JP2000098231A - Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it - Google Patents

Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it

Info

Publication number
JP2000098231A
JP2000098231A JP10268800A JP26880098A JP2000098231A JP 2000098231 A JP2000098231 A JP 2000098231A JP 10268800 A JP10268800 A JP 10268800A JP 26880098 A JP26880098 A JP 26880098A JP 2000098231 A JP2000098231 A JP 2000098231A
Authority
JP
Japan
Prior art keywords
optical system
reflection
mask
image
reflection reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268800A
Other languages
Japanese (ja)
Inventor
Yutaka Suenaga
豊 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10268800A priority Critical patent/JP2000098231A/en
Publication of JP2000098231A publication Critical patent/JP2000098231A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems

Abstract

PROBLEM TO BE SOLVED: To provide a reflection reduction image-formation optical system by which a sufficient image-formation performance is obtained regardless of a simple constitution. SOLUTION: The reflection reduction image-formation optical system performs the reduction and the formation of the image of an object on an image surface possesses plural reflection surfaces. When NA on an image side is set to be NAw and the image reduction of the optical system is set to be β, the expression; NAm=NAw×β is satisfied. In this constitution, a light beam, whose angle Θ1 obtained by the optical axis of the reflection reduction image- formation optical system is set to be minimum, and the light beam, whose angle Θ2 obtained by the optical axis is set to be maximum, satisfy the expressions of SIN Θ1>0.1 NAm and SIN Θ<4 NAm, within an arbitrary plane including the optical axis of the reflection reduction image-formation optical system among the light beams made incident on the reflection reduction image-formation optical system from an object surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射縮小結像光学
系に関するものであり、例えば半導体デバイスを製造す
る為のリソグラフィー用反射縮小結像光学系に関する。
本発明は更にその光学系を備えた露光装置、さらには、
反射縮小結像光学系を用いた露光方法に関するものであ
る。
The present invention relates to a reflection reduction imaging optical system, and more particularly to a reflection reduction imaging optical system for lithography for manufacturing semiconductor devices.
The present invention further provides an exposure apparatus having the optical system,
The present invention relates to an exposure method using a reflection reduction imaging optical system.

【0002】[0002]

【従来の技術】半導体デバイスの集積度の高密度化に伴
い、ウエハを露光するための光としてX線を用いる技術
の開発が進められている。特開昭63−311315号
公報には、マスクからのX線を第1の凹面鏡、凸面鏡及
び第2の凹面鏡の順に反射して、ウエハを縮小露光する
技術が開示されている。また同公報には、マスクと第1
の凹面鏡との間、または第2の凹面鏡とウエハとの間、
あるいはその双方に平面鏡を配置して、スキャン時のウ
エハと光線との干渉を避ける構成が開示されている。
更に、特開平9−251097号公報には、物体(マス
ク、又はレチクル)側から順に、第1の凹面鏡と、平面
鏡と、凸面鏡と、第2の凹面鏡とを共軸に配置し、各凹
面鏡と凸面鏡とを非球面形状に形成し、凸面鏡を瞳面に
配置し、且つ像(ウエハ)側テレセントリックとなるよ
うに形成したX線リソグラフィー用反射縮小結像光学系
が開示されている。
2. Description of the Related Art With the increase in the integration density of semiconductor devices, the development of a technique using X-rays as light for exposing a wafer has been promoted. Japanese Patent Application Laid-Open No. 63-31315 discloses a technique in which X-rays from a mask are reflected in the order of a first concave mirror, a convex mirror, and a second concave mirror to reduce the size of a wafer for exposure. The publication also states that the mask and the first
Between the concave mirror of the or between the second concave mirror and the wafer,
Alternatively, a configuration is disclosed in which plane mirrors are arranged on both sides to avoid interference between the wafer and light beams during scanning.
Further, Japanese Patent Application Laid-Open No. 9-251097 discloses that a first concave mirror, a plane mirror, a convex mirror, and a second concave mirror are coaxially arranged in order from the object (mask or reticle) side. There is disclosed a reflection reduction imaging optical system for X-ray lithography in which a convex mirror is formed in an aspherical shape, the convex mirror is arranged on a pupil plane, and formed so as to be telecentric on the image (wafer) side.

【0003】[0003]

【発明が解決しようとする課題】前記特開昭63−31
1315号公報による構成では、マスクとウエハとの同
期スキャンにおいて、ウエハが光線と干渉して光線のけ
られを招くおそれがある。更にこの構成では、平面鏡へ
のX線の入射角が45°程度となり、X線用の反射鏡は
一般に多層膜を積層して構成されていることから、入射
角の相違による位相シフトを生じて収差が発生する。
Problems to be Solved by the Invention
In the configuration disclosed in Japanese Patent No. 1315, the wafer may interfere with the light beam in the synchronous scan between the mask and the wafer, which may cause the light beam to be shaken. Further, in this configuration, the incident angle of X-rays on the plane mirror is about 45 °, and the X-ray reflecting mirror is generally formed by laminating multilayer films. Aberration occurs.

【0004】更に、前記特開平9−251097号公報
の構成では、前記反射鏡の内、前記マスクに最も近い反
射鏡から前記マスク迄の光路長が長いので、装置を大型
化していた。更に、複数のミラー系で反射光学系を構成
する場合に生じる光束ケラレを避ける為に、ウエハ側の
NAが0.06と小さく、十分な解像を得る事ができな
かった。
Further, in the configuration of Japanese Patent Application Laid-Open No. 9-251097, since the optical path length from the reflecting mirror closest to the mask to the mask among the reflecting mirrors is long, the apparatus is enlarged. Furthermore, in order to avoid vignetting of a light beam which occurs when a reflecting optical system is constituted by a plurality of mirror systems, the NA on the wafer side is as small as 0.06, and a sufficient resolution cannot be obtained.

【0005】反射光学系全体の小型化を図り、なおかつ
物体からの光束がケラレることなく所定の位置にマスク
Mの像を結像させる為のものである。したがって本発明
は、簡易な構成にて十分な結像性能を得ることができる
反射縮小結像光学系、その反射縮小結像光学系を備えた
露光装置及び反射縮小結像光学系を用いた、露光方法を
提供することを目的とする。
The purpose of the present invention is to reduce the size of the entire reflecting optical system and to form an image of the mask M at a predetermined position without causing luminous flux from an object. Therefore, the present invention uses a reflection reduction imaging optical system capable of obtaining sufficient imaging performance with a simple configuration, an exposure apparatus including the reflection reduction imaging optical system, and a reflection reduction imaging optical system. An object of the present invention is to provide an exposure method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する為に
本発明の請求項1に記載の発明に係わる反射縮小結像光
学系では、物体の像を像面上に縮小結像する、反射縮小
結像光学系に於いて、前記反射縮小結像光学系は、複数
の反射面を有し、像側のNAをNAwとし、光学系の縮
小倍率をβ、NAm=NAw×β、前記物体面上から前
記反射縮小結像光学系に入射する光線の内、前記反射縮
小結像光学系の光軸又は光軸と平行な軸を含む任意の平
面内において、前記光軸又は前記光軸と平行な軸とのな
す角Θ1が最小となる光線及び、前記光軸又は前記光軸
と平行な軸とのなす角Θ2が最大となる光線とが、SI
NΘ1>0.1NAm かつ、SINΘ2<4NAm
を満足するように構成されている。
In order to achieve the above object, a reflection reduction imaging optical system according to the first aspect of the present invention includes a reflection reduction imaging system for reducing and forming an image of an object on an image plane. In the reduction imaging optical system, the reflection reduction imaging optical system has a plurality of reflecting surfaces, NA on the image side is NAw, reduction magnification of the optical system is β, NAm = NAw × β, the object Of the light rays incident on the reflection reduction imaging optical system from above, in any plane including an optical axis of the reflection reduction imaging optical system or an axis parallel to the optical axis, the optical axis or the optical axis The light ray having the smallest angle Θ1 with the parallel axis and the light ray having the largest angle Θ2 with the optical axis or the axis parallel to the optical axis are SI
NΘ1> 0.1NAm and SINΘ2 <4NAm
It is configured to satisfy.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態について説明
する。本発明は、同一出願人による先願、特願平10−
47400に記載の露光装置に用いられる投影光学系に
関するものであるが、以下に図1に沿って該露光装置の
概略構成を説明する。
Embodiments of the present invention will be described. The present invention relates to a prior application filed by the same applicant, Japanese Patent Application No.
The present invention relates to a projection optical system used in the exposure apparatus described in No. 47400, and a schematic configuration of the exposure apparatus will be described below with reference to FIG.

【0008】レーザ光源等の光源手段から供給される光
束(平行光束)は、多光源形成光学系(オプティカルイ
ンテグレータ)としての反射素子群2にほぼ垂直に入射
する。 ここで、反射素子群2は、YZ平面に垂直な所
定の第1の基準平面P1に沿って多数の反射素子(光学
素子)Eが2次元的に稠密に配置されて構成されてい
る。具体的には、図2に示すように、反射素子群2は、
輪郭(外形)が円弧状に形成された反射曲面を持つ反射
素子Eを多数有している。そして、この反射素子群2
は、Z方向に沿って多数配列された反射素子の列をY方
向に沿って5列有している。そして、この5列の反射素
子の列は、全体としてほぼ円形状となるように構成され
ている。なお、反射素子Eの輪郭形状(円弧形状)は、
後述する被照射面としての反射マスク5上に形成される
円弧状の照明領域IFの形状と相似である。各反射素子
Eは、不図示の光軸AXEから偏心した所定の領域にお
いて所定の曲率半径REの反射曲面の1部を、輪郭(外
形)が円弧状となるように切り出した形状を有してお
り、この円弧状反射素子Eの中心CEは、光軸AXEか
らの高さhEの位置にある。従って、各反射素子Eの偏
心した反射面RSEは、所定の曲率半径REを有する偏
心球面ミラーで構成される。なお、前記反射面RSE
は、光源手段1から入射する光束を有効に反射させる反
射素子Eの有効反射領域を示している。よって、反射素
子Eの光軸AxEに沿って平行な方向に入射するレーザ
光(平行光束)Lは、反射素子Eの光軸AxE上の焦点
位置FEに集光されて光源像Iを形成する。
A light beam (parallel light beam) supplied from a light source means such as a laser light source enters a reflection element group 2 as a multiple light source forming optical system (optical integrator) almost perpendicularly. Here, the reflection element group 2 is configured such that many reflection elements (optical elements) E are two-dimensionally densely arranged along a predetermined first reference plane P1 perpendicular to the YZ plane. Specifically, as shown in FIG.
A large number of reflective elements E having a reflective curved surface whose contour (outer shape) is formed in an arc shape are provided. And this reflection element group 2
Has five rows of reflective elements arranged in a large number along the Z direction along the Y direction. The five rows of reflecting elements are configured to be substantially circular as a whole. The outline shape (arc shape) of the reflection element E is
This is similar to the shape of an arc-shaped illumination region IF formed on a reflection mask 5 as a surface to be irradiated, which will be described later. Each of the reflection elements E has a shape in which a part of a reflection curved surface having a predetermined curvature radius RE is cut out in a predetermined region eccentric from an optical axis AX (not shown) so that an outline (outer shape) becomes an arc shape. The center CE of the arc-shaped reflection element E is located at a height hE from the optical axis AXE. Therefore, the decentered reflecting surface RSE of each reflecting element E is constituted by an eccentric spherical mirror having a predetermined radius of curvature RE. The reflection surface RSE
Indicates an effective reflection area of the reflection element E that effectively reflects a light beam incident from the light source unit 1. Therefore, the laser light (parallel light beam) L incident in a direction parallel to the optical axis AxE of the reflective element E is condensed at the focal position FE on the optical axis AxE of the reflective element E to form the light source image I. .

【0009】図1に戻って説明すると、反射素子群2に
ほぼ垂直に入射するレーザ光(平行光束)は、多数の反
射素子Eの反射作用によって、円弧状に波面分割されて
入射光束からずれた位置P2に多数の反射素子Eの数に
対応する光源像が形成される。換言すれば、反射素子群
2を構成する多数の反射素子Eの各光軸AxEに対して
平行な方向からレーザ光が入射するものとすると、各反
射素子Eの反射集光作用により、各光軸AxE上に存在
する焦点位置FEを通る面P2に光源像Iがそれぞれ形
成される。多数の光源像Iが形成される面P2には、実
質的に、多数の2次光源が形成される。従って、反射素
子群2は、多数の光源像Iを形成する光源像形成光学
系、即ち多数の2次光源を形成する多光源形成光学系と
して機能を有している。
Returning to FIG. 1, the laser beam (parallel light beam) incident on the reflecting element group 2 almost perpendicularly is split into a wavefront in an arc shape by the reflection action of a large number of reflecting elements E and deviated from the incident light beam. Light source images corresponding to the number of the large number of reflective elements E are formed at the position P2. In other words, assuming that laser light is incident from a direction parallel to each optical axis AxE of a number of reflection elements E constituting the reflection element group 2, each light is reflected and condensed by each reflection element E. Light source images I are respectively formed on a plane P2 passing through the focal position FE existing on the axis AxE. On the surface P2 on which a large number of light source images I are formed, a large number of secondary light sources are substantially formed. Accordingly, the reflection element group 2 has a function as a light source image forming optical system that forms a large number of light source images I, that is, a multiple light source forming optical system that forms a large number of secondary light sources.

【0010】この多数の光源像Iからの光束は、コンデ
ンサー光学系としての光軸AxCを有するコンデンサー
反射鏡3に入射する。このコンデンサー反射鏡3は、光
軸AxCから離れた位置に有効反射面を有する1枚の球
面ミラーで構成され、この球面ミラーは、所定の曲率半
径RCを有している。コンデンサー反射鏡3の光軸Ax
Cは、光学素子群2により多数の光源像Iが形成される
中心位置(光軸AxCと光源像Iが形成される面P2と
が交差する位置)を通る。但し、コンデンサー反射鏡3
の焦点位置は、この光軸AxC上に存在する。なお、コ
ンデンサー反射鏡3の光軸AxCは、光学素子群2を構
成する多数の光学素子E1の各光軸AxE1と平行であ
る。多数の光源像Iからの各光束は、コンデンサー反射
鏡3によりそれぞれ反射集光された後、偏向ミラーとし
ての平面鏡4を介して被照射面としての反射型マスク5
を円弧状に重畳的に照明する。円弧状の照明領域IFの
曲率中心OIFは投影光学系の光軸AxP上に存在す
る。また、仮に図1の平面ミラー4を除去した場合に
は、照明領域IFは図1の被照射面IPの位置に形成さ
れ、この時の照明領域IFの曲率中心OIFは、コンデ
ンサー光学系3の光軸AxC上に存在する。従って、図
1に示す例では、コンデンサー光学系3の光軸AxCが
平面ミラー4によって90°偏向されていないが、図1
に示す平面ミラー4の仮想の反射面4aにてコンデンサ
ー光学系3の光軸AxCを90°偏向させれば、コンデ
ンサー光学系3の光軸AxCと投影光学系6の光軸Ax
Pとは、反射マスク5上では同軸となる。このため、こ
れらの光軸(AxC、AxP)は光学的に同軸であると
言える。よって、各光軸(AxC、AxP)は円弧状の
照明領域IFの曲率中心OIFを光学的に通るようにコ
ンデンサー光学系3と投影光学系6とは配置されてい
る。
The light beams from the multiple light source images I enter a condenser mirror 3 having an optical axis AxC as a condenser optical system. The condenser reflecting mirror 3 is composed of a single spherical mirror having an effective reflecting surface at a position away from the optical axis AxC, and the spherical mirror has a predetermined radius of curvature RC. Optical axis Ax of condenser reflector 3
C passes through a center position (a position where the optical axis AxC intersects with a plane P2 on which the light source image I is formed) at which a large number of light source images I are formed by the optical element group 2. However, condenser reflector 3
Exists on this optical axis AxC. Note that the optical axis AxC of the condenser reflecting mirror 3 is parallel to each optical axis AxE1 of many optical elements E1 constituting the optical element group 2. Each light flux from a large number of light source images I is reflected and condensed by a condenser reflecting mirror 3 and then reflected by a reflective mask 5 as a surface to be irradiated via a plane mirror 4 as a deflecting mirror.
Are illuminated in an arc in a superimposed manner. The center of curvature OIF of the arc-shaped illumination area IF exists on the optical axis AxP of the projection optical system. Also, if the plane mirror 4 in FIG. 1 is removed, the illumination area IF is formed at the position of the irradiated surface IP in FIG. 1, and the center of curvature OIF of the illumination area IF at this time is Present on the optical axis AxC. Therefore, in the example shown in FIG. 1, the optical axis AxC of the condenser optical system 3 is not deflected by 90 ° by the plane mirror 4.
When the optical axis AxC of the condenser optical system 3 is deflected by 90 ° at the virtual reflecting surface 4a of the plane mirror 4 shown in FIG.
P is coaxial on the reflection mask 5. Therefore, it can be said that these optical axes (AxC, AxP) are optically coaxial. Therefore, the condenser optical system 3 and the projection optical system 6 are arranged so that each optical axis (AxC, AxP) passes optically through the center of curvature OIF of the arc-shaped illumination region IF.

【0011】反射型マスク5の表面には、所定の回路パ
ターンが形成されており、この反射型マスク5は、XY
平面内に沿って2次元的に移動可能なマスクステージM
Sに保持されている。この反射型マスク5を反射した光
は、投影光学系6を介して感光性基板としてのレジスト
が塗布されたウエハW上に結像され、ここには、円弧状
の反射マスク5のパターン像が投影転写される。ウエハ
7は、XY平面内に沿って2次元的に移動可能な基板ス
テージWSに保持されている。
A predetermined circuit pattern is formed on the surface of the reflective mask 5.
Mask stage M movable two-dimensionally along a plane
S is held. The light reflected by the reflective mask 5 is imaged via a projection optical system 6 onto a wafer W coated with a resist as a photosensitive substrate, where the pattern image of the arc-shaped reflective mask 5 is formed. Projected and transferred. The wafer 7 is held on a substrate stage WS that can move two-dimensionally along the XY plane.

【0012】ここで、マスクステージMSは第1駆動系
D1を介してXY平面内に沿って2次元的に移動し、基
板ステージWSは第2駆動系D2を介してXY平面内に
沿って2次元的に移動する。この2つの駆動系(D1、
D2)は、制御系8によって各駆動量が制御されてい
る。従って、制御系8は、2つの駆動系(D1、D2)
を介してマスクステージMS及び基板ステージWSを互
いに反対方向(矢印方向)へ移動させることによって、
反射型マスク5上に形成されているパターン全体が投影
光学系6を介してウエハW上に走査露光される。これに
より、半導体デバイスを製造する光リソグラフィー工程
での良好なる回路パターンがウエハW上に転写されるた
め、良好なる半導体デバイスを製造することができる。
Here, the mask stage MS moves two-dimensionally along the XY plane via the first drive system D1, and the substrate stage WS moves along the XY plane via the second drive system D2. Move in a dimension. These two drive systems (D1,
In D2), each drive amount is controlled by the control system 8. Therefore, the control system 8 has two drive systems (D1, D2).
By moving the mask stage MS and the substrate stage WS in directions opposite to each other (in the direction of the arrow) via
The entire pattern formed on the reflective mask 5 is scanned and exposed on the wafer W via the projection optical system 6. Thereby, a good circuit pattern in the photolithography process for manufacturing a semiconductor device is transferred onto the wafer W, so that a good semiconductor device can be manufactured.

【0013】図3は、図1に投影光学系6として示し
た、本発明によるX線リソグラフィー用反射縮小結像光
学系の第1実施例の概略構成図である。図4は該第1実
施例の収差図を示す。図に示すように本発明による光学
系は、反射型マスクM側からウエハW側に向けて光線が
進む順に、第1の凹面鏡M1と、平面又は曲率半径の大
きな反射鏡M2、凸面鏡M3と、第2の凹面鏡M4とを
共軸に配置して構成され、且つ、ウエハW側がテレセン
トリックとなるように構成され、前記反射型マスクMか
ら第1の凹面鏡M1迄の光路長を短くし、前記4枚の反
射鏡の内、少なくとも3枚以上の反射鏡の反射面は、非
球面形状に形成したX線リソグラフィー用反射縮小結像
光学系である。
FIG. 3 is a schematic diagram showing a first embodiment of the reflection reduction imaging optical system for X-ray lithography according to the present invention, which is shown as the projection optical system 6 in FIG. FIG. 4 shows aberration diagrams of the first embodiment. As shown in the drawing, the optical system according to the present invention comprises a first concave mirror M1, a flat mirror or a convex mirror M3 having a large flat or radius of curvature, in the order of rays traveling from the reflective mask M side to the wafer W side. The second concave mirror M4 and the second concave mirror M4 are arranged coaxially and the wafer W side is telecentric, and the optical path length from the reflective mask M to the first concave mirror M1 is reduced. The reflecting surfaces of at least three or more of the reflecting mirrors are reflection reduction imaging optical systems for X-ray lithography formed in an aspherical shape.

【0014】以下、上記のような構成を採用した理由と
作用について説明する。本発明は、特に縮小倍率βが1
/3〜1/10の光学系に有効である。本発明による光
学系は、ウエハW側のNA(NAw)が0.1より大き
くても、複数の反射系で光学系を構成する場合に生じる
光束のケラレを、系全体を大きくする事なく避けて、尚
かつ、円弧状領域(リングフィールドRF)に対する軸
外の結像に関する収差(非点収差、像面湾曲、コマ収
差)が、より良好に補正されている。
Hereinafter, the reason and operation of the above-described configuration will be described. In the present invention, in particular, the reduction magnification β is 1
This is effective for an optical system of 3 to 1/10. With the optical system according to the present invention, even if the NA (NAw) on the wafer W side is larger than 0.1, the vignetting of the light beam that occurs when the optical system is configured by a plurality of reflection systems is avoided without increasing the size of the entire system. Further, aberrations (astigmatism, curvature of field, and coma) relating to off-axis imaging with respect to the arc-shaped region (ring field RF) are more favorably corrected.

【0015】その為に、図7に示すように、本発明によ
る前記反射縮小結像光学系6は、照明光束ILによって
照明された反射型マスクMの像をウエハW面上に縮小結
像するとき、ウエハW側(像側)のNAをNAw、光学
系の縮小倍率をβ、NAm=NAw×β、とすると、反
射型マスク面上の任意の有効領域から反射されて前記反
射縮小結像光学系6に入射する光線の内、前記反射縮小
結像光学系の光軸AxP又はそれと平行な軸AxQを含
む任意の平面内で、最小入射角Θ1の光線及び、最大入
射角Θ2の光線に対し、下記条件式 SINΘ1>0.1NAm (1) かつ、 SINΘ2<4NAm (2) を満足するように構成されている。ここで、前記SIN
Θ1が条件式(1)「0.1NAm」を超えると、照明
光束と、反射型マスクMで反射された入射光束とが干渉
しあって、光束のケラレを生じ易くなり、それを避ける
為に光学系全体が大きくなり好ましくない。また、前記
SINΘ2が条件式(2)「4NAm」を超えると、反
射型マスクMからの反射光に明るさムラが生じ好ましく
ない。更に、マスク面内での方向による偏光の反射特性
の為に該方向による解像ムラが生じ好ましくない。更
に、マスクパターンに段差があった場合に線幅方向に陰
が生じ、線幅誤差となり好ましくない。
For this purpose, as shown in FIG. 7, the reflection reduction imaging optical system 6 according to the present invention reduces and forms an image of the reflection type mask M illuminated by the illumination light flux IL on the surface of the wafer W. When the NA on the wafer W side (image side) is NAw, the reduction magnification of the optical system is β, and NAm = NAw × β, the light is reflected from an arbitrary effective area on the reflective mask surface and the reflected reduced image is formed. Of the light rays incident on the optical system 6, in an arbitrary plane including the optical axis AxP of the reflection reduction imaging optical system or an axis AxQ parallel thereto, a light ray having a minimum incident angle Θ1 and a light ray having a maximum incident angle Θ2 are obtained. On the other hand, it is configured so as to satisfy the following conditional expressions: SINΘ1> 0.1NAm (1) and SINΘ2 <4NAm (2). Here, the SIN
If Θ1 exceeds the conditional expression (1) “0.1 NAm”, the illuminating light beam and the incident light beam reflected by the reflective mask M interfere with each other, and it becomes easy for vignetting of the light beam to occur. The entire optical system is undesirably large. On the other hand, if the SIN # 2 exceeds the conditional expression (2) “4NAm”, the reflected light from the reflective mask M may be uneven in brightness, which is not preferable. Furthermore, because of the polarization characteristics of polarized light depending on the direction within the mask plane, uneven resolution may occur due to the direction, which is not preferable. Further, when there is a step in the mask pattern, shadows occur in the line width direction, resulting in a line width error, which is not preferable.

【0016】ここで、より一層前記反射光の明るさムラ
及び、前記偏光の反射特性による解像ムラ及び、前記線
幅誤差を小さくする為には、条件式(2)は更に、 SINΘ2<3NAm (3) であることが好ましい。図3に示すように本発明による
光学系は、反射型マスクM側からウエハW側に向けて光
線が進む順に、第1の凹面鏡M1と、平面又は曲率半径
の大きな反射鏡M2、凸面鏡M3と、第2の凹面鏡M4
と4枚の反射鏡を共軸に配置して構成され、且つ、ウエ
ハW側がテレセントリックとなるように構成されてい
る。そして、前記4枚の反射鏡の内、少なくとも3枚以
上の面が、非球面形状に形成されており、円弧状領域
(リングフィールドRF)に対する軸外の結像に関する
収差(非点収差、像面湾曲、コマ収差)が、より良好に
補正されている。
Here, in order to further reduce the unevenness in brightness of the reflected light, the unevenness in resolution due to the reflection characteristic of the polarized light, and the line width error, conditional expression (2) further satisfies SINΘ2 <3NAm. (3) As shown in FIG. 3, the optical system according to the present invention includes a first concave mirror M1, a flat mirror M2 and a convex mirror M3 having a large flat surface or radius of curvature in the order in which light rays travel from the reflective mask M toward the wafer W. , The second concave mirror M4
And four reflecting mirrors are arranged coaxially, and the wafer W side is configured to be telecentric. At least three or more of the four reflecting mirrors are formed in an aspherical shape, and aberrations relating to off-axis imaging with respect to an arc-shaped region (ring field RF) (astigmatism, image Surface curvature and coma aberration) are better corrected.

【0017】更に、前記反射型マスクMから第1の凹面
鏡M1迄の光路長をDとすると、 D<1200mm (4) を満足する必要がある。本発明は、波長13nmのX線
を光源とし、線幅70nm以下のパターンを焼き付ける
光学系を想定しており、光路を真空にする為の装置が必
要であるが、前記条件範囲を超えると、装置が大型化し
て好ましくない。更に、他の光源を使用し、光路中に媒
質(Heガス、窒素ガス、等の不活性ガス及び空気等)
が存在する場合は、記条件範囲を超えると、前記媒質が
熱等によってゆらいだ時に、その影響を受けやすく、結
像性能を悪化させる。更に、より小型化し、ゆらぎの影
響を少なくする為には、 D<800mm (5) が好ましく、更により小型化し、ゆらぎの影響を少なく
する為には、 D<400mm (6) を満足することが、好ましい。
Further, assuming that the optical path length from the reflection type mask M to the first concave mirror M1 is D, it is necessary to satisfy D <1200 mm (4). The present invention uses an X-ray having a wavelength of 13 nm as a light source, and envisions an optical system for printing a pattern having a line width of 70 nm or less, and a device for evacuating the optical path is required. The apparatus is undesirably increased in size. Further, using another light source, a medium (an inert gas such as He gas, nitrogen gas, and air, and air) in the optical path.
When the above-mentioned condition range is exceeded, when the medium fluctuates due to heat or the like, the medium is easily affected by the fluctuation and deteriorates the imaging performance. Further, D <800 mm (5) is preferable in order to further reduce the size and reduce the influence of fluctuation, and D <400 mm (6) in order to further reduce the size and reduce the effect of fluctuation. Is preferred.

【0018】前記反射鏡の内、少なくとも1枚は頂点曲
率半径が、無限大であることが好ましく、特に、前記曲
率半径の大きな反射鏡M2であることが好ましく、その
頂点曲率半径をRとすると、 |R|>3000mm (7) が好ましく、更に |R|>1000mm (8) でも、十分な効果を有する。しかし、この範囲を超える
と、リングフィールドRF内での像面の曲りが大きくな
って実用上好ましくない。
It is preferable that at least one of the reflecting mirrors has a radius of curvature at the apex of infinity. In particular, it is preferable that the reflecting mirror M2 has a large radius of curvature. , | R |> 3000 mm (7) is preferable, and | R |> 1000 mm (8) has a sufficient effect. However, if it exceeds this range, the curvature of the image plane in the ring field RF becomes large, which is not preferable for practical use.

【0019】本発明は、波長13nmのX線を光源と
し、線幅70nm以下のパターンを焼き付ける光学系を
想定しており、本光学系に使用している反射鏡の面の反
射率が低いため、反射鏡の枚数は少ない程好ましいの
で、前記4枚構成を示したが、更に反射鏡を付加した構
成であっても、本発明の特長を包含していることは言う
までもない。但し、その場合には、光源パワーを増加さ
せる等の対策が必要となる。
The present invention assumes an optical system for printing a pattern with a line width of 70 nm or less using X-rays having a wavelength of 13 nm as a light source. The reflectivity of the surface of the reflecting mirror used in the present optical system is low. Since the number of reflecting mirrors is preferably as small as possible, the above-described four-mirror configuration is shown. However, it goes without saying that a configuration in which a reflecting mirror is further added still includes the features of the present invention. However, in that case, measures such as increasing the power of the light source are required.

【0020】以上の構成によれば、反射光学系全体の小
型化が図れ、なおかつ物体からの光束がケラレることな
く所定の位置に反射型マスクMの像を良好に結像させる
ことができる。また開口絞り位置は、凸面鏡M3上又は
その近傍と、第2の凹面鏡M4上又はその近傍とにあ
り、前記マスクM側の最小入射角Θ1の光線及び、最大
入射角Θ2の光線及び、ウエハW側のテレセントリック
な光線を規定している。
According to the above arrangement, the size of the entire reflecting optical system can be reduced, and the image of the reflective mask M can be favorably formed at a predetermined position without vignetting of the light beam from the object. The aperture stop position is on or near the convex mirror M3 and on or near the second concave mirror M4, and the light beam with the minimum incident angle Θ1 and the light beam with the maximum incident angle Θ2 on the mask M side and the wafer W The side defines a telecentric ray.

【0021】ここでいう「テレセントリック」とは、軸
外の主光線に傾きΘwがあると、焦点深度内にデフォー
カスした時に光束の重心がシフトするが、そのシフト量
が、ウエハ上に焼き付ける線幅(波長13nmでは40
〜70nm)の1/2以下になる位の傾きまでが好まし
い。すなわち、ウエハW側のNAをNAw、光源の波長
をλ、 T=(解像力/焦点深度) =(0.61λ/NAw)/(2λ/NAw2) =0.30(NAw) とすると、Θw(単位:ラジアン)は、 Θw<T/2 すなわち Θw<0.15(NAw) (9) となることが好ましい。また、前記光束のシフトをより
抑えるには、 Θw<T/3 すなわち Θw<0.10(NAw) (10) となることがより好ましい。更に、前記光束のシフトを
より一層抑えるには、 Θw<T/10 すなわち Θw<0.030(NAw) (11) であることが、最適である。
The term "telecentric" as used herein means that if an off-axis chief ray has a tilt Θw, the center of gravity of a light beam shifts when defocused within the depth of focus, but the shift amount is a line printed on the wafer. Width (40 at 13nm wavelength)
(Up to 70 nm) is preferable. That is, if the NA of the wafer W is NAw, the wavelength of the light source is λ, and T = (resolution / depth of focus) = (0.61λ / NAw) / (2λ / NAw 2 ) = 0.30 (NAw), then Θw (Unit: radian) is preferably Δw <T / 2, that is, Δw <0.15 (NAw) (9). In order to further suppress the shift of the light beam, it is more preferable that Θw <T / 3, that is, Θw <0.10 (NAw) (10). Further, in order to further suppress the shift of the light beam, it is most preferable that Θw <T / 10, that is, Θw <0.030 (NAw) (11).

【0022】以上のように、本発明による反射縮小光学
系では、縮小側すなわちウエハW側がテレセントリック
なリングフィールドとなっているので、リングフィール
ドRF内では場所によらず同一の露光条件が得られる。
また各反射面M1〜M4への光の入射角(反射面の法線
からの角度)がほぼ0°に近いため、多層膜によって形
成した各反射面による位相シフトに起因する波面収差の
発生が抑制される。
As described above, in the reflection reduction optical system according to the present invention, since the reduction side, that is, the wafer W side is a telecentric ring field, the same exposure condition can be obtained regardless of the location in the ring field RF.
Further, since the angle of incidence of light on each of the reflecting surfaces M1 to M4 (the angle from the normal of the reflecting surface) is almost 0 °, wavefront aberration due to phase shift by each reflecting surface formed by the multilayer film is generated. Is suppressed.

【0023】以下、本実施例の諸元を示す。[全体諸
元]中、βは前記反射縮小光学系の縮小倍率、Θ1は前
記マスクからの最小入射角、Θ2は前記マスクからの最
大入射角、Θwはウエハ側主光線の傾き角(単位:ラジ
アン)、NAwはウエハ側の開口数、NAm=NAw×
β、RFはリングフィールドを表わす。[反射鏡諸元]
中、第1カラムはマスクM側からの反射面の番号、第2
カラムRは各反射面の頂点曲率半径、第3カラムDは各
反射面の頂点間隔、第4カラムΦは各反射面の有効径、
(R、D、Φの単位:mm)を表わす。非球面形状は、
次の式で表わされる。
Hereinafter, the specifications of this embodiment will be described. In [Overall Specifications], β is the reduction magnification of the reflection reduction optical system, Θ1 is the minimum incident angle from the mask, Θ2 is the maximum incident angle from the mask, Θw is the inclination angle of the principal ray on the wafer side (unit: Radian), NAw is the numerical aperture on the wafer side, NAm = NAw ×
β and RF represent a ring field. [Reflector specifications]
The first column is the number of the reflection surface from the mask M side, and the second column is the second column.
Column R is a vertex radius of curvature of each reflecting surface, third column D is a vertex interval of each reflecting surface, fourth column Φ is an effective diameter of each reflecting surface,
(Unit of R, D, Φ: mm). The aspheric shape is
It is expressed by the following equation.

【0024】[0024]

【表1】S(Y)=(Y2/R)/[1+{1−(1+
K)(Y2/R2)}0.5 ]+C4Y4+C6Y6+C8Y
8+C10Y10+C12Y12+C14Y14 Y:光軸に垂直な方向の高さ S(Y):高さYにおける光軸方向の変位量 R:頂点曲率半径 K:円錐係数 Cn:n次の非球面係数(n:4、6、8、10、1
2、14) E−m:×10-m (m:正の整数)
Table 1 S (Y) = (Y 2 / R) / [1+ {1- (1+
K) (Y 2 / R 2 )} 0.5] + C4Y 4 + C6Y 6 + C8Y
8 + C10Y 10 + C12Y 12 + C14Y 14 Y: Height in the direction perpendicular to the optical axis S (Y): Displacement in the optical axis direction at height Y R: Radius of curvature K: Conic coefficient Cn: nth order aspheric coefficient (N: 4, 6, 8, 10, 1
2, 14) Em: × 10 −m (m: positive integer)

【0025】[0025]

【表2】 [実施例1の全体諸元] 倍率β :−0.25(−1/4) SINΘ1 : 0.00520 SINΘ2 : 0.08846 Θw : 0(完全テレセントリック) マスク側NAm:0.04 (ウエハ側NAw :0.16) マスク側RF内半径:80 (ウエハ側RF内半径:20) マスク側RF外半径:84 (ウエハ側RF外半径:21)Table 2 [Overall Specifications of Example 1] Magnification β: -0.25 (-) SIN0.001: 0.00520 SINΘ2: 0.08846 w: 0 (complete telecentric) Mask side NAm: 0.04 (Wafer side NAw: 0.16) Mask side RF inner radius: 80 (Wafer side RF inner radius: 20) Mask side RF outer radius: 84 (Wafer side RF outer radius: 21)

【0026】[0026]

【表3】 [実施例1の反射鏡諸元] 反射面番号 R D Φ M: ∞ 204.778320 1: −689.28272 −66.922497 非球面反射面 K =−0.246746 C4 = 0.291983E−08 C6 =−0.941799E−12 C8 = 0.796612E−16 C10=−0.283781E−20 2: ∞ 164.652548 非球面反射面 K = 0.000000 C4 = 0.130336E−08 C6 =−0.955739E−12 C8 = 0.128585E−15 C10=−0.747147E−20 3: 209.68185 −235.855378 48.9 非球面反射面 K = 1.906295 C4 = 0.341266E−07 C6 = 0.759121E−12 C8 = 0.326635E−14 C10=−0.342118E−17 C12= 0.157360E−20 4: 295.32280 268.911962 126.9 非球面反射面 K = 0.046240 C4 = 0.218171E−09 C6 = 0.351419E−14 C8 = 0.252583E−18 C10=−0.415062E−22 C12= 0.283044E−26 W: ∞Table 3 [Reflection Mirror Specifications of Example 1] Reflection surface number R D Φ M: 204 204.778320 1: −689.28272 −66.922497 Aspherical reflection surface K = −0.246746 C4 = 0. 291983E-08 C6 = -0.941799E-12 C8 = 0.796612E-16 C10 = -0.283781E-20 2: 16 164.665248 Aspherical reflective surface K = 0.000000 C4 = 0.130336E-08 C6 = -0.955739E-12 C8 = 0.128585E-15 C10 = -0.747147E-20 3: 209.668185 -235.855378 48.9 Aspherical reflective surface K = 1.906295 C4 = 0.341266E-07 C6 = 0.759121E-12 C8 = 0.326635E −14 C10 = −0.342118E−17 C12 = 0.157360E−20 4: 295.3232280 268.9911962 126.9 Aspherical reflective surface K = 0.046240 C4 = 0.218171E−09 C6 = 0.351419E− 14 C8 = 0.252583E-18 C10 = -0.415062E-22 C12 = 0.283044E-26 W: ∞

【0027】[0027]

【表4】 [実施例2の全体諸元] 倍率β :−0.25(−1/4) SINΘ1 : 0.00689 SINΘ2 : 0.09288 Θw : 0(完全テレセントリック) マスク側NAm:0.04 (ウエハ側NAw :0.16) マスク側RF内半径:80 (ウエハ側RF内半径:20) マスク側RF外半径:84 (ウエハ側RF外半径:21)Table 4 [Overall Specifications of Example 2] Magnification β: -0.25 (-) SIN0.001: 0.00689 SINΘ2: 0.09288 w: 0 (complete telecentric) Mask side NAm: 0.04 (Wafer side NAw: 0.16) Mask side RF inner radius: 80 (Wafer side RF inner radius: 20) Mask side RF outer radius: 84 (Wafer side RF outer radius: 21)

【0028】[0028]

【表5】 [実施例2の反射鏡諸元] 反射面番号 R D Φ M: ∞ 188.181979 1: −582.04702 −60.643860 非球面反射面 K = 0.664782 C4 = 0.202084E−09 C6 = 0.300766E−12 C8 =−0.302981E−16 C10= 0.139215E−20 2: −3920.65749 141.522837 非球面反射面 K = 0.000000 C4 = 0.587422E−08 C6 = 0.390832E−12 C8 =−0.649038E−16 C10= 0.475712E−20 3: 209.61809 −254.155901 52.4 非球面反射面 K = 2.677234 C4 = 0.449671E−07 C6 = 0.431318E−11 C8 =−0.805710E−15 C10= 0.837313E−18 C12=−0.751918E−22 4: 298.70118 264.351744 130.7 非球面反射面 K = 0.040532 C4 = 0.188198E−09 C6 = 0.353975E−14 C8 = 0.567359E−19 C10=−0.629708E−23 C12= 0.501309E−27 W: ∞ 図4及び図6に、第1及び第2実施例の反射縮小結像光
学系のウエハW上でのコマ収差図を示す。このコマ収差
図は、波長13nmの光を用いてマスクM側から光線追
跡することにより得られている。ここで、図4(a)は
像高Y=21mmにおけるメリジオナル方向のコマ収差
図、図4(b)は像高Y=20.5mmにおけるメリジ
オナル方向のコマ収差図、図4(c)は像高Y=20m
mにおけるメリジオナル方向のコマ収差図、図4(d)
は像高Y=21mmにおけるサジタル方向のコマ収差
図、図4(e)は像高Y=20.5mmにおけるサジタ
ル方向のコマ収差図、図4(f)は像高Y=20mmに
おけるサジタル方向のコマ収差図である。また、図6
(a)は像高Y=21mmにおけるメリジオナル方向の
コマ収差図、図6(b)は像高Y=20.5mmにおけ
るメリジオナル方向のコマ収差図、図6(c)は像高Y
=20mmにおけるメリジオナル方向のコマ収差図、図
6(d)は像高Y=21mmにおけるサジタル方向のコ
マ収差図、図6(e)は像高Y=20.5mmにおける
サジタル方向のコマ収差図、図6(f)は物体高Y=2
0mmにおけるサジタル方向のコマ収差図である。
Table 5 [Reflection Mirror Specifications of Example 2] Reflection surface number R D Φ M: 18188.181979 1: −582.04702 −60.438860 Aspherical reflection surface K = 0.664782 C4 = 0.2020884E -09 C6 = 0.300766E-12 C8 = -0.302981E-16 C10 = 0.139215E-20 2: -3920.65749 141.522837 Aspherical reflective surface K = 0.000000 C4 = 0.587422E-08 C6 = 0.390832E-12 C8 = -0.649038E-16 C10 = 0.475712E-20 3: 209.61809 -254.155901 52.4 Aspherical reflective surface K = 2.667734 C4 = 0.449671E-07 C6 = 0.431318E-11 C8 =- .805710E-15 C10 = 0.837313E-18 C12 = -0.751918E-22 4: 298.70118 264.3351744 130.7 Aspherical reflective surface K = 0.040532 C4 = 0.188198E-09 C6 = 0. 353975E-14 C8 = 0.567359E-19 C10 = -0.629708E-23 C12 = 0.501309E-27 W: ∞ FIGS. 4 and 6 show the reflection and reduction optical systems of the first and second embodiments. FIG. 3 shows a coma aberration diagram on a wafer W. This coma aberration diagram is obtained by tracing light rays from the mask M side using light having a wavelength of 13 nm. Here, FIG. 4A is a coma aberration diagram in the meridional direction at an image height Y = 21 mm, FIG. 4B is a coma aberration diagram in the meridional direction at an image height Y = 20.5 mm, and FIG. High Y = 20m
FIG. 4D is a coma aberration diagram in the meridional direction at m.
4A is a coma aberration diagram in the sagittal direction at an image height Y = 21 mm, FIG. 4E is a coma aberration diagram in a sagittal direction at an image height Y = 20.5 mm, and FIG. 4F is a sagittal direction diagram at an image height Y = 20 mm. It is a coma aberration figure. FIG.
6A is a coma aberration diagram in the meridional direction when the image height Y is 21 mm, FIG. 6B is a coma aberration diagram in the meridional direction when the image height Y is 20.5 mm, and FIG.
FIG. 6D is a coma aberration diagram in the sagittal direction when the image height Y is 21 mm, FIG. 6E is a coma aberration diagram in the sagittal direction when the image height Y is 20.5 mm, FIG. 6F shows the object height Y = 2.
It is a coma aberration figure in the sagittal direction at 0 mm.

【0029】同図より明らかなように本実施例によれば
良好な結像性能を有することが分かる。以上のように本
実施例によれば、リングフィールドでマスクMとウエハ
Wとを同期してスキャンすることにより、広視野の露光
装置が得られ、リングフィールドでは高分解能、且つ歪
曲収差の低い像が得られる。
As can be seen from the figure, according to the present embodiment, good image forming performance is obtained. As described above, according to the present embodiment, a mask M and a wafer W are synchronously scanned in a ring field, so that an exposure apparatus with a wide field of view can be obtained. In the ring field, an image with high resolution and low distortion can be obtained. Is obtained.

【0030】本発明は、波長13nmのX線を光源と
し、線幅70nm以下のパターンを焼き付ける光学系を
想定しているが、本光学系は、反射鏡で構成されている
ので、他の波長においても、十分使用できる事はいうま
でもない。すなわち、1nmの硬X線、5〜15nmの
軟X線、126nm、146nm、157nm、172
nm光源、及び193nmのArFエキシマレーザー光
源、248nmのKrFエキシマレーザー光源、等にも
使用できる。
The present invention assumes an optical system for printing a pattern having a line width of 70 nm or less using X-rays having a wavelength of 13 nm as a light source. However, since the present optical system is constituted by a reflecting mirror, it has a different wavelength. Needless to say, it can be used satisfactorily. That is, 1 nm hard X-ray, 5 to 15 nm soft X-ray, 126 nm, 146 nm, 157 nm, 172
nm light source, 193 nm ArF excimer laser light source, 248 nm KrF excimer laser light source, and the like.

【0031】前記反射鏡M1、M2、M3、M4は光軸
AxPに対し、対称型で図示したが、使用しない(光線
を反射しない)部分は、削除(オフアクシス型)しても
構わない。また、配置の都合上、光路中の任意の場所に
平面鏡を配設して3次元的に光路を折り曲げて構成して
も本発明と実質同一である。本発明における反射縮小結
像光学系は、反射型マスクを使用する場合について説明
したが、透過型マスクを使用した場合においても、同等
の結像性能が得られることは言うまでもない。
Although the reflecting mirrors M1, M2, M3, and M4 are shown symmetrically with respect to the optical axis AxP, portions that are not used (light is not reflected) may be deleted (off-axis type). Further, for the sake of arrangement, even if a plane mirror is arranged at an arbitrary position in the optical path and the optical path is bent three-dimensionally, it is substantially the same as the present invention. Although the reflection reduction imaging optical system according to the present invention has been described using a reflection type mask, it goes without saying that the same imaging performance can be obtained even when a transmission type mask is used.

【0032】[0032]

【発明の効果】以上のように本発明によって、簡易な構
成にて十分な結像性能を得ることができる例えばX線リ
ソグラフィー用に好適な反射縮小結像光学系が得られ
る。この光学系を露光装置に適用することにより良好な
るマスクパターン像を感光性基板上に転写することがで
きる。又マスクパターン像を感光性基板上に転写すると
いう光リソグラフィー工程においてこのような光学系を
用いることによって良好なるマスクパターン像を感光性
基板上に転写することができる。これによって、良好な
る半導体デバイスを製造することができる。
As described above, according to the present invention, a reflection reduction imaging optical system suitable for, for example, X-ray lithography, which can obtain sufficient imaging performance with a simple configuration, can be obtained. By applying this optical system to an exposure apparatus, a good mask pattern image can be transferred onto a photosensitive substrate. Also, by using such an optical system in a photolithography process of transferring a mask pattern image onto a photosensitive substrate, a good mask pattern image can be transferred onto the photosensitive substrate. Thereby, a good semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の反射縮小結像光学系を用いた露光装置
の概略構成図
FIG. 1 is a schematic configuration diagram of an exposure apparatus using a reflection reduction imaging optical system of the present invention.

【図2】図1に示す反射素子群2の構成を示す正面図FIG. 2 is a front view showing a configuration of a reflection element group 2 shown in FIG. 1;

【図3】本発明の第1実施例を示す構成図FIG. 3 is a configuration diagram showing a first embodiment of the present invention.

【図4】第1実施例の収差図FIG. 4 is an aberration diagram of the first embodiment.

【図5】本発明の第2実施例を示す構成図FIG. 5 is a configuration diagram showing a second embodiment of the present invention.

【図6】第2実施例の収差図FIG. 6 is an aberration diagram of the second embodiment.

【図7】反射型マスクから入射する光線を説明する概略
FIG. 7 is a schematic diagram illustrating light rays incident from a reflective mask.

【符号の説明】[Explanation of symbols]

M……マスク W……ウエハ M1…第1の凹面鏡 M2…反射鏡 M3…凸面鏡 M4…第2の凹面鏡 M: Mask W: Wafer M1: First concave mirror M2: Reflecting mirror M3: Convex mirror M4: Second concave mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】物体の像を像面上に縮小結像する、反射縮
小結像光学系に於いて、前記反射縮小結像光学系は、複
数の反射面を有し、像側のNAをNAwとし、光学系の
縮小倍率をβ、NAm=NAw×β、前記物体面上から
前記反射縮小結像光学系に入射する光線の内、前記反射
縮小結像光学系の光軸又は光軸と平行な軸を含む任意の
平面内において、前記光軸又は前記光軸と平行な軸との
なす角Θ1が最小となる光線及び、前記光軸又は前記光
軸と平行な軸とのなす角Θ2が最大となる光線とが、 SINΘ1>0.1NAm かつ、 SINΘ2<4NAm を満足するように構成されたことを特徴とする反射縮小
結像光学系。
1. A reflection reduction imaging optical system for reducing and forming an image of an object on an image plane, wherein the reflection reduction imaging optical system has a plurality of reflection surfaces and has an NA on the image side. NAw, the reduction magnification of the optical system is β, NAm = NAw × β, and among the light rays incident on the reflection reduction imaging optical system from above the object plane, the optical axis or optical axis of the reflection reduction imaging optical system In an arbitrary plane including a parallel axis, a light ray having the smallest angle と 1 with the optical axis or an axis parallel to the optical axis, and an angle Θ2 between the optical axis or an axis parallel to the optical axis. A reflection-reduction imaging optical system characterized in that a light beam having a maximum value of SINΘ1> 0.1NAm and SINΘ2 <4NAm are satisfied.
【請求項2】前記反射縮小結像光学系は、4枚の反射鏡
から成り、該4枚の反射鏡の内少なくとも3枚以上の反
射鏡の反射面は、非球面形状に形成されていることを特
徴とする、請求項1に記載の反射縮小結像光学系。
2. The reflection-reduction imaging optical system includes four reflecting mirrors, and at least three of the four reflecting mirrors have aspherical reflecting surfaces. The reflection reduction imaging optical system according to claim 1, wherein:
【請求項3】前記複数の反射鏡の内、前記物体からの光
を受ける第1反射面から前記物体迄の光軸上の光路長を
Dとするとき、 D<1200mm であることを特徴とする請求項1又は、請求項2に記載
の反射縮小結像光学系。
3. An optical path length on the optical axis from the first reflecting surface receiving light from the object to the object among the plurality of reflecting mirrors, wherein D <1200 mm. The reflection reduction imaging optical system according to claim 1 or 2, wherein:
【請求項4】前記反射鏡の内、少なくとも1枚は頂点曲
率半径が、無限大であることを特徴とする請求項2又
は、請求項3に記載の反射縮小結像光学系。
4. The reflection reduction imaging optical system according to claim 2, wherein at least one of said reflecting mirrors has a vertex curvature radius of infinity.
【請求項5】前記物体面上にマスクを保持するマスクス
テージと、前記像面上に感光性基板を保持する基板ステ
ージと、前記マスクを露光光で所定の斜め方向から照明
する照明系と、前記マスクからの斜め方向からの反射光
を集光し、前記マスクのパターン像を前記感光性基板上
に投影する、前記請求項1から請求項4迄に記載の反射
縮小結像光学系とを備え、該反射縮小結像光学系に対し
てマスクステージと基板ステージとを相対的に移動させ
ることにより前記マスク全面のパターンを前記感光性基
板上に露光させることを特徴とする露光装置。
5. A mask stage for holding a mask on the object plane, a substrate stage for holding a photosensitive substrate on the image plane, and an illumination system for illuminating the mask with exposure light from a predetermined oblique direction; The reflection reduction imaging optical system according to any one of claims 1 to 4, wherein light reflected from the mask in an oblique direction is collected, and a pattern image of the mask is projected on the photosensitive substrate. An exposure apparatus, wherein a pattern on the entire surface of the mask is exposed on the photosensitive substrate by moving a mask stage and a substrate stage relative to the reflection reduction imaging optical system.
【請求項6】前記請求項1から請求項5迄に記載の反射
縮小結像光学系を用いた露光方法において、前記物体面
上に配置されたマスクを照明する照明工程と、反射縮小
結像光学系によって、前記マスクのパターン像を前記像
面に設定された感光性基板上に投影する投影工程とを含
むことを特徴とする、露光方法。
6. An exposure method using a reflection reduction imaging optical system according to claim 1, wherein an illumination step of illuminating a mask disposed on said object plane, and reflection reduction imaging is performed. Projecting the pattern image of the mask on a photosensitive substrate set on the image plane by an optical system.
JP10268800A 1998-09-22 1998-09-22 Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it Pending JP2000098231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268800A JP2000098231A (en) 1998-09-22 1998-09-22 Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268800A JP2000098231A (en) 1998-09-22 1998-09-22 Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it

Publications (1)

Publication Number Publication Date
JP2000098231A true JP2000098231A (en) 2000-04-07

Family

ID=17463452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268800A Pending JP2000098231A (en) 1998-09-22 1998-09-22 Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it

Country Status (1)

Country Link
JP (1) JP2000098231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196242A (en) * 2000-11-07 2002-07-12 Asm Lithography Bv Lithography device, method of manufacturing device and device manufactured by the same
JP2015515140A (en) * 2012-04-16 2015-05-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system of microlithography projection exposure apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196242A (en) * 2000-11-07 2002-07-12 Asm Lithography Bv Lithography device, method of manufacturing device and device manufactured by the same
JP2015515140A (en) * 2012-04-16 2015-05-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system of microlithography projection exposure apparatus
US9817317B2 (en) 2012-04-16 2017-11-14 Carl Zeiss Smt Gmbh Optical system of a microlithographic projection exposure apparatus

Similar Documents

Publication Publication Date Title
US6302548B2 (en) Catoptric reduction projection optical system and exposure apparatus and method using same
EP1320854B1 (en) Illumination system particularly for microlithography
JP4238390B2 (en) LIGHTING APPARATUS, EXPOSURE APPARATUS PROVIDED WITH THE ILLUMINATION APPARATUS, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE EXPOSURE APPARATUS
JP4717974B2 (en) Catadioptric optical system and projection exposure apparatus provided with the optical system
US7130018B2 (en) Catoptric projection optical system, exposure apparatus and device fabrication method
KR100587625B1 (en) Catoptric projection optical system, exposure apparatus using the same, and device fabricating method
JP2000100694A (en) Reflection/reduction projection optical system, projection aligner comprising it, and exposure method using the aligner
JP2003114387A (en) Cata-dioptic system and projection exposure device equipped with the same system
JP2003015040A (en) Projection optical system and exposure device equipped therewith
JP2001221950A (en) Projection exposure lens having aspheric element
JPWO2006054544A1 (en) Illumination apparatus, exposure apparatus, and microdevice manufacturing method
JP2003045782A (en) Reflection-type reduced projection optical system and projection aligner using the same
TWI399569B (en) Optical projection system, exposure apparatus and method of fabricating devices
JP2002116382A (en) Projection optical system and exposure device equipped with the same
JP2004138926A (en) Projection optical system and exposure apparatus equipped therewith
JP2000098228A (en) Projection exposing device, exposing method and reflection reduction projection optical system
US20070297047A1 (en) Projection optical system
KR100514063B1 (en) Projection optical system and exposure apparatus
JP2004170869A (en) Imaging optical system, and device and method for exposure
JP2005315918A (en) Reflection type projection optical system and exposure device having the reflection type projection optical system
JP2000098230A (en) Reflecting reduction image-forming optical system, aligner equipped therewith and exposing method using the same optical system
US7692767B2 (en) Projection optical system and exposure apparatus with the same
JP2000098231A (en) Reflection reduction image-formation optical system, exposure device provided with it and exposing method using it
JP2005172988A (en) Projection optical system and exposure device equipped with the projection optical system
JP3305119B2 (en) X-ray projection exposure equipment