JP2000096105A - Production of electrode for discharge coating and electrode for discharge coating produced by its method - Google Patents

Production of electrode for discharge coating and electrode for discharge coating produced by its method

Info

Publication number
JP2000096105A
JP2000096105A JP10268374A JP26837498A JP2000096105A JP 2000096105 A JP2000096105 A JP 2000096105A JP 10268374 A JP10268374 A JP 10268374A JP 26837498 A JP26837498 A JP 26837498A JP 2000096105 A JP2000096105 A JP 2000096105A
Authority
JP
Japan
Prior art keywords
electrode
particles
discharge
coating
discharge coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268374A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
上 潔 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP10268374A priority Critical patent/JP2000096105A/en
Publication of JP2000096105A publication Critical patent/JP2000096105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sufficiently high quality by filling the powder of a heat resistant coating material into a desired die without blending a binder, applying pressure thereon, energizing it under pressure to generate plasma at the contact points between particles and executing sintering. SOLUTION: Particles P at the inside of a die are applied with voltage from the contact points Pn and Pm between a punch 1A or 2A and the particles P. Namely, as to the sintered body, by being energized under pressure from upper and lower both sides, plasma is generated at these contact points, so that diffusion is swiftly allowed to occur between the particulate bodies, and stable sintering is made possible. In this way, the obtd. electrode has the following characteristics: it is composed of a simple material; in the case the material is a mixture, the characteristics of the coating layer formed by discharge impact coating working are made to be the ones different from those of the original electrode: its thermal conductivity is low as much as possible; at the time of the coating working, the degree of concentration of energy is made high on the discharge point, and the deterioration in the base material hardly occurs; its strength is high: and its hardness is high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、機械部品などの表面に
放電被覆を施し、基材の表面の物理的特性を変換して、
耐摩性、電子の発生容易性、低摩擦係数等を与えるため
使用する被覆用電極の製造方法及びその方法により製造
される被覆用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for applying a discharge coating to a surface of a machine component or the like to convert the physical properties of the surface of a base material.
The present invention relates to a method for producing a coating electrode used for giving abrasion resistance, easy generation of electrons, a low coefficient of friction, and the like, and a coating electrode produced by the method.

【0002】[0002]

【従来の技術】耐熱材の粉末を放電焼結して放電被覆材
を得る技術は公知である。然しながら、従来は、複数の
基材にバインダを配合し、混合焼結していたので、放電
被覆した後に、硬度や耐摩耗性などの点で、所期の物理
的な性質を得ることができないと言う問題があった。
2. Description of the Related Art A technique for obtaining a discharge coating material by spark sintering a powder of a heat-resistant material is known. However, conventionally, the binder was blended into a plurality of base materials and mixed and sintered, so that the desired physical properties could not be obtained in terms of hardness, abrasion resistance, etc. after discharge coating. There was a problem to say.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的とすると
ころは、放電被覆した後に、充分高度な品質を示す放電
電極材を製造する方法及びその方法により製造された放
電被覆電極材を提供することにある。本発明は、従来焼
結が困難とされていた材料をバインダを用いることなく
焼結し、放電被覆用電極を得る方法と、そのような方法
により製造された放電被覆電極材を提供する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a discharge electrode material having a sufficiently high quality after discharge coating, and a discharge-coated electrode material produced by the method. It is in. The present invention provides a method of sintering a material that has been conventionally difficult to sinter without using a binder to obtain a discharge coating electrode, and a discharge coating electrode material manufactured by such a method.

【0004】[0004]

【課題を解決するための手段】叙上の目的を達成するた
め、耐熱性被覆材の粉末を、バインダを配合することな
く所望の型に充填加圧し、加圧下で通電して粒子間の接
触点でプラズマを発生させて焼結し、放電被覆用電極を
製造する。而して、材料となる耐熱性被覆材料として
は、従来単独では焼結困難とされていたWCなどの粉末
が単独でかつバインダなしで用いられる。又、焼結に際
して、焼結体に所望の密度を付与するため、加圧力、放
電電流密度及び放電時間を制御する。
In order to achieve the above object, the powder of the heat-resistant coating material is filled into a desired mold without blending a binder, and is pressurized. A plasma is generated at the point and sintered to produce an electrode for discharge coating. As the heat-resistant coating material, powder such as WC, which has conventionally been difficult to sinter alone, is used alone and without a binder. During sintering, the pressing force, the discharge current density and the discharge time are controlled in order to give a desired density to the sintered body.

【0005】材料粉末の粒子は、加圧状態で通電された
とき、相互の接触部においてプラズマが発生し、そのた
め表面がプラズマにより活性化され、粒子間の拡散が発
生する。材料粉末は加圧されており、更に粒子の接触部
は通電により加熱されて局部的に融合し、そのため更に
拡散がより進み、粒子は変形して粒子間の接合が起こ
る。
When particles of the material powder are energized in a pressurized state, plasma is generated at a contact portion between the particles, so that the surface is activated by the plasma and diffusion between the particles occurs. The material powder is pressurized, and the contact portions of the particles are further heated by energization and locally fused, so that further diffusion proceeds, and the particles are deformed and bonding between the particles occurs.

【0006】以下、本発明方法により焼結が生じる状態
等を図面により説明する。図1は2粒の球形粒子が焼結
により結合する状態を示す模式図、図2は焼結型内で焼
結される粒子の状態を示す模式図、図3は試験加工に用
いた焼結装置の断面図、図4は図3に示した装置で用い
た型の正面図、図5は1回目の実験計画法の相互効果作
用のない場合の説明図、図6は2回目の実験計画法の相
互効果作用のある場合の説明図である。図1には、材料
粉末の2粒の球形粒子が、互いに接触し、かつ、順次圧
接される状態が示されている。図中、1の状態では、2
粒の粒子は点aで接触している。粒子の半径はrであ
り、それれの中心距離L1は2rに等しい。図中2の状
態は、相互の接触部aにおいてプラズマが発生し、その
ため表面がプラズマにより活性化され、粒子間の拡散が
発生し、粒子の融着部bが発生した状態を示している。
粒子中心間距離はL2となっている。3の状態は、更に
拡散がより進み、粒子は変形して粒子間の接合が起こ
り、ネック部dが発生した状態を示している。粒子中心
間距離はL3である。2つの粒子の接近量(L1−L
3)をαとすれば、
Hereinafter, the state where sintering is caused by the method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a state in which two spherical particles are bonded by sintering, FIG. 2 is a schematic diagram showing a state of particles sintered in a sintering mold, and FIG. FIG. 4 is a front view of a mold used in the apparatus shown in FIG. 3, FIG. 5 is an explanatory view of the first experiment design method when there is no interaction, and FIG. 6 is a second experiment plan. It is explanatory drawing in case there exists a mutual effect of the law. FIG. 1 shows a state in which two spherical particles of the material powder are in contact with each other and are successively pressed. In the figure, in the state of 1, 2
The particles are in contact at point a. The radius of the particles is r, and their center distance L1 is equal to 2r. The state 2 in the figure shows a state in which plasma is generated at the mutual contact portion a, the surface is activated by the plasma, diffusion between particles occurs, and a fused portion b of particles is generated.
The distance between the particle centers is L2. The state of No. 3 shows a state in which the diffusion is further advanced, the particles are deformed, the bonding between the particles occurs, and the neck part d is generated. The distance between the particle centers is L3. The approaching amount of two particles (L1-L
If 3) is α,

【数1】 ここで、Kは定数、nはネック部の直径である。(Equation 1) Here, K is a constant and n is the diameter of the neck.

【0007】結局、粒子が変形して、粒子間の空間が埋
まる、焼結体の密度が上昇することになる。粒子の中心
間距離は、始めのL1からL2、L3 まで縮まり、焼結体
は高密度化され、同時に型eにより側面より加熱され、
焼結が進行することになる。
[0007] Eventually, the particles are deformed to fill the spaces between the particles, and the density of the sintered body increases. The distance between the centers of the particles shrinks from the initial L1 to L2 and L3, the sintered body is densified, and simultaneously heated from the side by the mold e.
Sintering will proceed.

【0008】実際の型の内部では、粒子は立体的、三次
元的に接触するが、二次元的に単純化して示せば、模式
図である図2のようになる。粒子Pにはパンチ1A又は
2Aと、粒子Pとの接触点Pn、Pmから電圧が印加され
る。即ち、焼結体は上下両側より加圧通電されることに
より、これらの接触点でプラズマが発生するので、急速
に粒体間で拡散を起こし安定な焼結が可能となる。この
特性は式1により示される。
[0008] Inside the actual mold, the particles are three-dimensionally and three-dimensionally contacted, but if simplified two-dimensionally, they are as shown in Fig. 2 which is a schematic diagram. A voltage is applied to the particle P from contact points Pn and Pm between the punch 1A or 2A and the particle P. In other words, when the pressurized current is applied to the sintered body from both the upper and lower sides, plasma is generated at these contact points, so that the diffusion is rapidly caused between the granules and stable sintering becomes possible. This characteristic is shown by Equation 1.

【0009】ここで、形成された焼結体の強度をσとす
れば、
Here, assuming that the strength of the formed sintered body is σ,

【数2】 (Equation 2)

【0010】即ち、強度としては焼結すべき粒子径dが
小さいほど強度σは向上する。また空隙率pは、強度σ
に対してエクスポーネンシャルに作用することを示して
いる。本発明方法による場合のK値は、公知の焼結によ
る場合のK値の1.5倍以上の高い値となる。
That is, as the strength, the smaller the particle diameter d to be sintered, the higher the strength σ. The porosity p is determined by the strength σ
Indicates that it acts exponentially. The K value according to the method of the present invention is 1.5 times or more higher than the K value according to the known sintering.

【0011】放電衝撃被覆に用いる電極として望ましい
特性は、 1) 単純な材料であること。材料が混合物であると、材
料相互の物理的、冶金学的特性が異なるため、放電衝撃
被覆加工を施す際に電極材が変質し、形成された被覆層
の特性が、元の電極の特性と異なるものとなる。 2) 熱伝導率がなるべく低いこと。放電衝撃被覆加工を
施す際、放電点にエネルギーの集中度が高くなり、母材
を殆ど変質させることなく被覆が施されるる。 3) 強度が高いこと。衝撃放電被覆加工時の機械的衝撃
に充分耐えることが必要になる。 4) 硬度ができるだけ高いこと。耐摩特性を要求する場
合や、容易電子放射特性を要求する場合は、容易電子発
生材を電極として使用する。そして高硬度であることが
要求される。
[0011] Desirable characteristics of the electrode used for the discharge impact coating include: 1) a simple material. When the material is a mixture, the physical and metallurgical characteristics of the materials are different from each other, so the electrode material is altered during the discharge impact coating process, and the characteristics of the formed coating layer are different from those of the original electrode. Will be different. 2) Thermal conductivity is as low as possible. When applying the discharge impact coating, the concentration of energy at the discharge point increases, and the coating is applied with almost no deterioration of the base material. 3) High strength. It is necessary to sufficiently withstand the mechanical shock at the time of impact discharge coating processing. 4) Hardness should be as high as possible. When abrasion resistance characteristics or easy electron emission characteristics are required, an easy electron generating material is used as an electrode. And it is required to have high hardness.

【0012】放電被覆加工を施す際、焼結電極により発
生したクレータの径をaとすれば、
At the time of performing the electric discharge coating, if the diameter of the crater generated by the sintered electrode is a,

【数3】 で表すことができる。(Equation 3) Can be represented by

【0013】このクレーター部分には放電電流が流れる
ので、温度が上昇し、拡散は急速に進むことになる。そ
の温度を近似的にT℃とすれば、
Since a discharge current flows through the crater, the temperature rises and diffusion proceeds rapidly. If the temperature is approximately T ° C.,

【数4】 として表される。(Equation 4) It is expressed as

【0014】J. Fisherの報告では、粒界と転移拡散は
結晶の欠陥によって大きく影響を受ける。粒界の厚さを
dとして、x、yの位置におけるτ時間後の拡散濃度を
Cとすれば、
J. Fisher reports that grain boundaries and dislocation diffusion are greatly affected by crystal defects. Assuming that the thickness of the grain boundary is d and the diffusion density after τ time at the positions of x and y is C,

【数5】 (Equation 5)

【0015】式(5)は、誤差関数の特性に従って、短
時間の放電で充分拡散被覆することができることを表し
ている。更に、電極材料の基材が単一の物質でなく、混
合物であり、各成分の濃度CがそれぞれC1、C2、C
3、・・・Cnとなれば、拡散時に各々の元素が個々別々
に拡散し、被覆を構成すること、換言すれば、放電被覆
層の成分が深さによって複雑に変化することになり、物
理的、冶金学的な条件を目的に合わせて制御することが
困難となる。
Equation (5) shows that diffusion coating can be sufficiently performed by a short-time discharge according to the characteristics of the error function. Further, the base material of the electrode material is not a single substance but a mixture, and the concentration C of each component is C1, C2, C
3,... Cn, each element diffuses individually at the time of diffusion to form a coating, in other words, the components of the discharge coating layer change in a complicated manner depending on the depth, It is difficult to control the industrial and metallurgical conditions according to the purpose.

【0016】従って、電極材として、理想的な単一物質
を選び、それを活性化焼結し、自由な密度で成形してか
ら電極材を構成し、強度が許す程度で電極の密度は低い
ことが有効となる。即ち、電極の熱伝導率が低い方が有
利となる。この電極によりSSDとして使用するとき有
効な方式として利用することができる。
Therefore, an ideal single substance is selected as an electrode material, which is activated and sintered, molded at a free density, and then the electrode material is formed. The density of the electrode is as low as the strength permits. It becomes effective. That is, it is advantageous that the thermal conductivity of the electrode is lower. This electrode can be used as an effective system when used as an SSD.

【0017】[0017]

【実施例1】温度特性が良く即ち、高温まで有効硬度を
持っている材料で、電気電導率が高い高硬度材として、
WCを選定した。WC材を電極としてSSD加工を行っ
た。SSDの条件として、放電時間τ0.5μsec、放電波
高値IP30Aで間隙をサーボ 送りしてSSD加工して使
用した。母材ドリルはTaC15%Co5%残りWCの径0.8
mmφのドリルにWCをSSD加工して、耐摩性をテスト
した。
Embodiment 1 A material having good temperature characteristics, that is, a material having an effective hardness up to a high temperature, and a high hardness material having a high electric conductivity,
WC was selected. SSD processing was performed using a WC material as an electrode. As the SSD conditions, the gap was servo-fed with a discharge time τ 0.5 μsec and a discharge peak value IP30A for SSD processing. Base material drill: TaC15% Co5% Remaining WC diameter 0.8
WC was subjected to SSD processing on a drill having a diameter of mm to test the abrasion resistance.

【0018】被削体は50%セラミックス入りエポキシP
CBに対して電極材(A)、回転数(C)、送り速度(B)、
ステップ送り(D)、全体を統計処理して放電被覆加工の
性能試験を行った。被加工体は1.6mの厚さのPCBを
3枚重ねと5枚重ねにし、回転数は30000RPMと60000RPM
とし、送り速度は5m/minと7m/minとし、WCのS
SD加工したものとしないものとの比較し、WCのSS
D加工寄与率を分散分析した。
The work piece is 50% ceramic-filled epoxy P
Electrode material (A), rotation speed (C), feed speed (B),
The step feed (D) and the whole were statistically processed to perform a performance test of the discharge coating process. The workpiece is a 1.6m thick PCB with 3 and 5 layers, and the rotation speed is 30000RPM and 60000RPM.
And the feed rates are 5 m / min and 7 m / min.
Compared to SD processed and non-SD processed, WC SS
D The processing contribution was analyzed for variance.

【0019】その実測条件を表1に、また、加工寄与率
と分散分析結果を表2に示す。同様に表1の第2例にお
いては、寄与率82%となり、同第3例においては31%と
なっており、電極密度によりSSD作用が向上すること
が知られる。
Table 1 shows the actual measurement conditions, and Table 2 shows the processing contribution ratio and the results of variance analysis. Similarly, in the second example of Table 1, the contribution ratio is 82%, and in the third example, it is 31%. It is known that the SSD effect is improved by the electrode density.

【表1】 【table 1】

【表2】 但し、ここで、 A ドリルのSSD加工の電極材料 B ドリル穿孔加工送り速度 A×B 電極材料と送り速度 C ドリル回転数 A×C 電極材料とドリルの回転数 D ステップ送り e 誤差 列 実験の組み合わせ 第1水準 因子の状態を推定する条件 第2水準 同上 総データ数 実験データの総数 寄与率ρ% 結果を生むことに寄与した割合[Table 2] However, here, A: Electrode material for SSD machining of drill B: Drilling feed speed A × B Electrode material and feed speed C Drill speed A × C Electrode material and speed of drill D Step feed e Error column Combination of experiments Level 1 Conditions for estimating the state of factors Level 2 Same as above Total number of data Total number of experimental data Contribution ρ% Percentage that contributed to producing results

【0020】[0020]

【実施例2】4mmφで長さ6mmのWC材を図3に示した
装置に、図4に示したダイ6を装着してWCを焼結し
た。図中、1a〜1nは可動パンチ、2a〜2nは固定
パンチ、4は冷却水コイル、5は焼結体、5a〜5nは
可動パンチ1a~1nと、固定パンチ2a〜2nの間に
形成されるキャビティに充填された材料粉末、6はダ
イ、7は補強筒、8、8は通電端子である。中心サイズ
0.6μmのWC粉末をキャビティ5a〜5nに充填し、
上下のパンチで1a〜1n、2a〜2nにより、始めは
50kg/cmに加圧し、300Aを通電し1分間保持し、続い
て 電流を 750Aにして300kgf/cm2に加圧し、4分間保
持し、送り位置を制御して、88 %の密度のWCを成形
した。
Example 2 A WC material having a diameter of 4 mm and a length of 6 mm was mounted on the apparatus shown in FIG. 3 and the die 6 shown in FIG. In the drawing, 1a to 1n are movable punches, 2a to 2n are fixed punches, 4 is a cooling water coil, 5 is a sintered body, 5a to 5n are formed between movable punches 1a to 1n and fixed punches 2a to 2n. Is a material powder filled in the cavity, 6 is a die, 7 is a reinforcing cylinder, and 8 and 8 are current-carrying terminals. Center size
Fill the cavities 5a to 5n with 0.6 μm WC powder,
At first, 1a ~ 1n and 2a ~ 2n with upper and lower punches
Pressurize to 50kg / cm, energize at 300A and hold for 1 minute, then increase current to 750A, pressurize to 300kgf / cm2, hold for 4 minutes, control feed position and form WC with 88% density did.

【0021】ダイ6はグラファイト製で、図4に示すよ
うに、可動パンチ1a〜1nと、固定パンチ2a〜2n
が挿通されるダイ孔を有し、挿通された可動パンチ1a
〜1nとの間にキャビティが形成される。このキャビテ
ィ内に、中心粒径0.6μmのWC粉末を装填、焼結し
た。電源端子8、8より通電し、パンチの送り量を制御
して目的密度の焼結体を得た。
The die 6 is made of graphite and has movable punches 1a to 1n and fixed punches 2a to 2n as shown in FIG.
Has a die hole through which the movable punch 1a is inserted.
1 to 1n. A WC powder having a center particle diameter of 0.6 μm was charged into the cavity and sintered. Electric power was supplied from the power supply terminals 8 to control the amount of feed of the punch to obtain a sintered body having a target density.

【0022】本発明によるときは、焼結後加工を要せ
ず、電極としてそのまま使用できる焼結体が得られるの
で、大型の焼結材を加工してSSD電極を製作する場合
に比べて、コストは約1/5以下になった。即ち、使用
できない部分が零となり、材料が節約できる。材料を10
0%使用できる効果があり、電極焼 結時間コストも低減
できた。
According to the present invention, since a sintered body which can be used as an electrode as it is without the need for post-sintering processing is obtained, compared with a case where a large-sized sintered material is processed to produce an SSD electrode, The cost was reduced to about 1/5 or less. That is, the unusable portion becomes zero, and the material can be saved. Material 10
There was an effect that 0% can be used, and the cost of electrode baking time was also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒子焼結状態で粒子を球としたときの模式図で
ある。
FIG. 1 is a schematic diagram when a particle is made into a sphere in a particle sintered state.

【図2】粒子焼結状態で粒子を球としたときの全体模式
図である。
FIG. 2 is an overall schematic diagram when particles are made into spheres in a particle sintered state.

【図3】焼結装置の一実施例を示す縦断面図(図4に示
す切断線X−Xに沿った断面図)である。
FIG. 3 is a vertical cross-sectional view (a cross-sectional view taken along the line XX shown in FIG. 4) showing one embodiment of the sintering apparatus.

【図4】図3に示すY−Yに沿った断面図である。FIG. 4 is a sectional view taken along the line YY shown in FIG.

【図5】実測条件を表にしたもので、1回目の実験計画
法の効果相互作用のない場合の説明図である。
FIG. 5 is a table showing actual measurement conditions, and is an explanatory diagram in the case where there is no effect interaction of the first experimental design method.

【図6】図6は寄与率ρ%と計算表を示すもので、2回
目の実験計画法の効果相互作用のある場合の説明図であ
る。
FIG. 6 shows a contribution ratio ρ% and a calculation table, and is an explanatory diagram in the case where there is an effective interaction of the second experiment design method.

【符号の説明】[Explanation of symbols]

1A、1B 上下加圧パンチ a 焼結始めの粒子の接触点 b 焼結始めの粒子の接触点 n ネックの幅 r 粒子径 d ネック部分 1a〜1n 可動パンチ 2a〜2n 固定パンチ 4 冷却水コイル、 5 焼結体、 5a〜5n キャビティに充填された材料粉末 6 ダイ 7 補強筒 8、8 通電端子 1A, 1B vertical pressing punch a contact point of particles at the start of sintering b contact point of particles at the start of sintering n width of neck r particle diameter d neck portion 1a-1n movable punch 2a-2n fixed punch 4 cooling water coil Reference Signs List 5 sintered body, 5a to 5n material powder filled in cavity 6 die 7 reinforcing cylinder 8, 8 conducting terminal

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年9月24日(1998.9.2
4)
[Submission date] September 24, 1998 (1998.9.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図4】 FIG. 4

【図2】 FIG. 2

【図3】 FIG. 3

【図5】 FIG. 5

【図6】 FIG. 6

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性被覆材の粉末を、バインダを配合
することなく所望の型に充填加圧し、加圧下で通電して
粒子間の接触点でプラズマを発生させて焼結することを
特徴とする放電被覆用電極製造方法。
1. A powder of a heat-resistant coating material is filled into a desired mold without blending a binder, pressurized, and a current is applied under the pressure to generate plasma at a contact point between the particles and sinter the powder. Production method for an electrode for discharge coating.
【請求項2】 加圧力、放電電流密度及び放電時間を制
御して焼結体に所望の密度を付与する、請求項1に記載
の放電被覆用電極製造方法。
2. The method for producing an electrode for discharge coating according to claim 1, wherein a desired density is imparted to the sintered body by controlling a pressing force, a discharge current density and a discharge time.
【請求項3】 請求項1又は2に記載の方法により製造さ
れた放電被覆用電極。
3. An electrode for electric discharge coating produced by the method according to claim 1.
【請求項4】 容易電子発生材を含んだ請求項3に記載
の放電被覆用電極。
4. The electrode for discharge coating according to claim 3, further comprising an easy electron generating material.
JP10268374A 1998-09-22 1998-09-22 Production of electrode for discharge coating and electrode for discharge coating produced by its method Pending JP2000096105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268374A JP2000096105A (en) 1998-09-22 1998-09-22 Production of electrode for discharge coating and electrode for discharge coating produced by its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268374A JP2000096105A (en) 1998-09-22 1998-09-22 Production of electrode for discharge coating and electrode for discharge coating produced by its method

Publications (1)

Publication Number Publication Date
JP2000096105A true JP2000096105A (en) 2000-04-04

Family

ID=17457616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268374A Pending JP2000096105A (en) 1998-09-22 1998-09-22 Production of electrode for discharge coating and electrode for discharge coating produced by its method

Country Status (1)

Country Link
JP (1) JP2000096105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108989A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, and method for manufacturing and storing the same
JP2006249462A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Method for producing electrode, and electrode
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108989A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, and method for manufacturing and storing the same
JPWO2004108989A1 (en) * 2003-06-04 2006-07-20 三菱電機株式会社 ELECTRODE FOR DISCHARGE SURFACE TREATMENT, PROCESS FOR PRODUCING THE SAME
JP4641260B2 (en) * 2003-06-04 2011-03-02 三菱電機株式会社 Discharge surface treatment electrode and method for producing the same
US7915559B2 (en) 2003-06-04 2011-03-29 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
JP2006249462A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Method for producing electrode, and electrode

Similar Documents

Publication Publication Date Title
JP6811808B2 (en) A method for manufacturing a support structure for supporting a three-dimensional object to be formed generatively.
CN100558490C (en) A kind of selective resistance welding melting powder rapid forming method
US3670137A (en) Method of spark sintering electrically conductive particles onto a metallic substrate
CN108290216B (en) Powder for 3D printing and 3D printing method
US20210346956A1 (en) Structures and components having composite unit cell matrix construcftion
CN104384518A (en) Method for coating copper on surface of tungsten copper carbide alloy composite material
JP2019007051A (en) Three-dimensional laminated molding device and method for controlling the tyree-dimensional laminate molding device
US2175899A (en) Process for making metal articles
EP2399696B1 (en) Electrode manufacturing method and electric discharge surface treatment used therein
CN101670433A (en) Method for manufacturing metal mold by laser indirect forming
JP2000096105A (en) Production of electrode for discharge coating and electrode for discharge coating produced by its method
CN104821248A (en) Manufacturing method for AgC electrical contact and integrated assembly thereof
JP2007023365A (en) Method for producing electrode for discharge surface treatment, and production device therefor
Yaman et al. An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM
US2216652A (en) Method of making wire-drawing dies
US3650736A (en) Method of molding electrodes
JPH07216409A (en) Electric discharge plasma sintering method and device therefor
US20220266524A1 (en) An additive manufacturing machine
CN111922343A (en) Method for preparing CuW60-CuW90 material by adopting spherical tungsten powder
JP2006249462A (en) Method for producing electrode, and electrode
US7393193B1 (en) Techniques for making a metallic product utilizing electric current in a consolidation process
US3665151A (en) Apparatus for preventing carbon diffusion in electric discharge sintering
US3404978A (en) Coinable electrical discharge machine electrode material
CN110834412A (en) Heat insulation fixing system
JP5670708B2 (en) Electrode for short arc discharge lamp and method for manufacturing the same