness of the lower film.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、2つ
のシールド膜の間にギャップ膜を介して磁気抵抗効果膜
があり、巨大磁気抵抗効果膜あるいは磁気抵抗効果膜に
電流を流すための電極膜が磁気抵抗効果膜あるいは巨大
磁気抵抗効果膜に電気的に接触している磁気ヘッドにお
いて、電極膜の間隔を狭く加工するために反応性のエッ
チング法を用い、電極膜を2層以上とし、上層の電極膜
をエッチングされにくい膜にすることによりエッチング
時のマスク膜として用いることにより高精度の再生トラ
ック幅を得る手法及び電極構成を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a giant magnetoresistive film or a magnetoresistive film having a magnetoresistive film with a gap film between two shield films. In a magnetic head where the electrode film is in electrical contact with the magnetoresistive film or the giant magnetoresistive film, use a reactive etching method to reduce the distance between the electrode films and use two or more electrode films. Another object of the present invention is to provide a method and an electrode configuration for obtaining a highly accurate reproduction track width by using the upper electrode film as a mask film at the time of etching by making the film hard to be etched.

【0009】[0009]

【課題を解決するための手段】本発明では再生トラック
幅を電極膜の間隔で決定し、電極膜の加工にエッチング
法を使用し、電極膜の構成と電極膜の加工方法を規定し
たものである。電極膜の一部は磁気抵抗効果膜と接触
し、磁気抵抗効果膜の電圧変化すなわち出力を検知す
る。
In the present invention, the reproduction track width is determined by the distance between the electrode films, the etching method is used for processing the electrode film, and the structure of the electrode film and the method for processing the electrode film are defined. is there. A part of the electrode film is in contact with the magnetoresistive film, and detects a voltage change, that is, an output of the magnetoresistive film.

【0010】本発明では図5(6)に示すように電極膜
は2層以上からなり、上層電極膜1と下層電極膜2から
構成され、下層電極膜2の一部が磁気抵抗効果膜4と物
理的に接触し、上層電極膜1は物理的に磁気抵抗効果膜
4と接触していない。上層電極膜1は下層電極膜2のマ
スクに用いられる。磁気抵抗効果膜4を加工後磁区制御
膜3を形成し、下層電極膜2を磁気抵抗効果膜4や磁区
制御膜3上に形成する。
In the present invention, as shown in FIG. 5 (6), the electrode film is composed of two or more layers and is composed of an upper electrode film 1 and a lower electrode film 2, and a part of the lower electrode film 2 And the upper electrode film 1 is not physically in contact with the magnetoresistive film 4. The upper electrode film 1 is used as a mask for the lower electrode film 2. After processing the magnetoresistive film 4, the magnetic domain control film 3 is formed, and the lower electrode film 2 is formed on the magnetoresistive film 4 and the magnetic domain control film 3.

【0011】下層電極膜をスパッタリング法,真空蒸着
法あるいはCVD法のいずれかの方法で形成した後の磁
気抵抗効果膜4付近の浮上面に平行な断面を図5(1)
に示す。この場合磁気抵抗効果膜4は下部シールド膜8
上に形成された下部ギャップ膜6上に形成される。下部
シールド膜はめっき法あるいはスパッタリング法で形成
する。下層電極膜2の上に再生トラック幅を決定するた
めのレジスト11をホトリソプロセスを用いて(2)の
ようなレジストパターンを形成し、次に上層電極膜1を
真空蒸着法やスパッタリング法あるいはCVD法で
(3)に示すように形成する。
FIG. 5A shows a cross section parallel to the air bearing surface in the vicinity of the magnetoresistive film 4 after the lower electrode film is formed by any of the sputtering method, the vacuum evaporation method and the CVD method.
Shown in In this case, the magnetoresistive film 4 is a lower shield film 8
It is formed on the lower gap film 6 formed thereon. The lower shield film is formed by a plating method or a sputtering method. A resist 11 for determining the reproduction track width is formed on the lower electrode film 2 by a photolithography process to form a resist pattern as shown in (2), and then the upper electrode film 1 is formed by a vacuum evaporation method, a sputtering method, or the like. It is formed by the CVD method as shown in (3).

【0012】レジスト11は剥離しレジスト11の間隔
が上層電極膜1に転写され、(4)の形状となる。
(4)の形状にするためにレジスト11の側面からイオ
ンミリング法等を用いて側面の付着物を除去しても良
い。上層電極膜1が(4)の形状に加工された後、反応
性のエッチング法を用いて上層電極膜1の下にある電極
膜を上層電極膜1の間隔でエッチングする。
The resist 11 is peeled off, and the space between the resists 11 is transferred to the upper electrode film 1, resulting in the shape of (4).
In order to obtain the shape of (4), the attached matter on the side surface may be removed from the side surface of the resist 11 by using an ion milling method or the like. After the upper electrode film 1 is processed into the shape of (4), the electrode film below the upper electrode film 1 is etched at intervals between the upper electrode films 1 by using a reactive etching method.

【0013】この時、エッチングガスとしてフッ素ある
いは塩素あるいはアンモニアをすくなくとも一種類含む
混合ガスを用いる。反応性エッチング時に上層電極膜1
が後退すると下層電極膜2の間隔も広くなり、ホトマス
クあるいは上層電極膜1の間隔との差が大きくなる。
At this time, a mixed gas containing at least one kind of fluorine, chlorine or ammonia is used as an etching gas. Upper electrode film 1 during reactive etching
Recedes, the interval between the lower electrode films 2 also increases, and the difference from the interval between the photomask or the upper electrode film 1 increases.

【0014】上層電極膜はRu,Ir,Cr,Au,P
t,Cu,Agを少なくとも1種類含む膜であり、下層
電極膜は反応性エッチングし易い材料であるTa,N
b,Mo,Al,Wを少なくとも1種類以上含む合金で
あり、上層電極膜あるいは下層電極膜はさらに多層化す
ることにより電極膜の抵抗をさげることが可能である。
The upper electrode film is made of Ru, Ir, Cr, Au, P
a film containing at least one of t, Cu and Ag, and a lower electrode film made of Ta, N
It is an alloy containing at least one of b, Mo, Al, and W, and the resistance of the electrode film can be reduced by further increasing the number of layers of the upper electrode film or the lower electrode film.

【0015】反応性エッチングガスとしてF(フッ素)
を含む場合下層電極膜にはTa,Nb,MoあるいはW
を含む膜を用い、上層電極膜1にはRu,Ir,Cr,
Au,Pt,Cu,Agあるいはその他の貴金属元素を
含む材料が使用できる。これらの材料の組合せは下層電
極膜2のエッチング条件において上層電極膜と下層電極
膜の選択比が10以上となることが、望ましい。
F (fluorine) as a reactive etching gas
When the lower electrode film is made of Ta, Nb, Mo or W
The upper electrode film 1 is made of Ru, Ir, Cr,
Materials containing Au, Pt, Cu, Ag or other noble metal elements can be used. It is desirable that a combination of these materials has a selectivity of 10 or more between the upper electrode film and the lower electrode film under the etching condition of the lower electrode film 2.

【0016】このような組合せにすることにより、下層
電極膜のエッチング時の後退量を低減することができ
る。上層電極膜の膜厚は上層電極膜以外の下層電極膜の
膜厚よりも薄くて良い。しかし、低抵抗かつ耐マイグレ
ーション性が高くかつ電極間隔の精度が高ければ上層電
極膜の膜厚は厚くなっても良い。上層電極膜1には上記
貴金属元素を含む膜以外に酸化物や窒化物を使用しても
良い。
By using such a combination, the amount of retreat at the time of etching the lower electrode film can be reduced. The thickness of the upper electrode film may be smaller than the thickness of the lower electrode film other than the upper electrode film. However, the thickness of the upper electrode film may be increased as long as the resistance and the migration resistance are high and the accuracy of the electrode interval is high. The upper electrode film 1 may use an oxide or a nitride in addition to the film containing the noble metal element.

【0017】このような上層電極膜1は下層電極膜2を
エッチングする時に後退せず、下層電極膜2のみエッチ
ングされるため下層電極膜2の電極間隔は上層電極膜1
の電極間隔にほぼ一致し、レジスト11の幅にほぼ一致
した電極間隔を作成することができる。
The upper electrode film 1 does not recede when the lower electrode film 2 is etched, and is etched only in the lower electrode film 2.
And the electrode spacing substantially equal to the width of the resist 11 can be created.

【0018】下層電極膜2の加工後は上部ギャップ膜を
形成し、さらに図5(6)のように上部シールド膜を形
成する。本構成の電極膜及び反応性エッチングを用いる
ことにより電極膜のテーパ角度も制御することができ、
上部ギャップ膜のテーパ上の膜厚を平坦部に近い膜厚に
することができ耐圧の高い再生ヘッドを製造することが
できる。
After processing the lower electrode film 2, an upper gap film is formed, and then an upper shield film is formed as shown in FIG. By using the electrode film and the reactive etching of this configuration, the taper angle of the electrode film can also be controlled,
The thickness on the taper of the upper gap film can be made close to the flat portion, and a read head with high withstand voltage can be manufactured.

【0019】即ち、本発明では電極膜を多層にし、上層
電極膜を反応性エッチングされにくい材料にすることに
より、上層電極膜を下層電極膜のマスクとして用い、下
層電極膜の間隔を高精度にエッチングすることを可能に
した。反応性エッチング時の上層電極膜と下層電極膜の
選択比が10以上と高ければ上層電極膜を薄くでき、か
つ下層電極膜電極膜の後退量を小さくすることができ、
狭トラック再生ヘッドの電極加工には有効である。
That is, in the present invention, the electrode film is formed into a multilayer and the upper electrode film is made of a material which is hardly reactively etched, so that the upper electrode film can be used as a mask for the lower electrode film and the interval between the lower electrode films can be precisely determined. Enabled to be etched. If the selectivity between the upper electrode film and the lower electrode film at the time of reactive etching is as high as 10 or more, the upper electrode film can be made thinner, and the retreat amount of the lower electrode film electrode film can be reduced,
This is effective for electrode processing of a narrow track reproducing head.

【0020】[0020]

【発明の実施の形態】本発明の実施例を以下に説明す
る。図1から図4は磁気ディスク装置に使用される磁気
ヘッドの浮上面(媒体対向面)の磁気抵抗効果膜付近の
断面を示したものである。電極膜の一部は磁気抵抗効果
膜と接触し、磁気抵抗効果膜の電圧変化すなわち出力を
検知する。図1から図5に示すように電極膜は2層以上
からなる。図2以外の場合は上層電極膜1と下層電極膜
2から構成され、下層電極膜2の一部が磁気抵抗効果膜
4と物理的に接触し、上層電極膜1は物理的に磁気抵抗
効果膜4と接触していない。図1から図4の上層電極膜
1は下層電極膜2のマスクに用いられる。
Embodiments of the present invention will be described below. FIGS. 1 to 4 show cross sections near the magnetoresistive film on the air bearing surface (surface facing the medium) of the magnetic head used in the magnetic disk drive. A part of the electrode film is in contact with the magnetoresistive film, and detects a voltage change, that is, an output of the magnetoresistive film. As shown in FIGS. 1 to 5, the electrode film includes two or more layers. In the case other than FIG. 2, the upper electrode film 1 is composed of an upper electrode film 1 and a lower electrode film 2, and a part of the lower electrode film 2 is in physical contact with the magnetoresistive film 4, and the upper electrode film 1 is physically magnetoresistive. Not in contact with membrane 4. The upper electrode film 1 of FIGS. 1 to 4 is used as a mask for the lower electrode film 2.

【0021】まず、図1について以下に説明する。磁気
抵抗効果膜4を加工後磁区制御膜3を形成し、下層電極
膜2を磁気抵抗効果膜4や磁区制御膜3上に形成する。
下層電極膜2をスパッタリング法、真空蒸着法あるいは
CVD法のいずれかの方法で形成する。この場合磁気抵
抗効果膜4は下部シールド膜8上に形成された下部ギャ
ップ膜6上に形成される。下部シールド膜はめっき法あ
るいはスパッタリング法で形成する。
First, FIG. 1 will be described below. After processing the magnetoresistive film 4, the magnetic domain control film 3 is formed, and the lower electrode film 2 is formed on the magnetoresistive film 4 and the magnetic domain control film 3.
The lower electrode film 2 is formed by any of a sputtering method, a vacuum evaporation method, and a CVD method. In this case, the magnetoresistive film 4 is formed on the lower gap film 6 formed on the lower shield film 8. The lower shield film is formed by a plating method or a sputtering method.

【0022】下層電極膜2の上に再生トラック幅を決定
するためのレジスト11をホトリソプロセスを用いて
(2)のようなレジストパターンを形成し、次に上層電
極膜1を真空蒸着法やスパッタリング法あるいはCVD
法で(3)に示すように形成する。レジスト11は剥離
しレジスト11の間隔が上層電極膜1に転写され、(4)
の形状となる。
A resist 11 for determining the reproduction track width is formed on the lower electrode film 2 by a photolithography process to form a resist pattern as shown in (2), and then the upper electrode film 1 is formed by a vacuum evaporation method or the like. Sputtering method or CVD
It is formed by the method as shown in (3). The resist 11 is peeled off, and the distance between the resists 11 is transferred to the upper electrode film 1, and (4)
It becomes the shape of.

【0023】(4)の形状にするためにレジスト11の
側面からイオンミリング法等を用いて側面の付着物を除
去しても良い。上層電極膜1が(4)の形状に加工され
た後、反応性のエッチング法を用いて上層電極膜1の下
にある電極膜を上層電極膜1の間隔でエッチングする。
この時、エッチングガスとしてフッ素あるいは塩素ある
いはアンモニアをすくなくとも一種類含む混合ガスを用
いる。反応性エッチング時に上層電極膜1が後退すると
下層電極膜2の間隔も広くなり、ホトマスクあるいは上
層電極膜1の間隔との差が大きくなる。
In order to obtain the shape of (4), deposits on the side surfaces of the resist 11 may be removed by using an ion milling method or the like. After the upper electrode film 1 is processed into the shape of (4), the electrode film below the upper electrode film 1 is etched at intervals between the upper electrode films 1 by using a reactive etching method.
At this time, a mixed gas containing at least one kind of fluorine, chlorine or ammonia is used as an etching gas. When the upper electrode film 1 recedes during the reactive etching, the distance between the lower electrode films 2 also increases, and the difference from the distance between the photomask or the upper electrode film 1 increases.

【0024】上層電極膜はRu,Ir,Cr,Au,P
t,Cu,Agを少なくとも1種類含む膜であり、下層
電極膜は反応性エッチングし易い材料であるTa、N
b,Mo,Al,Wを少なくとも1種類以上含む合金で
あり、上層電極膜あるいは下層電極膜はさらに多層化す
ることにより電極膜の抵抗をさげることが可能である。
The upper electrode film is made of Ru, Ir, Cr, Au, P
It is a film containing at least one of t, Cu, and Ag, and the lower electrode film is made of Ta, N
It is an alloy containing at least one of b, Mo, Al, and W, and the resistance of the electrode film can be reduced by further increasing the number of layers of the upper electrode film or the lower electrode film.

【0025】反応性エッチングガスとしてF(フッ素)
を含む場合下層電極膜にはTa,Nb,MoあるいはW
を含む膜を用い、上層電極膜1にはRu,Ir,Cr,
Au,Pt,Cu,Agあるいはその他の貴金属元素を
含む材料が使用できる。これらの材料の組合せは下層電
極膜2のエッチング条件において上層電極膜と下層電極
膜の選択比が10以上となることが、望ましい。
F (fluorine) as a reactive etching gas
When the lower electrode film is made of Ta, Nb, Mo or W
The upper electrode film 1 is made of Ru, Ir, Cr,
Materials containing Au, Pt, Cu, Ag or other noble metal elements can be used. It is desirable that a combination of these materials has a selectivity of 10 or more between the upper electrode film and the lower electrode film under the etching condition of the lower electrode film 2.

【0026】このような組合せにすることにより、下層
電極膜のエッチング時の後退量を低減することができ
る。上層電極膜の膜厚は上層電極膜以外の下層電極膜の
膜厚よりも薄くて良い。
With such a combination, the amount of retreat during etching of the lower electrode film can be reduced. The thickness of the upper electrode film may be smaller than the thickness of the lower electrode film other than the upper electrode film.

【0027】しかし、低抵抗かつ耐マイグレーション性
が高くかつ電極間隔の精度が高ければ上層電極膜の膜厚
は厚くなっても良い。エッチングした後の電極形状を
(5)に示す。Fを使用せずAr+O2 混合ガスを用い
たエッチングにより下層電極膜に貴金属膜を用いること
ができる。この時マスクとなる上層電極膜には酸化物
膜、窒化物膜が用いられる。電極端部のテーパ角は30
度から80度である。
However, the thickness of the upper electrode film may be increased as long as the resistance and the migration resistance are high and the accuracy of the electrode interval is high. The shape of the electrode after etching is shown in (5). A noble metal film can be used for the lower electrode film by etching using an Ar + O 2 mixed gas without using F. At this time, an oxide film or a nitride film is used as the upper electrode film serving as a mask. The electrode end taper angle is 30
Degrees to 80 degrees.

【0028】図6は本発明の再生ヘッドを用いた記録再
生ヘッドを浮上面側から見た場合である。基板上に形成
した下部シールド膜8は、NiFe合金膜、センダスト
膜あるいは軟磁性非晶質合金膜である。下部シールド8
上には膜厚80nm以下のAl23,Si23、Al2
3とSiO2 の混合膜あるいは窒化膜のいずれかから
なる下部ギャップ膜6をスパッタリング法やCVD法で
形成する。
FIG. 6 shows a recording / reproducing head using the reproducing head of the present invention when viewed from the floating surface side. The lower shield film 8 formed on the substrate is a NiFe alloy film, a sendust film or a soft magnetic amorphous alloy film. Lower shield 8
Al 2 O 3 , Si 2 O 3 , Al 2 having a thickness of 80 nm or less
A lower gap film 6 made of either a mixed film of O 3 and SiO 2 or a nitride film is formed by a sputtering method or a CVD method.

【0029】下部ギャップ膜2上の凹凸は10nm以下
であることが望ましい。下部ギャップ6上にSV膜をス
パッタリング法やイオンビームスパッタリング法で作製
する。膜構成は基板側からTa5nm/NiFe5nm
/Co1nm/Cu2.5 nm/Co3nm/CrMnP
t25nm/Ta3nmである。
The unevenness on the lower gap film 2 is desirably 10 nm or less. An SV film is formed on the lower gap 6 by a sputtering method or an ion beam sputtering method. The film configuration is Ta5nm / NiFe5nm from the substrate side.
/Co1nm/Cu2.5nm/Co3nm/CrMnP
t25 nm / Ta3 nm.

【0030】反強磁性膜であるCrMnPtの代わり
に、MnPt合金,NiMn合金でも良い。反強磁性膜
上のTaは無くても良い。また反強磁性膜が基板側にあ
る膜構成でも可能である。あるいはRuを用いて固定層
や自由層が積層されたSV膜でも良い。SV膜の両端部
に磁区制御膜3をスパッタリング法や真空蒸着法等で作
製する。
Instead of CrMnPt which is an antiferromagnetic film, a MnPt alloy or a NiMn alloy may be used. Ta on the antiferromagnetic film may not be present. Further, a film configuration in which the antiferromagnetic film is on the substrate side is also possible. Alternatively, an SV film in which a fixed layer and a free layer are stacked using Ru may be used. The magnetic domain control films 3 are formed on both ends of the SV film by a sputtering method, a vacuum evaporation method, or the like.

【0031】磁区制御膜3はCoCrPt合金,CoP
t合金あるいはこれらの合金膜にZrO2 等の酸化物を
添加した膜であり、これらの膜の下地膜として非磁性の
Cr,Nb,Mo等のbcc構造の膜を用いることも可
能である。これらの膜の保磁力は約1000−1500
Oeである。磁区制御膜をリフトオフする前に、磁区制
御膜の保護膜として薄いCrあるいは貴金属合金、ある
いは高融点金属膜を形成しても良い。
The magnetic domain control film 3 is made of a CoCrPt alloy, CoP
It is a film in which an oxide such as ZrO 2 is added to a t alloy or an alloy film thereof, and a film having a bcc structure of nonmagnetic Cr, Nb, Mo or the like can be used as a base film of these films. The coercivity of these films is about 1000-1500
Oe. Before lifting off the magnetic domain control film, a thin Cr, a noble metal alloy, or a high melting point metal film may be formed as a protective film of the magnetic domain control film.

【0032】ギャップ膜5をスパッタリング法やCVD
法等で作製する。電極膜2層以上の多層であり、低比抵
抗かつ高融点材料であるTa,TaW,Ru,Ir,N
b,Ptのうちのいずれかを含むものである。Ta/A
u/Ta,Ru/Pt/Ruのような多層膜からなる電
極とすることもできる。下層電極膜2の膜厚は200n
m以下である。
The gap film 5 is formed by sputtering or CVD.
It is produced by a method or the like. Ta, TaW, Ru, Ir, N, which is a multilayer having two or more electrode films and has a low specific resistance and a high melting point
b and Pt. Ta / A
An electrode composed of a multilayer film such as u / Ta or Ru / Pt / Ru can also be used. The thickness of the lower electrode film 2 is 200 n
m or less.

【0033】また上部ギャップ5はAl23やAlN,
Si34,SiO2 あるいはこれらの混合膜であり、ス
パッタリング法や低温(250℃以下の基板温度)CVD
で形成する。さらにこの上に上部シールド膜(記録ヘッ
ドの下部磁極)7をスパッタリング法あるいはメッキ法
により形成し、下部磁極層21,ギャップ膜23,上部
磁極層24及び高比抵抗磁極層25から構成された磁性
膜と保護膜22及び保護膜26によって記録ヘッドは保
護されている。なお、高比抵抗磁極層25は図6,図7
とは別に、浮上面から1μm以上離すことにより磁極層
25端部から磁界の漏洩を少なくした方が良い。また、
図7のように上部シールド膜をトリミングした記録ヘッ
ドの方が端部磁界が減少し、磁界勾配が増加する。
The upper gap 5 is made of Al 2 O 3 , AlN,
Si 3 N 4 , SiO 2, or a mixed film thereof, which is formed by sputtering or low-temperature (substrate temperature of 250 ° C. or less) CVD
Formed. Further, an upper shield film (a lower magnetic pole of the recording head) 7 is formed thereon by a sputtering method or a plating method, and a magnetic layer composed of a lower magnetic pole layer 21, a gap film 23, an upper magnetic pole layer 24, and a high resistivity magnetic pole layer 25 is formed. The recording head is protected by the film, the protective film 22 and the protective film 26. The high resistivity magnetic pole layer 25 is shown in FIGS.
Separately, it is preferable to reduce the leakage of the magnetic field from the end of the pole layer 25 by separating it from the air bearing surface by 1 μm or more. Also,
As shown in FIG. 7, in the recording head in which the upper shield film is trimmed, the end magnetic field decreases and the magnetic field gradient increases.

【0034】図8は記録再生ヘッドの斜視図の1例であ
る。記録部は下部磁極層103,ギャップ膜102,上
部磁極層101及び高比抵抗磁極層107から構成され
た磁性膜から構成され、再生部は、下部シールド膜10
6上のSV膜104に電極膜105を通して電流を流
し、記録ビット110からの漏洩磁界の変化を電圧の変
化に変換できる。
FIG. 8 is an example of a perspective view of a recording / reproducing head. The recording unit is composed of a magnetic film composed of a lower magnetic pole layer 103, a gap film 102, an upper magnetic pole layer 101, and a high resistivity magnetic pole layer 107, and the reproducing unit is a lower shield film 10
A current flows through the SV film 104 on the electrode 6 through the electrode film 105, and a change in the leakage magnetic field from the recording bit 110 can be converted into a change in voltage.

【0035】磁気ディスク装置には位置決め系32,本
発明の磁気ヘッド21,媒体11,スピンドル31,信
号処理系33が搭載されている。
The magnetic disk drive is equipped with a positioning system 32, a magnetic head 21, a medium 11, a spindle 31, and a signal processing system 33 according to the present invention.

【0036】[0036]

【発明の効果】本発明では、記録再生分離ヘッドの再生
ヘッドの狭ギャップ狭トラックに対する最適構造と作製
法が記載されており、面記録密度10Gb/in2以上
の磁気ディスク装置に用いる磁気記録ヘッドを提供でき
る。
According to the present invention, an optimum structure and a manufacturing method of a read / write separation head for a narrow head / narrow track of a read / write head are described. A magnetic recording head used for a magnetic disk device having an areal recording density of 10 Gb / in2 or more is described. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である磁気ヘッドの製造方法の
一部を示す側断面図。
FIG. 1 is a side sectional view showing a part of a method of manufacturing a magnetic head according to an embodiment of the present invention.

【図2】本発明の実施例である磁気ヘッドの製造方法の
一部を示す側断面図。
FIG. 2 is a side sectional view showing a part of a method of manufacturing a magnetic head according to an embodiment of the present invention.

【図3】本発明の実施例である磁気ヘッドの製造方法の
一部を示す側断面図。
FIG. 3 is a side sectional view showing a part of a method of manufacturing a magnetic head according to an embodiment of the present invention.

【図4】本発明の実施例である磁気ヘッドの製造方法の
一部を示す側断面図。
FIG. 4 is a side sectional view showing a part of a method of manufacturing a magnetic head according to an embodiment of the present invention.

【図5】(1)から(6)までは磁気ヘッドの製造順序
を示す側断面図。
FIG. 5 is a side sectional view showing a manufacturing order of the magnetic heads in (1) to (6).

【図6】本発明の他の実施例として示した磁気ヘッドの
側断面図。
FIG. 6 is a side sectional view of a magnetic head shown as another embodiment of the present invention.

【図7】本発明の他の実施例として示した磁気ヘッドの
側断面図。
FIG. 7 is a side sectional view of a magnetic head shown as another embodiment of the present invention.

【図8】本発明の記録再生ヘッドの斜視図。FIG. 8 is a perspective view of a recording / reproducing head according to the present invention.

【図9】本発明の磁気ヘッドを使用した磁気ディスク装
置の構成図。
FIG. 9 is a configuration diagram of a magnetic disk drive using the magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1…上層電極膜、2…下層電極膜、3…磁区制御膜、4
…SV(GMR)膜、5…ギャップ(上部ギャップ)
膜、6…下部ギャップ膜、7…上部シールド膜、8…下
部シールド膜、9…基板、11…磁気ディスク、21…
下部磁極層、21′…磁気ヘッド、22…保護膜、23…
ギャップ膜、24…上部磁極膜、25…高比抵抗磁極
層、26…保護膜、31…スピンドル、32…位置決め
系、33…信号処理系、101…上部磁極層、102…
ギャップ膜、103…下部磁極層、104…SV膜、1
05…電極膜、106…基板、107…高比抵抗磁極
層、108…上部シールド膜、109…コイル、110
…記録ビット。
DESCRIPTION OF SYMBOLS 1 ... Upper electrode film, 2 ... Lower electrode film, 3 ... Magnetic domain control film, 4
... SV (GMR) film, 5 ... Gap (upper gap)
Film 6 lower gap film 7 upper shield film 8 lower shield film 9 substrate 11 magnetic disk 21
Lower magnetic pole layer, 21 ': magnetic head, 22: protective film, 23:
Gap film, 24: upper magnetic pole film, 25: high resistivity magnetic pole layer, 26: protective film, 31: spindle, 32: positioning system, 33: signal processing system, 101: upper magnetic pole layer, 102 ...
Gap film, 103: lower magnetic pole layer, 104: SV film, 1
05: electrode film, 106: substrate, 107: high resistivity magnetic pole layer, 108: upper shield film, 109: coil, 110
... record bit.

フロントページの続き (72)発明者 府山 盛明 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D034 BA03 BA09 BB08 CA06 DA04 DA07 Continuation of the front page (72) Inventor Moriaki Fuyama 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D034 BA03 BA09 BB08 CA06 DA04 DA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】2つのシールド膜の間にギャップ膜を介し
て磁気抵抗効果膜があり、巨大磁気抵抗効果膜あるいは
磁気抵抗効果膜に電流を流す電極膜が磁気抵抗効果膜あ
るいは巨大磁気抵抗効果膜に電気的に接触している磁気
ヘッドにおいて、巨大磁気抵抗効果膜あるいは磁気抵抗
効果膜上の電極膜が2層以上からなり、電極膜の上層の
膜を下層電極膜のマスクとして用いており、電極膜の上
層が下層よりもエッチングされにくい元素を含む膜から
なることを特徴とする磁気ヘッド。
A magnetoresistive film is provided between two shield films via a gap film, and a giant magnetoresistive film or an electrode film for passing a current through the magnetoresistive film is a magnetoresistive film or a giant magnetoresistive effect. In a magnetic head that is in electrical contact with the film, the giant magnetoresistive film or the electrode film on the magnetoresistive film consists of two or more layers, and the upper film of the electrode film is used as a mask for the lower electrode film. A magnetic head, wherein the upper layer of the electrode film is made of a film containing an element which is less easily etched than the lower layer.
【請求項2】2つのシールド膜の間にギャップ膜を介し
て磁気抵抗効果膜があり、巨大磁気抵抗効果膜あるいは
磁気抵抗効果膜に電流を流す電極膜が磁気抵抗効果膜あ
るいは巨大磁気抵抗効果膜に電気的に接触している磁気
ヘッドにおいて、巨大磁気抵抗効果膜あるいは磁気抵抗
効果膜上の電極膜が2層以上からなり、電極膜の最上層
の膜が貴金属を含む膜であり、かつ最上層の膜厚が下層
の膜厚よりも薄く、磁気抵抗効果膜と接触しないことを
特徴とする磁気ヘッド。
2. A magnetoresistive film having a gap film between two shield films, and a giant magnetoresistive film or an electrode film for passing a current through the magnetoresistive film is a magnetoresistive film or a giant magnetoresistive effect. In a magnetic head that is in electrical contact with the film, the giant magnetoresistive film or the electrode film on the magnetoresistive film is composed of two or more layers, the uppermost film of the electrode film is a film containing a noble metal, and A magnetic head, wherein the thickness of the uppermost layer is smaller than the thickness of the lower layer and does not contact the magnetoresistive film.
【請求項3】請求項1又は2において、電極膜の最上層
の膜がRu,Ir,Cr,Au,Pt,Cu,Agを少
なくとも1種類含む膜であり、最上層の電極膜は磁気抵
抗効果膜と接触しないことを特徴とする磁気ディスク装
置。
3. The electrode film according to claim 1, wherein the uppermost film of the electrode film is a film containing at least one kind of Ru, Ir, Cr, Au, Pt, Cu, and Ag. A magnetic disk drive not contacting the effect film.
【請求項4】2つのシールド膜の間にギャップ膜を介し
て磁気抵抗効果膜があり、巨大磁気抵抗効果膜あるいは
磁気抵抗効果膜に電流を流す電極膜が磁気抵抗効果膜あ
るいは巨大磁気抵抗効果膜に電気的に接触している磁気
ヘッドにおいて、巨大磁気抵抗効果膜あるいは磁気抵抗
効果膜上の電極膜が2層以上からなり、電極膜の最上層
の膜以外の電極膜を反応性のエッチングにより加工する
こと特徴とする磁気ヘッド作製方法。
4. A magnetoresistive film having a gap film between two shield films, and a giant magnetoresistive film or an electrode film for flowing a current through the magnetoresistive film is formed by a magnetoresistive film or a giant magnetoresistive effect. In a magnetic head that is in electrical contact with the film, the giant magnetoresistive film or the electrode film on the magnetoresistive film consists of two or more layers, and the electrode films other than the uppermost film of the electrode film are reactively etched. A method for manufacturing a magnetic head, characterized by processing by:
【請求項5】2つのシールド膜の間にギャップ膜を介し
て磁気抵抗効果膜があり、巨大磁気抵抗効果膜あるいは
磁気抵抗効果膜に電流を流すための電極膜が磁気抵抗効
果膜あるいは巨大磁気抵抗効果膜に電気的に接触してい
る磁気ヘッドにおいて、巨大磁気抵抗効果膜あるいは磁
気抵抗効果膜上の電極膜が2層以上からなり、電極膜の
最上層の膜が酸化物や窒化物を少なくとも1種類含む膜
であり、最上層の電極膜は磁気抵抗効果膜と接触しない
ことを特徴とする磁気ヘッド。
5. A magnetoresistive film having a gap film between two shield films, and a giant magnetoresistive film or an electrode film for flowing a current to the magnetoresistive film is a magnetoresistive film or a giant magnetic film. In a magnetic head that is in electrical contact with the resistive film, the giant magnetoresistive film or the electrode film on the magnetoresistive film is composed of two or more layers, and the uppermost film of the electrode film is made of oxide or nitride. A magnetic head comprising at least one kind of film, wherein an uppermost electrode film does not contact the magnetoresistive film.
【請求項6】2つのシールド膜の間にギャップ膜を介し
て磁気抵抗効果膜があり、巨大磁気抵抗効果膜あるいは
磁気抵抗効果膜に電流を流す電極膜が磁気抵抗効果膜あ
るいは巨大磁気抵抗効果膜に電気的に接触している磁気
ヘッドにおいて、巨大磁気抵抗効果膜あるいは磁気抵抗
効果膜上の電極膜が2層以上からなり、電極膜の最上層
の膜の間隔が下層の電極膜の幅よりも広く、最上層の膜
厚が下層よりも薄いことを特徴とする磁気ヘッド。
6. A magnetoresistive film having a gap film between two shield films, and a giant magnetoresistive film or an electrode film for flowing a current through the magnetoresistive film is a magnetoresistive film or a giant magnetoresistive effect. In a magnetic head in electrical contact with the film, the giant magnetoresistive film or the electrode film on the magnetoresistive film is composed of two or more layers, and the interval between the uppermost electrode films is the width of the lower electrode film. A magnetic head characterized in that the thickness of the uppermost layer is wider than that of the lower layer.
【請求項7】請求項1から6のいずれか1項記載におい
て、電極膜の間隔が磁区制御膜の間隔よりも狭いことを
特徴とする磁気ヘッド。
7. The magnetic head according to claim 1, wherein an interval between the electrode films is smaller than an interval between the magnetic domain control films.
JP10270917A 1998-09-25 1998-09-25 Magnetic head and magnetic disk device as well as its manufacture Pending JP2000099926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270917A JP2000099926A (en) 1998-09-25 1998-09-25 Magnetic head and magnetic disk device as well as its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270917A JP2000099926A (en) 1998-09-25 1998-09-25 Magnetic head and magnetic disk device as well as its manufacture

Publications (1)

Publication Number Publication Date
JP2000099926A true JP2000099926A (en) 2000-04-07

Family

ID=17492801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270917A Pending JP2000099926A (en) 1998-09-25 1998-09-25 Magnetic head and magnetic disk device as well as its manufacture

Country Status (1)

Country Link
JP (1) JP2000099926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665154B2 (en) * 2001-08-17 2003-12-16 Headway Technologies, Inc. Spin valve head with a current channeling layer
US6829122B2 (en) 2001-02-15 2004-12-07 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer
US7136264B2 (en) * 2003-04-10 2006-11-14 Hitachi Global Storage Technologies Netherlands, B.V. Use of gold leads in lead overlaid type of GMR sensor
US7141508B2 (en) 2001-08-08 2006-11-28 Tdk Corporation Magnetoresistive effect thin-film magnetic head and manufacturing method of magnetoresistive effect thin-film magnetic head
US7231705B2 (en) 2003-02-18 2007-06-19 Tdk Corporation Method for forming a resist pattern of magnetic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829122B2 (en) 2001-02-15 2004-12-07 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer
US7141508B2 (en) 2001-08-08 2006-11-28 Tdk Corporation Magnetoresistive effect thin-film magnetic head and manufacturing method of magnetoresistive effect thin-film magnetic head
US6665154B2 (en) * 2001-08-17 2003-12-16 Headway Technologies, Inc. Spin valve head with a current channeling layer
US7231705B2 (en) 2003-02-18 2007-06-19 Tdk Corporation Method for forming a resist pattern of magnetic device
US7784170B2 (en) 2003-02-18 2010-08-31 Tdk Corporation Method for forming a resist pattern of magnetic device by etching with a gas cluster ion beam
US7136264B2 (en) * 2003-04-10 2006-11-14 Hitachi Global Storage Technologies Netherlands, B.V. Use of gold leads in lead overlaid type of GMR sensor

Similar Documents

Publication Publication Date Title
JP3650051B2 (en) Process monitor element, magnetic transducer, assembly of process monitor elements, and method of manufacturing magnetic transducer
US6591481B2 (en) Method of manufacturing magnetoresistive device and method of manufacturing thin-film magnetic head
US7341876B2 (en) Anti-parallel tab sensor fabrication
US6657826B2 (en) Magnetoresistive device and method of manufacturing same, thin-film magnetic head and method of manufacturing same, head gimbal assembly and hard disk drive
US7360298B2 (en) Method of manufacturing a magnetic bias pinning layer for a GMR sensor of a magnetic head
US20060132969A1 (en) Magnetic head and method of making the same using an etch-stop layer for removing portions of the capping layer
US7126796B2 (en) Read sensor with overlaying lead layer top surface portions interfaced by hard bias and tapered lead layers
US6306311B1 (en) Method to make a high data rate stitched writer for a giant magneto-resistive head
JPH11339223A (en) Etchig method of magnetic layer, formation of magnetic pole for thin-film magnetic head and manufacture of thin-film magnetic head
JP4322939B2 (en) Magnetoresistance thin film magnetic head with antiferromagnetic layer for magnetic domain control
US7497008B2 (en) Method of fabricating a thin film magnetic sensor on a wafer
JP2000099926A (en) Magnetic head and magnetic disk device as well as its manufacture
US9236069B2 (en) Method for making a current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reduced-width self-aligned top electrode
JP2001167408A (en) Thin-film magnetic head and method for manufacturing the same
JP3475148B2 (en) Thin film magnetic head and method of manufacturing the same
JP3730976B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
US6943996B2 (en) Magnetic biasing layer for GMR sensor of a magnetic head for a hard disk drive
US7500303B2 (en) Method of fabricating a magnetic sensor on a wafer
JP3603254B2 (en) Thin film magnetic head and method of manufacturing the same
JPH11175929A (en) Magnetic head
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPH11213342A (en) Magneto-resistance effect type magnetic head and its production
JP2000173018A (en) Manufacture of thin film magnetic head
JPH11283214A (en) Thin film magnetic head and its production
JPH11283212A (en) Method for forming magnetic pole of thin film magnetic head, production of thin film magnetic head and thin film magnetic head