JP2000096111A - Production of ferrous alloy for structural material and ferrous structural material - Google Patents

Production of ferrous alloy for structural material and ferrous structural material

Info

Publication number
JP2000096111A
JP2000096111A JP10283607A JP28360798A JP2000096111A JP 2000096111 A JP2000096111 A JP 2000096111A JP 10283607 A JP10283607 A JP 10283607A JP 28360798 A JP28360798 A JP 28360798A JP 2000096111 A JP2000096111 A JP 2000096111A
Authority
JP
Japan
Prior art keywords
iron
structural material
grain size
alloy
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10283607A
Other languages
Japanese (ja)
Other versions
JP3499142B2 (en
Inventor
Shinichi Takagi
眞一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP28360798A priority Critical patent/JP3499142B2/en
Publication of JP2000096111A publication Critical patent/JP2000096111A/en
Application granted granted Critical
Publication of JP3499142B2 publication Critical patent/JP3499142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a ferrous alloy capable of obtaining a ferrous structural material maintaining a superfine structure of <1 μm even if a ferrous alloy composed of Fe-Ti-O is subjected to heating treatment in a high temp. region and good in elongation and strength with high efficiency and enabling mass-production. SOLUTION: At the time of blending an Fe material and a Ti material, the blending is executed in such a manner that 3 to 6% Ti and 0.1 to 1.5% O are contained, also, in the range of the Ti content, O is contained so as to control the upper limit to (0.2 ×Ti%+0.3)% and the lower limit to (0.3×Ti%-1.2)%, and the balance Fe, and the blended material is made to be the superfine one of <1 μm average crystal grain size by crushing means and is moreover subjected to alloying. Even if the ferrous alloy produced in this way is subjected to heating treatment at a high temp., the structural material maintaining a superfine structure of <1 μm average crystal grain size can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造材料用鉄系合
金の製造法並びに鉄系構造材料に関する。
The present invention relates to a method for producing an iron-based alloy for a structural material and an iron-based structural material.

【0002】[0002]

【従来の技術】鉄鋼の構造材料を製造するに当たり、そ
の鉄鋼材料の結晶粒径を微細化することにより強度およ
び延性を劣化させることなく強度を向上することがで
き、構造材料の強靭化法として従来から多くの研究がな
されている。しかし、溶解、鋳造、圧延などの工程を経
る従来のプロセスで量産される鉄鋼材料では、せいぜい
1μm程度までの微細化が限界とされている。構造材料
の強度を更に向上するには、その組織の結晶粒径は微細
なほど好ましい。こうした中、最近、結晶粒径を1μm
未満にまで超微細化できる新しいプロセスとしてメカニ
カルミリング法が提案されている。代表的メカニカルミ
リング法はボールミルを用いたものである。これは、鋼
製容器などに金属粉末と鋼製などの硬質ボールを充填
し、この容器を振動又は遊星運動させることにより、ボ
ールと粉末が衝突する際に非常に高い塑性歪みを金属粉
末に付与し結晶粒径を微細化する方法である。この方法
により、例えば、Materials Transac
tion, JIM, Vol.36, No.2(1
995)の289頁〜296頁に報告されているよう
に、純鉄粉末にメカニカルミリング処理を施すことによ
り、その平均結晶粒径をおよそ20〜30ナノメートル
程度にまで超微細化し、且つそのビッカース硬度が95
0にまで達することが報告されている。
2. Description of the Related Art In manufacturing a steel structural material, it is possible to improve the strength without deteriorating the strength and ductility by reducing the crystal grain size of the steel material. Many studies have been made conventionally. However, in the case of a steel material mass-produced by a conventional process including steps such as melting, casting, and rolling, miniaturization to about 1 μm is the limit. To further improve the strength of the structural material, the finer the crystal grain size of the structure, the better. Under these circumstances, recently, the crystal grain size has become 1 μm
A mechanical milling method has been proposed as a new process capable of achieving ultra-miniaturization to below. A typical mechanical milling method uses a ball mill. In this method, a steel container is filled with metal powder and hard balls made of steel, etc., and by vibrating or planetary motion of the container, a very high plastic strain is applied to the metal powder when the ball collides with the powder. This is a method of reducing the crystal grain size. By this method, for example, Materials Transac
Tion, JIM, Vol. 36, no. 2 (1
995), pages 289 to 296, pure iron powder is subjected to mechanical milling to reduce the average crystal grain size to about 20 to 30 nanometers, and to reduce the Vickers particle size. 95 hardness
It has been reported to reach zero.

【0003】[0003]

【発明が解決しようとする課題】このようにして得られ
た平均結晶粒径が1μm未満である超微細組織を有する
鉄材は粉状であるため、これを用い構造材料を製造する
には、この超微細組織を有する粉末を固化成形し、バル
ク材、即ち、構造材料として使用に耐える十分な密度を
有する金属塊としなければならない。その固化成形のた
めには、焼結、HIP処理などの加熱処理が必要とな
る。ところが、その超微細組織から成る粉末は、800
℃を越えるような高温に保持し緻密化して構造材料を製
造するときは、その高温の加熱によりその平均結晶粒径
は、数〜数十ミクロンに粗大化してしまい、強度が著し
く低い構造材料として得られる結果をもたらす危険が極
めて高いので、その超微細組織の平均結晶粒径が加熱に
より1μm以上にならないように粗大化を抑制して固化
成形して良好な強度および延性を有する構造材料を得る
には、超微細組織の平均結晶粒径が1μm以上に粗大化
する危険性の少ない、例えば、800℃未満での焼結や
HIP処理などの加熱処理を行うか、鋼製容器内に真空
封入して圧延するなどの方法を用いている。しかし乍
ら、このような方法では、良好な強度および延性を有す
る構造材料を製造するには相当の時間がかゝり、生産性
に乏しく量産化は困難である。従って、平均結晶粒径1
μm未満である超微細組織から成る鉄系粉末を用いて鉄
系構造材料を製造するに当たり、高温で加熱されても結
晶粒径の粗大化を平均値で1μm未満に抑制でき、得ら
れた鉄系構造材料の平均結晶粒径が1μm未満に抑制さ
れた超微細組織から成り、強度および延性に優れた鉄系
構造材料を高能率に得られ、量産性の向上をもたらす鉄
系合金の製造法の開発が望まれる。
Since the thus obtained iron material having an ultrafine structure having an average crystal grain size of less than 1 μm is powdery, it is necessary to use this to produce a structural material. The powder having the ultrafine structure must be solidified and formed into a bulk material, that is, a metal mass having a density sufficient to be used as a structural material. Heat treatment such as sintering and HIP processing is required for the solidification molding. However, the powder composed of the ultrafine structure is 800
When producing a structural material by keeping it at a high temperature exceeding ℃, the average crystal grain size is coarsened to several to several tens of microns due to the heating at the high temperature, and as a structural material with extremely low strength, Since there is a very high risk of producing the obtained results, the structural material having good strength and ductility is obtained by solidifying and molding by suppressing coarsening so that the average crystal grain size of the ultrafine structure does not become 1 μm or more by heating. For example, there is little danger that the average crystal grain size of the ultrafine structure is coarsened to 1 μm or more. For example, heat treatment such as sintering at less than 800 ° C. or HIP treatment or vacuum sealing in a steel container is performed. And rolling. However, in such a method, it takes a considerable time to produce a structural material having good strength and ductility, and the productivity is poor and mass production is difficult. Therefore, the average crystal grain size 1
In producing an iron-based structural material using an iron-based powder having an ultrafine structure of less than μm, coarsening of the crystal grain size can be suppressed to an average value of less than 1 μm even when heated at a high temperature, and the obtained iron For producing an iron-based alloy having an ultra-fine structure in which the average crystal grain size of the iron-based structural material is suppressed to less than 1 μm and having high efficiency and an iron-based structural material having excellent strength and ductility, and improving mass productivity The development of is desired.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決した加熱処理後でも平均結晶粒径が1μm未満の超
微細組織から成る強度および延性の向上した鉄系構造材
料の製造を高能率化し、量産性の向上をもたらす構造材
料用鉄系合金の製造法を提供するもので、Fe材とTi
材とO材を配合するに当たり、重量でTi:3〜6%、
O:0.1〜1.5%含有し、且つTiの前記含有量の
範囲において、Oの含有量は、上限(0.2×Ti%+
0.3)%、下限(0.3×Ti%−1.2)%含有
し、残部Feを含有するように配合し、該配合物を圧砕
手段により結晶粒径を1μm未満に超微細化を行うと共
に合金化を行うことを特徴とする。更に本発明は、実用
に適した延性を保持し且つ強度の向上した超微細組織か
ら成る鉄系構造材料を提供するもので、上記の製造法に
より得た構造材料用鉄系合金を加熱処理し超微細なチタ
ン系酸化物を析出せしめて成る。而して、本発明の鉄系
構造材料は、母相の平均結晶粒径が1μm未満であり、
ビッカース硬さ300以上、伸び3%以上である。
According to the present invention, there is provided a method for producing an iron-based structural material comprising an ultrafine structure having an average crystal grain size of less than 1 μm and having improved strength and ductility even after heat treatment which has solved the above-mentioned problems. It is intended to provide a method of manufacturing an iron-based alloy for a structural material which can improve efficiency and improve mass productivity.
In mixing the material and the O material, Ti: 3 to 6% by weight,
O: 0.1 to 1.5%, and in the range of the Ti content, the O content is the upper limit (0.2 × Ti% +
0.3)%, the lower limit (0.3 × Ti% -1.2)%, and the balance Fe. The mixture is ultrafine-refined to a grain size of less than 1 μm by crushing means. And alloying. Further, the present invention provides an iron-based structural material comprising a superfine structure having ductility and improved strength suitable for practical use, and heat-treating an iron-based alloy for a structural material obtained by the above manufacturing method. It is made by depositing ultrafine titanium oxide. Thus, in the iron-based structural material of the present invention, the average crystal grain size of the parent phase is less than 1 μm,
Vickers hardness is 300 or more and elongation is 3% or more.

【0005】[0005]

【発明の実施の形態】次に、本発明の実施の形態を詳述
する。本発明の鉄系合金を製造するには、その製造原料
として、Fe材、Ti材、O材を用意する。主材である
Fe材としては、純鉄、炭素鋼などの鉄系材から選んだ
その少なくとも一種を用意し、Ti材としては、金属チ
タン、Fe−Ti合金、Fe−Ti金属間化合物或いは
Ti2 O,TiO,Ti2 3 ,Ti3 5 ,TiO2
などのチタン系酸化物から選んだその少なくとも一種を
用意し、O材としては、チタン系酸化物或いはFe
2 O,Fe2 3 ,Fe3 4 などの鉄系酸化物から選
んだ少なくとも一種或いは気体酸素又は酸素とアルゴン
或いはヘリウムとの混合気体のO材を用意する。上記の
Fe材を主体とし、これに少量のTi材とO材を配合し
てTi元素とO元素の配合割合が図1に斜線で示す範囲
内で配合し、残部Feから成る配合物とし、これをメカ
ニカルミリング法或いはその他の圧砕手段により、平均
結晶粒径が1μm未満の超微細組織を得ると共に、体心
立方構造を有するFe−Ti−Oの固溶体から成る鉄系
合金を製造する。然るときは、この鉄系合金を原料とし
て用い、焼結、HIP処理などの固化成形、熱間押出し
或いは熱間鍛造、熱間圧延などの加熱処理を行う場合に
は、上記の超微細組織を有するFe−Ti−O合金中に
チタン系酸化物が微細に析出することにより、平均結晶
粒径の粗大化は1μm未満に抑制することができ、これ
により強度において優れ且つ伸び3%以上を有する強度
および延性の良好な鉄系構造材料が得られることが認め
られた。
Next, embodiments of the present invention will be described in detail. In order to produce the iron-based alloy of the present invention, an Fe material, a Ti material, and an O material are prepared as raw materials for the production. As the Fe material as the main material, at least one selected from iron-based materials such as pure iron and carbon steel is prepared. As the Ti material, metallic titanium, Fe-Ti alloy, Fe-Ti intermetallic compound or Ti 2 O, TiO, Ti 2 O 3 , Ti 3 O 5 , TiO 2
Prepare at least one selected from titanium-based oxides, such as titanium-based oxides or Fe-based oxides.
An O material of at least one selected from iron-based oxides such as 2 O, Fe 2 O 3 and Fe 3 O 4, or gaseous oxygen or a mixed gas of oxygen and argon or helium is prepared. The above-mentioned Fe material is mainly used, a small amount of a Ti material and a small amount of an O material are blended with the Fe material, and the compounding ratio of the Ti element and the O element is blended within the range shown by the oblique line in FIG. An ultrafine structure having an average crystal grain size of less than 1 μm is obtained by a mechanical milling method or other crushing means, and an iron-based alloy made of a solid solution of Fe—Ti—O having a body-centered cubic structure is manufactured. In such a case, when the iron-based alloy is used as a raw material and solidification molding such as sintering, HIP processing, or heat treatment such as hot extrusion or hot forging or hot rolling is performed, the above ultrafine structure is required. The fine precipitation of the titanium-based oxide in the Fe-Ti-O alloy having the following can suppress the coarsening of the average crystal grain size to less than 1 µm, thereby providing excellent strength and elongation of 3% or more. It was confirmed that an iron-based structural material having good strength and ductility was obtained.

【0006】本発明の実施態様を更に具体例により詳述
する。Fe材として純鉄粉末を選択し、Ti材として金
属チタン粉末を選択し、O材としてFe2 3 粉末を選
択し、これらを配合し配合物を調製するが、この場合、
その配合物として、Fe元素、Ti元素、O元素が夫々
次のような含有量で含有するように配合する。即ち、そ
の3成分の組成は、重量でTi:3〜6%、O:0.1
〜1.5%含有し、且つTiの前記含有量の範囲におい
て、Oの含有量は、上限(0.2×Ti%+0.3)
%、下限(0.3×Ti%−1.2)%含有し、残部F
eを含有するように配合する。次に、この配合物粉体
を、圧砕手段で、例えばメカニカルミリング法で処理
し、結晶粒の微細化と合金化を行う。即ち、該配合物粉
体を鋼製などの硬質ボールを適量充填された鋼製容器に
入れ、該容器を振動又は遊星運動させて、これらの平均
結晶粒径を1μm未満に超微細化すると共に、体心立方
構造のFe−Ti−O固溶体である鉄系合金粉末を製造
する。而して、その鉄系合金は勿論上記の特定の夫々の
含有量から成るFe、Ti、Oの成分組成から成り、T
iとOの含有量の割合は、図1の斜線で示す範囲内で得
られる。後記する本発明の合金と比較合金との比較試験
結果から明らかなように、特に、合金中のTiおよびO
の含有量と両者の含有量の割合が図1の斜線で示す範囲
でなければ、3%以上の伸びを有し且つビッカース硬さ
300以上の強度を有する実用上優れた鉄系構造材料が
得られない。
The embodiments of the present invention will be described in more detail with reference to specific examples. Pure iron powder is selected as the Fe material, metal titanium powder is selected as the Ti material, Fe 2 O 3 powder is selected as the O material, and these are blended to prepare a blend. In this case,
The composition is such that the Fe element, the Ti element, and the O element are contained in the following contents, respectively. That is, the composition of the three components is as follows: Ti: 3 to 6% by weight, O: 0.1
1.51.5%, and in the range of the Ti content, the O content is the upper limit (0.2 × Ti% + 0.3)
%, The lower limit (0.3 × Ti% -1.2)%, and the balance F
and e. Next, this compounded powder is treated by a crushing means, for example, by a mechanical milling method, so that crystal grains are refined and alloyed. That is, the compound powder is placed in a steel container filled with an appropriate amount of hard balls such as steel, and the container is vibrated or planetary-moved to ultrafine the average crystal grain size to less than 1 μm and An iron-based alloy powder which is a Fe-Ti-O solid solution having a body-centered cubic structure is manufactured. Thus, the iron-based alloy is, of course, composed of the Fe, Ti, and O components having the specific contents described above.
The ratio of the contents of i and O is obtained within the range shown by the hatched lines in FIG. As will be apparent from the results of a comparative test between the alloy of the present invention and a comparative alloy described later, in particular, Ti and O
If the ratio of the content and the ratio of the content of the two are not in the range shown by the oblique lines in FIG. 1, a practically excellent iron-based structural material having an elongation of 3% or more and a Vickers hardness of 300 or more is obtained. I can't.

【0007】本発明の上記特定範囲でTiおよびOを含
有する鉄系合金は、これを用い構造材料を製造するため
に、高温域で加熱して焼結処理やHIP処理などにより
固化成形しても、昇温途中で非常に微細なチタン系酸化
物が析出するため、このチタン系酸化物により、超微細
組織が数μm〜数10μmに粗大化することが防止さ
れ、その母相の組織の平均結晶粒径は増大しても1μm
未満に抑制されるので、その結果、極めて超微細組織か
ら成る良好な伸びと優れた強度を有する鉄系構造材料が
得られる。これに対し、後記に明らかにするように、本
発明の鉄系合金中のTiおよびOの含有量が上記に特定
する範囲外であるときは、これを用いて構造材料を製造
するに当たり高温域に加熱するときは、目的とする上記
の所要の特性を有する鉄系構造材料が得られなかった。
こゝで、チタンは、鉄に対してA3 変態点を上昇させA
4 変態点を下降させるγループ型の状態図を生成する元
素であり、高温域で母相を体心立方構造の鉄固溶体に安
定化させる効果があり、また、高温域でチタン系酸化物
を析出し、超微細組織の粗大化抑制効果をもたらす。
In the present invention, the iron-based alloy containing Ti and O in the above specific range is heated at a high temperature range and solidified and formed by sintering or HIP processing in order to produce a structural material. Also, since a very fine titanium-based oxide precipitates during the temperature rise, the titanium-based oxide prevents the ultrafine structure from being coarsened to several μm to several tens of μm, and 1 μm even if the average crystal grain size increases
As a result, an iron-based structural material having excellent elongation and excellent strength, which is composed of an extremely fine structure, can be obtained. On the other hand, as will be described later, when the contents of Ti and O in the iron-based alloy of the present invention are out of the above-specified ranges, a high-temperature range is required in producing a structural material using the same. However, the desired iron-based structural material having the above-mentioned required characteristics could not be obtained.
Here, titanium raises the A 3 transformation point with respect to iron,
(4) An element that generates a γ-loop type phase diagram that lowers the transformation point.It has the effect of stabilizing the parent phase into a body-centered cubic iron solid solution in the high-temperature region. It precipitates and brings about the effect of suppressing the coarsening of the ultrafine structure.

【0008】尚、Fe材には、Si、Mn、P、Sなど
の不可避的不純物を微量に含んでも何等差支えない。ま
た、Fe材は、炭素を含有する場合があるが、高温域で
体心立方構造の鉄固溶体が安定で且つ上述のチタン系酸
化物の析出を妨げない範囲の含有量であれば、これを含
んでも何等差支えない。これらの点を考慮すると、Fe
材中の炭素量は0.3wt.%未満とすることが好まし
い。また、O材として固体のO材に代え、気体酸素或い
は酸素とアルゴン又はヘリウムの混合気体を使用する場
合は、配合物を密閉容器に入れこれらの気体を注入し、
Fe材やTi材とをメカニカルミリング処理する際にこ
れらに結合させてその所定量を含有させるようにする。
The Fe material may contain trace amounts of unavoidable impurities such as Si, Mn, P and S. Further, the Fe material may contain carbon, but if the iron solid solution having a body-centered cubic structure is stable in a high-temperature region and the content is within a range that does not hinder the precipitation of the above-mentioned titanium-based oxide, the content may be reduced. You can include anything. Considering these points, Fe
The amount of carbon in the material is 0.3 wt. % Is preferable. When a gaseous oxygen or a mixed gas of oxygen and argon or helium is used instead of a solid O material as the O material, the compound is put in a closed container, and these gases are injected.
When the Fe material or the Ti material is subjected to the mechanical milling treatment, the Fe material and the Ti material are combined with each other to contain a predetermined amount thereof.

【0009】本発明によれば、上記の配合物を固体状態
のまゝ上記のメカニカルミリング法などの圧砕手段によ
り、従来のプロセスでは不可能であった平均結晶粒径1
μm未満に超微細化された合金を得た後、この合金を従
来の焼結、HIP処理などにより固化成形し、構造材料
を製造する場合に、その加熱の初期段階で超微細なチタ
ン系酸化物を析出させることができるので、上記の加熱
処理中に母材の超微細組織の粗大化を1μm未満に抑制
し得られ、強度および延性に優れた鉄系構造材料が得ら
れる。この目的を達成できる圧砕手段であれば、メカニ
カルミリング法に限定するものではなく、結晶粒径の超
微細化と合金化をなし得る任意の圧砕手段を採用でき
る。かくして、得られた超微細組織を有する鉄系合金
は、粉状に限らず、箔状、塊状など任意である。而し
て、次にこれを用いて、鉄系構造材料を製造するには、
その鉄系合金が粉末状で得られた場合は、焼結やHIP
処理或いはその後鍛造する必要があり、また、その鉄系
合金が箔状或いは塊状で得られた場合は、圧延、鍛造す
るなどして最終形状を付与する必要がある。或いはま
た、場合によってはこれらの熱間加工に加えて熱処理条
件を工夫して最終製品を得る必要がある。ここゝで重要
なことは、これらの熱間加工或いは加工熱処理によって
該鉄系合金の超微細組織が1μm以上の粒成長を起こさ
ないことであり、そのために本発明によれば、上記の鉄
系合金には、予め、所定量の配合割合でTi元素および
O元素を含ませてあるため、その鉄系合金を上記の所定
形状の構造材料に製造するため、加熱処理するとき、平
均粒径0.03μm程度の超微細な粒子から成るチタン
系酸化物が析出するので、その母相である鉄合金の結晶
粗大化を抑制し、平均結晶粒径を1μm未満に抑制する
ことができ、多くの実験によれば、700℃〜850℃
でチタン系酸化物が生ずるので、構造材料の製造におい
て通常行われる各種の850℃〜1150℃までの高温
域の加熱において、母相である1μm未満の結晶粒の粗
大化を抑制でき、その超微細組織を有する良好な強度お
よび延性をもつ鉄系構造材料が得られる。
According to the present invention, the above-mentioned composition is kept in a solid state by means of crushing means such as the above-mentioned mechanical milling method.
After obtaining an alloy that is ultrafine to less than μm, this alloy is solidified and formed by conventional sintering, HIP processing, etc., and when manufacturing structural materials, an ultrafine titanium-based oxide is used in the initial stage of heating. Since the material can be precipitated, the coarsening of the ultrafine structure of the base material can be suppressed to less than 1 μm during the heat treatment, and an iron-based structural material having excellent strength and ductility can be obtained. Any crushing means capable of achieving this object is not limited to the mechanical milling method, but may employ any crushing means capable of achieving ultrafine grain size and alloying. Thus, the obtained iron-based alloy having an ultrafine structure is not limited to a powdery one, but may be any one such as a foil or a lump. Then, to use this to produce an iron-based structural material,
If the iron-based alloy is obtained in powder form, sintering or HIP
It is necessary to perform treatment or forging thereafter, and when the iron-based alloy is obtained in the form of a foil or a lump, it is necessary to impart a final shape by rolling or forging. Alternatively, in some cases, it is necessary to devise heat treatment conditions in addition to the hot working to obtain a final product. What is important here is that the ultra-fine structure of the iron-based alloy does not cause grain growth of 1 μm or more due to the hot working or the working heat treatment. Since the alloy contains the Ti element and the O element in a predetermined mixing ratio in advance, when the iron-based alloy is heat-treated in order to produce the structural material having the predetermined shape, the average particle diameter is 0%. Since a titanium-based oxide composed of ultrafine particles of about 0.03 μm precipitates, it is possible to suppress the crystal coarsening of the iron alloy which is the parent phase, to suppress the average crystal grain size to less than 1 μm, and According to experiments, 700 ° C to 850 ° C
In the heating in various high-temperature regions from 850 ° C. to 1150 ° C., which is usually performed in the production of structural materials, it is possible to suppress the coarsening of the crystal grains of less than 1 μm, which is the main phase. An iron-based structural material having a fine structure and good strength and ductility is obtained.

【0010】実施例 次に本発明の具体的な実施例を詳述する。 本発明鉄系合金の製造:Fe材として純鉄粉末(神戸製
鋼株式会社製ファインアトメル300NH)、Ti材と
して純Ti粉末(住友シチックス株式会社製TILOP
150)、O材としてFe2 3 を選択し、これらを下
記表1に示すようにTi成分およびO成分の添加量(配
合量)を図1に黒点で示す配合比となるように配合し、
その夫々に残部Feを配合し、同表に示す目標とする1
2種類の鉄系合金の化学組成を夫々有する粉状の配合物
A,B,…Lを調製し、その夫々の配合物A,B,…L
について、これを、鋼製の例えばSUS304の容器内
に同製のボールと共に該配合物粉末と該ボールの重量費
が1:10となるように入れ、アルゴン雰囲気中で遊星
ボールミルによりこれら混合物の夫々の結晶粒径の超微
細化処理と合金化処理を行うメカニカルミリングを10
0時間行い、夫々の本発明の鉄系合金A,B,…Lを製
造した。このようにして得た12種類の鉄系合金の構成
相をX線回折法により評価したところ、いずれも均質な
体心立方構造である鉄固溶体であり、また、表1に示す
配合物の化学組成と変わらない化学組成から成り、図1
における斜線で囲む範囲内の黒点で示す夫々の本発明の
鉄系合金が得られていることを確認した。また、走査型
電子顕微鏡(SEM)により組織観察した所、いずれも
平均結晶粒径は0.1μm未満であった。
Next, specific embodiments of the present invention will be described in detail. Manufacture of the iron-based alloy of the present invention: Pure iron powder (Fine Atmel 300NH manufactured by Kobe Steel Co., Ltd.) as Fe material, pure Ti powder (TILOP manufactured by Sumitomo Citix Co., Ltd.) as Ti material
150), Fe 2 O 3 was selected as the O material, and these were blended such that the addition amounts (blending amounts) of the Ti component and the O component as shown in Table 1 below were the blending ratios shown by the black dots in FIG. ,
The balance of Fe was added to each of them, and the target 1 shown in the table was set.
Powdery compounds A, B,... L each having the chemical composition of the two iron-based alloys are prepared, and the respective compounds A, B,.
Are placed together with the same ball in a container made of steel, for example, SUS304 so that the weight ratio of the compound powder and the ball is 1:10, and each of these mixtures is mixed with a planetary ball mill in an argon atmosphere. 10 mechanical milling for ultra-fine grain size and alloying
Performed for 0 hours to produce each of the iron-based alloys A, B,... L of the present invention. When the constituent phases of the 12 kinds of iron-based alloys thus obtained were evaluated by an X-ray diffraction method, they were all iron solid solutions having a homogeneous body-centered cubic structure. It is composed of the same chemical composition as the composition,
It was confirmed that each of the iron-based alloys of the present invention indicated by black spots in the range surrounded by the oblique lines was obtained. When the structure was observed by a scanning electron microscope (SEM), the average crystal grain size was less than 0.1 μm in all cases.

【0011】[0011]

【表1】 [Table 1]

【0012】本発明の鉄系構造材料の製造:次に、その
夫々の粉状の本発明鉄系合金A,B,…Lについて真空
加圧焼結を施した。即ち、夫々の各本発明合金をグラフ
ァイト製の角柱状型内に充填し上下から加圧した状態で
真空容器内に収容し、1×10-5トールの真空下で、下
記表2に示す焼結処理した。即ち、先ず時効温度850
℃で30分加熱して超微細なチタン系酸化物を析出せし
めた後、引続き更に昇温し、焼鈍1000℃および11
00℃で30分加熱して本発明の構造材料A,B,…L
を製造した。このようにして得た本発明の鉄系構造材料
について表2に示す夫々の合金の成分組成から成ること
を確認した。図2は、上記の本発明の鉄系合金から成る
構造材料のうち、鉄系合金組成Fe−3Ti−0.5O
から成る構造材料BのSEM写真による組織図を示す。
その合金母材の1μm未満の組織中には、結晶粒径が
0.03μm程度の超微細なチタン系酸化物の析出が観
察された。上記の全ての鉄系構造材料A,B,…Lは、
表2に示すように、その母相組織の平均粒径は、上記の
加熱処理後でも1μmより遥かに小さい0.22μm〜
0.86μmの範囲であった。また、鉄系構造材料Kか
ら明らかなように、1100℃の高温に加熱されても、
平均結晶粒径は、0.75μmと1μmより遥かに小さ
く、優れた強度と伸びを保持した製品が得られることが
判る。
Production of Iron-Based Structural Material of the Present Invention: Next, each powdery iron-based alloy A, B,... That is, each of the alloys of the present invention was filled in a prism made of graphite, housed in a vacuum vessel in a state of being pressed from above and below, and fired in a vacuum of 1 × 10 −5 Torr, as shown in Table 2 below. It was processed. That is, first, the aging temperature 850
After heating at 30 ° C. for 30 minutes to precipitate ultrafine titanium-based oxides, the temperature was further increased, and annealing was performed at 1000 ° C. and 11 ° C.
Heated at 00 ° C. for 30 minutes, the structural materials A, B,.
Was manufactured. It was confirmed that the iron-based structural material of the present invention obtained in this manner had the composition of each alloy shown in Table 2. FIG. 2 shows the iron-based alloy composition Fe-3Ti-0.5O among the iron-based alloys of the present invention.
FIG. 1 shows an organization diagram of a structural material B composed of SEM photographs.
Precipitation of an ultrafine titanium oxide having a crystal grain size of about 0.03 μm was observed in the structure of the alloy base material of less than 1 μm. All of the above iron-based structural materials A, B,.
As shown in Table 2, the average particle size of the matrix structure was 0.22 μm, which is much smaller than 1 μm even after the above heat treatment.
It was in the range of 0.86 μm. Further, as is apparent from the iron-based structural material K, even when heated to a high temperature of 1100 ° C.
The average crystal grain size is 0.75 μm, which is much smaller than 1 μm, and it can be seen that a product having excellent strength and elongation can be obtained.

【0013】[0013]

【表2】 [Table 2]

【0014】上記の各々の本発明合金から成る構造材料
A,B,…Lについて、その析出物を確認するため、1
200℃まで昇温加熱してその析出物を1μm程度にま
で粗大化させ、X線回折法により構成相を評価したとこ
ろ、Ti2 3 の回折ピークが認められた。このことか
ら、これらの析出物はチタン系酸化物であることを確認
したが、1100℃までの加熱時に観察される0.1μ
m未満の超微細析出物については、Ti2 3 以外のチ
タン系酸化物、即ち、Ti2 O,TiO,Ti3 5
TiO2 、或いはFeを含有するTi−Fe−O複合酸
化物などである可能性もある。また、これらの超微細析
出物は母相である体心立方構造のTi−Fe−O固溶体
と特定の結晶方位関係を有すると予測される。超微細な
チタン系酸化物の厳密な同定および母相との結晶方位関
係については、今後更に検討を要する。
In order to confirm the precipitates of the structural materials A, B,...
The precipitate was coarsened to about 1 μm by heating to 200 ° C., and the constituent phases were evaluated by X-ray diffraction. As a result, a diffraction peak of Ti 2 O 3 was recognized. From this, it was confirmed that these precipitates were titanium-based oxides, but 0.1 μm observed when heated to 1100 ° C.
For ultrafine precipitates less than m, titanium-based oxides other than Ti 2 O 3 , that is, Ti 2 O, TiO, Ti 3 O 5 ,
It may be TiO 2 or a Ti—Fe—O composite oxide containing Fe. In addition, these ultrafine precipitates are expected to have a specific crystal orientation relationship with a Ti—Fe—O solid solution having a body-centered cubic structure as a parent phase. Strict identification of ultrafine titanium-based oxides and crystal orientation relationship with the parent phase require further study in the future.

【0015】構造材料A,B,…Lにつきビッカース硬
さの測定と、平行部径4mm、標点間距離16mmの引
張試験片を加工し、クロスヘッド変位0.5mm/mi
nで常温引張試験を実施し伸び値を測定した。その結果
は、夫々表2に示す通りであった。即ち、これらの構造
材料は、いずれも、そのビッカース硬さは構造材料とし
て実用に適した300を遥かに越え、また、その伸び
は、3%を遥かに越える優れた強度と良好な延性を有す
る鉄系構造材料が得られることが判った。
Measurement of Vickers hardness for structural materials A, B,... L, processing of a tensile test specimen having a parallel part diameter of 4 mm and a gauge length of 16 mm, and a crosshead displacement of 0.5 mm / mi
At room temperature, tensile tests were performed at room temperature to measure elongation values. The results were as shown in Table 2, respectively. That is, each of these structural materials has a Vickers hardness far exceeding 300 suitable for practical use as a structural material, and its elongation has excellent strength far exceeding 3% and good ductility. It was found that an iron-based structural material could be obtained.

【0016】比較例 比較用鉄系合金の製造:上記実施例と同じFe材、Ti
材、O材を用い、下記表3に示すように、Ti成分とO
成分の添加量(配合量)を図1において本発明の配合物
の化学組成範囲外にある白点で示す配合比となるように
配合し、その夫々に残部Feを配合し、同表に示す目標
とする9種類の鉄系合金の化学組成を夫々有する粉状の
配合物M,N,…Uを調製した以外は、実施例と同じメ
カニカルミリング法の条件で超微細化と合金化を行い、
下記表3に示す9種類の比較用鉄系合金M,N,…Uを
製造した。
Comparative Example Manufacture of a comparative iron-based alloy: the same Fe material and Ti
Material and O material, as shown in Table 3 below, Ti component and O material
The added amounts (blended amounts) of the components were blended so as to have a blending ratio shown by a white point outside the chemical composition range of the blend of the present invention in FIG. Ultrafine refining and alloying were carried out under the same mechanical milling conditions as in the example, except that powdery compounds M, N,... U having the respective chemical compositions of the nine target iron-based alloys were prepared. ,
The nine types of comparative iron-based alloys M, N,... U shown in Table 3 below were produced.

【0017】[0017]

【表3】 [Table 3]

【0018】比較用構造材料の製造:上記の製造法によ
り得た9種類の鉄系合金M,N,…Uについて、上記実
施例と同じ条件で時効処理と引続いて焼鈍処理を全て1
000℃で行い、比較用鉄系構造材料M,N,…Uを製
造した。その夫々について、同様に成分分析を行い、下
記表4に示す成分組成を確認した。また、SEMにより
その組織を観察した。また、更に、上記と同じ方法でビ
ッカース硬さおよび伸びを測定した。但し、鉄系構造材
料Mについては、母相の平均結晶粒径は35μmで、ビ
ッカース硬さ66であり問題外であったため、伸びの測
定は行わなかった。その結果を表4に示す。
Production of Comparative Structural Materials: All nine iron-based alloys M, N,... U obtained by the above-mentioned production method were subjected to aging treatment and subsequent annealing treatment under the same conditions as in the above-mentioned embodiment.
000 ° C. to produce comparative iron-based structural materials M, N,... U. The component analysis was similarly performed for each of them, and the component compositions shown in Table 4 below were confirmed. The structure was observed by SEM. Further, Vickers hardness and elongation were measured in the same manner as above. However, with respect to the iron-based structural material M, the average crystal grain size of the parent phase was 35 μm, and the Vickers hardness was 66, which was out of the question. Therefore, the elongation was not measured. Table 4 shows the results.

【0019】[0019]

【表4】 [Table 4]

【0020】上記表4から明らかなように、比較用鉄系
構造材料N,Oのようにビッカース硬さおよび伸びの両
者とも所要の値に達しないか構造材料P,Q,R,S,
T,Uのように、ビッカース硬さが300以上あって
も、伸びが3%以下であるか、少なくともいずれか一方
の特性を満足しない製品が得られた。
As is apparent from Table 4 above, both the Vickers hardness and the elongation do not reach the required values like the comparative iron-based structural materials N and O, or the structural materials P, Q, R, S, and
Like T and U, even if the Vickers hardness is 300 or more, a product whose elongation is 3% or less or which does not satisfy at least one of the properties is obtained.

【0021】本発明者は、種々の試験研究の結果、Fe
材を主体とし、これにTiと酸素(O)を配合し3成分
から成る配合物を調製するに当たり、配合物中に含有せ
しめるTi成分と酸素成分の含有量の割合を、図1に示
す斜線の範囲に含まれるように配合し、残部Fe成分、
即ち、Ti:3〜6wt.%、O:0.1〜1.5w
t.%を含有し、且つTiの含有量該3〜6wt.%の
範囲において、Oの含有量は、上限(0.2×Tiw
t.%+0.3)%、下限(0.3×Tiwt.%−
1.2)%の関係を保持し残部Feとなるように配合す
る配合物を調製する限り、これらの配合物の合金化およ
び結晶粒径の超微細化を行い、これらの鉄系合金を用い
て、従来の焼結処理など800℃を越えて約1150℃
までの高温域で加熱処理して鉄系構造材料を生産すると
きは、母材組成中に0.01μm〜0.3μm程度の超
微粒のチタン系酸化物が生成析出することにより、1μ
m未満の超微細な組織が維持された優れた強度および延
性を有する構造材料を確実に得られることが判った。ま
た、加熱温度が1200℃を越えるとチタン酸化物の粒
径が0.3μmを越えて、母材の組織の粒の成長抑制効
果が得られなくなる嫌いがあることが判った。これに対
し、配合物中のTiおよびOを図1に示す特定範囲を逸
脱して含有する場合は、これを用いて高温域に加熱して
も所要の強度や靭性をもつ構造材料が得られないのは未
だ充分解明していないが、析出すべきチタン系酸化物の
析出量が少なかったり、TiとFeの金属間化合物を生
成し易くなるなどの結果と思われる。
The present inventor has found that as a result of various test studies, Fe
When preparing a three-component blend by blending Ti and oxygen (O) with the material as a main component, the ratio of the content of the Ti component and the oxygen component to be contained in the blend is shown by the oblique line in FIG. And the remaining Fe component,
That is, Ti: 3 to 6 wt. %, O: 0.1 to 1.5 w
t. % And a Ti content of 3 to 6 wt. %, The content of O is the upper limit (0.2 × Tiw
t. % + 0.3)%, lower limit (0.3 × Tiwt.% −
1.2) As long as a composition is prepared so as to maintain the relationship of% and to be the balance of Fe, alloying of the composition and ultra-fine grain size are performed. About 1150 ℃ over 800 ℃ for conventional sintering
When the iron-based structural material is produced by heat treatment at a high temperature range up to 1 μm, an ultrafine titanium oxide of about 0.01 μm to 0.3 μm is formed and precipitated in the base material composition, so that 1 μm is formed.
It has been found that a structural material having excellent strength and ductility in which an ultrafine structure of less than m is maintained can be reliably obtained. Further, it was found that when the heating temperature exceeded 1200 ° C., the particle size of the titanium oxide exceeded 0.3 μm, and it was found that there was a dislike that the effect of suppressing the growth of the grains of the base metal structure could not be obtained. On the other hand, when the composition contains Ti and O outside the specific ranges shown in FIG. 1, a structural material having the required strength and toughness can be obtained even when the composition is heated to a high temperature range. The lack thereof has not been sufficiently elucidated yet, but it is considered to be the result that the amount of the titanium-based oxide to be deposited is small and that an intermetallic compound of Ti and Fe is easily formed.

【0022】[0022]

【発明の効果】このように請求項1に記載の製造法によ
り、高温域に加熱することにより、母材組織の粒度の成
長を1μm未満に抑制する効果を有する超微細なチタン
系酸化物を析出し得る鉄系合金が得られる。而して、こ
の本発明鉄系合金を、従来の加熱処理して構造材料を製
造するに当たり、高温域で加熱しても平均粒径の成長が
1μm未満に抑制された超微細組織から成るビッカース
硬さ300以上で硬さと伸び3%以上の鉄系構造材料が
得られるので、従来の低温域で熱処理して製造する場合
に比し、製造時間を短縮でき、鉄系構造材料の大量生産
を高能率に得られる。
As described above, by heating to a high temperature range by the production method according to claim 1, an ultrafine titanium oxide having an effect of suppressing the growth of the grain size of the base material structure to less than 1 μm. An iron-based alloy that can be precipitated is obtained. Thus, in producing a structural material by subjecting the iron-based alloy of the present invention to a conventional heat treatment, a Vickers microstructure having an ultrafine structure in which the growth of the average grain size is suppressed to less than 1 μm even when heated in a high temperature range. Since the iron-based structural material having a hardness of 300 or more and a hardness and elongation of 3% or more can be obtained, the production time can be reduced as compared with the conventional case of performing heat treatment in a low temperature range, and mass production of the iron-based structural material can be achieved. Highly efficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のFe−Ti−Oの3成分から成る合
金を製造するに適したTiと酸素の含有量の範囲を示す
グラフ。
FIG. 1 is a graph showing the range of the contents of Ti and oxygen suitable for producing an alloy comprising three components of Fe—Ti—O according to the present invention.

【図2】 本発明の鉄系合金を用いて高温域で加熱して
得られた鉄系構造材料の1例のSEM写真による組織
図。
FIG. 2 is an SEM micrograph of an example of an iron-based structural material obtained by heating the iron-based alloy of the present invention at a high temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E04C 3/04 E04C 3/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) E04C 3/04 E04C 3/04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe材とTi材とO材を配合するに当た
り、重量でTi:3〜6%、O:0.1〜1.5%含有
し、且つTiの前記含有量の範囲において、Oの含有量
は、上限(0.2×Ti%+0.3)%、下限(0.3
×Ti%−1.2)%含有し、残部Feを含有するよう
に配合し、該配合物を圧砕手段により平均結晶粒径を1
μm未満に超微細化を行うと共に合金化を行うことを特
徴とする構造材料用鉄系合金の製造法。
1. When compounding an Fe material, a Ti material, and an O material, the steel contains Ti: 3 to 6%, O: 0.1 to 1.5% by weight, and the content of Ti is within the above range. The content of O is upper limit (0.2 × Ti% + 0.3)%, lower limit (0.3
× Ti% -1.2)%, with the balance being Fe.
A method for producing an iron-based alloy for a structural material, characterized in that the alloy is formed into an ultrafine grain of less than μm and alloyed.
【請求項2】 請求項1記載の製造法により得た構造材
料用鉄系合金を加熱処理し超微細なチタン系酸化物を析
出せしめて成る鉄系構造材料。
2. An iron-based structural material obtained by subjecting an iron-based alloy for a structural material obtained by the production method according to claim 1 to heat treatment to precipitate an ultrafine titanium-based oxide.
【請求項3】 母相の平均結晶粒径は1μm未満であ
り、ビッカース硬さ300以上、伸び3%以上である請
求項2記載の鉄系構造材料。
3. The iron-based structural material according to claim 2, wherein the average crystal grain size of the mother phase is less than 1 μm, the Vickers hardness is 300 or more, and the elongation is 3% or more.
JP28360798A 1998-09-21 1998-09-21 Manufacturing method of iron-based structural materials Expired - Fee Related JP3499142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28360798A JP3499142B2 (en) 1998-09-21 1998-09-21 Manufacturing method of iron-based structural materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28360798A JP3499142B2 (en) 1998-09-21 1998-09-21 Manufacturing method of iron-based structural materials

Publications (2)

Publication Number Publication Date
JP2000096111A true JP2000096111A (en) 2000-04-04
JP3499142B2 JP3499142B2 (en) 2004-02-23

Family

ID=17667701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28360798A Expired - Fee Related JP3499142B2 (en) 1998-09-21 1998-09-21 Manufacturing method of iron-based structural materials

Country Status (1)

Country Link
JP (1) JP3499142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217742A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Sintered compact and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217742A (en) * 2006-02-15 2007-08-30 Seiko Epson Corp Sintered compact and manufacturing method therefor

Also Published As

Publication number Publication date
JP3499142B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
KR100417943B1 (en) Titanium alloy and method for producing the same
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
Suryanarayana et al. Nanostructured materials and nanocomposites by mechanical alloying: an overview
US3950166A (en) Process for producing a sintered article of a titanium alloy
WO2004029313A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
GB2311997A (en) Oxide-dispersed powder metallurgically produced alloys.
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
CN114466943A (en) Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded body, and method for producing same
Careau et al. In-situ alloying of Ti-5Fe titanium alloy using direct powder forging and the effect of the powder mixing method
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
JPH0578107A (en) Nitride powder
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JP2018508652A (en) Corrosion-resistant article and manufacturing method
JP2000096111A (en) Production of ferrous alloy for structural material and ferrous structural material
JPH051342A (en) Production of titanium alloy and sintered titanium alloy
JPH059641A (en) Fine crystal-grained tungsten alloy and production thereof
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH0790432A (en) Ultralow-chlorine alpha+beta type sintered titanium alloy made of isometric structure
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
EP3060366B1 (en) Ferritic alloys and methods for preparing the same
CN113597476B (en) Method for manufacturing Co-based alloy structure
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
Gómez-Esparza et al. Phase Composition and Hardness of Series of Nanocrystalline CoCrFeMnMoNiTiW High-Entropy Alloys
JP2002285289A (en) High strength ferritic stainless steel and production method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees