JP2000091242A - Manufacture of amorphous silicon thin film - Google Patents

Manufacture of amorphous silicon thin film

Info

Publication number
JP2000091242A
JP2000091242A JP10262550A JP26255098A JP2000091242A JP 2000091242 A JP2000091242 A JP 2000091242A JP 10262550 A JP10262550 A JP 10262550A JP 26255098 A JP26255098 A JP 26255098A JP 2000091242 A JP2000091242 A JP 2000091242A
Authority
JP
Japan
Prior art keywords
thin film
gas
amorphous silicon
plasma
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10262550A
Other languages
Japanese (ja)
Inventor
Michio Ishikawa
道夫 石川
Yukinori Hashimoto
征典 橋本
Naoto Tsuji
直人 辻
Taro Morimura
太郎 森村
Yoko Koshiba
陽子 小柴
Koki Yasui
孝騎 安井
Kazuya Saito
斎藤  一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP10262550A priority Critical patent/JP2000091242A/en
Publication of JP2000091242A publication Critical patent/JP2000091242A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a thin film with a high throughput by generating a plasma of a process gas and dehydrogenating an amorphous silicon thin film by exposing the surface of the amorphous silicon thin film to the plasma. SOLUTION: When an a-Si thin film is formed to a prescribed thickness, impression of a high-frequency voltage upon a high-frequency electrode 22 and supply of a gaseous starting material to the electrode 22 are stopped without lowering the temperature of a glass substrate 2. When an argon gas is supplied to the electrode 22 from a gas introducing system 27 after the gaseous starting material left in a vacuum tank 20 is evacuated thereafter, the argon gas is discharged into the tank 20. When the impression of the high-frequency voltage upon the electrode 22 is restarted while the argon gas is discharged into the tank 20, an argon gas plasma is generated. When the a-Si thin film on the surface of the glass substrate 2 is exposed to the argon gas plasma, the hydrogen taken in the a-Si thin film is discharged and the thin film is dehydrogenated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアモルファスシリコ
ン薄膜を形成する技術分野に関する。
The present invention relates to the technical field of forming an amorphous silicon thin film.

【0002】[0002]

【従来の技術】液晶表示パネルの技術分野では、表示速
度と表示品質を向上させるために、近年は単純マトリク
ス駆動方式に代え、薄膜トランジスタを用いたアクティ
ブマトリクス駆動方式が主流となっている。
2. Description of the Related Art In the technical field of liquid crystal display panels, in order to improve display speed and display quality, an active matrix drive system using thin film transistors has recently become the mainstream in place of a simple matrix drive system.

【0003】薄膜トランジスタは、a-Si(アモルファ
スシリコン)薄膜、poly-Si(ポリシリコン)薄膜、又は
単結晶Si薄膜のいずれにも形成できるが、コストや生
産性の観点から、基板上に先ずa-Si薄膜を形成し、
後工程において脱水素処理を行った後、レーザアニール
によってa-Si薄膜をpoly-Si薄膜に変化させる技術
が採用されている。
A thin film transistor can be formed as an a-Si (amorphous silicon) thin film, a poly-Si (polysilicon) thin film, or a single-crystal Si thin film. However, from the viewpoint of cost and productivity, a thin film transistor is first formed on a substrate. -Si thin film is formed,
After the dehydrogenation treatment is performed in a later step, a technique of changing the a-Si thin film into a poly-Si thin film by laser annealing is employed.

【0004】図5の符号101は、従来技術のa-Si
薄膜形成装置であり、搬送室10を有しており、その周
囲に、仕込取出室111と予備加熱室112が1台ずつ
と、反応室1151〜1154が4台配置されている。
[0004] Reference numeral 101 in FIG.
The apparatus is a thin film forming apparatus and has a transfer chamber 10 around which a charging / discharging chamber 111 and a preheating chamber 112 are provided, and four reaction chambers 115 1 to 1154 are arranged.

【0005】このa-Si薄膜形成装置101では、a-
Si薄膜を形成する際に、搬送室110内と、予備加熱
室112内と、反応室1151〜1152内とを予め真空
排気しておき、仕込取出室111内に所定枚数の基板を
装着した後、真空排気し、搬送室110内に配置された
基板搬送ロボット119によって1枚取り出し、予備加
熱室112内に搬入する。
[0005] In this a-Si thin film forming apparatus 101,
When forming the Si thin film, the inside of the transfer chamber 110, the inside of the preheating chamber 112, and the inside of the reaction chambers 115 1 to 115 2 are evacuated in advance, and a predetermined number of substrates are mounted in the loading / unloading chamber 111. After that, the substrate is evacuated and evacuated, and one substrate is taken out by the substrate transfer robot 119 arranged in the transfer chamber 110 and is carried into the preheating chamber 112.

【0006】予備加熱室112内で基板を所定温度まで
昇温させた後、所望の反応室115 1〜1154内に搬入
し、プラズマCVD法によってa-Si薄膜を形成し、
仕込取出室111内に戻す。仕込取出室111内に装着
した基板の全てにa-Si薄膜が形成され、仕込取出室
111内に戻した後、仕込取出室111内から基板を大
気中に取り出している。
The substrate is heated to a predetermined temperature in the preheating chamber 112.
After the temperature is raised, the desired reaction chamber 115 1~ 115FourCarry in
Forming an a-Si thin film by a plasma CVD method,
It is returned to the charging / unloading chamber 111. Installed in the loading / unloading room 111
A-Si thin film is formed on all of the substrates
After returning to the inside of 111, the substrate is large
I take it out in my mind.

【0007】そして、a-Si薄膜をレーザアニール
し、poly-Si薄膜を形成するが、a-Si薄膜中に水素
が多量に含まれていると、a-Siがpoly-Si化する際
に、水素が吹き出し、形成されるpoly-Si薄膜表面が
クレーター状になってしまう。
[0007] Then, the a-Si thin film is laser-annealed to form a poly-Si thin film. If the a-Si thin film contains a large amount of hydrogen, the a-Si thin film becomes poly-Si thin. Then, hydrogen is blown out, and the surface of the formed poly-Si thin film becomes crater-like.

【0008】上記のような不都合を防止するためには、
一般的には、a-Si薄膜中の水素濃度を1.0原子%
程度(Si:5×1022個/cm3に対し、H:5×10
20個/cm3程度)まで低下させる必要があると言われて
いる。
In order to prevent the above inconveniences,
Generally, the hydrogen concentration in the a-Si thin film is set to 1.0 atomic%.
Degree (Si: 5 × 10 22 pieces / cm 3 , H: 5 × 10
It is said that it is necessary to reduce it to about 20 / cm 3 ).

【0009】そこで、上記a-Si薄膜形成装置101
によってa-Si薄膜を形成し、基板を大気に取り出し
た後、図示しない加熱処理装置内に搬入し、基板を所定
温度に昇温させて脱水素処理を行い、その後でレーザア
ニールを行っている。
Accordingly, the a-Si thin film forming apparatus 101
After forming the a-Si thin film by the above method, the substrate is taken out to the atmosphere, then carried into a heat treatment device (not shown), the substrate is heated to a predetermined temperature, dehydrogenated, and then laser annealing is performed. .

【0010】しかしながらa-Si薄膜を脱水素処理す
る場合、a-Si薄膜を高温に加熱するほど残留水素濃
度を低くできるが、高温にしすぎると脱水素処理中にa
-Si薄膜が部分的にpoly-Si化し、その後でレーザア
ニール処理を行っても、良質なpoly-Si薄膜が得られ
なくなる。従って、脱水素処理の温度を低温にせざるを
得ないが、そのための脱水素処理には長時間を要すると
いう問題がある。
However, when the a-Si thin film is dehydrogenated, the residual hydrogen concentration can be lowered as the a-Si thin film is heated to a higher temperature.
Even if the -Si thin film is partially converted to poly-Si and then laser annealing is performed, a high-quality poly-Si thin film cannot be obtained. Therefore, the temperature of the dehydrogenation process must be lowered, but there is a problem that the dehydrogenation process requires a long time.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたものであり、その
目的は、スループットの高いa-Si薄膜形成方法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages of the prior art, and has as its object to provide a method of forming an a-Si thin film having a high throughput.

【0012】[0012]

【課題を解決するための手段】一般に、a-Si薄膜
は、基板を真空雰囲気中に置き、SiH4ガス、Arガ
ス、H2ガス等の原料ガスや希釈ガスを導入し、プラズ
マを発生させて基板表面にシリコン層を成長させること
で製造されている。
Generally, an a-Si thin film is prepared by placing a substrate in a vacuum atmosphere, introducing a source gas such as SiH 4 gas, Ar gas, H 2 gas or a diluent gas to generate plasma. It is manufactured by growing a silicon layer on the substrate surface.

【0013】このようなプラズマCVD法を用いて形成
したa-Si薄膜中には、水素が多量に含まれる。例え
ば300℃で形成したa-Si薄膜中には10〜20原
子%含まれる。その場合、a-Si薄膜を形成した基板
を加熱すればa-Si薄膜中の水素を減少させることが
できるが、a-Si薄膜を形成した基板を大気中に取り
出し、一旦温度が低下した基板を再度昇温させて水素を
放出させる場合、長時間加熱する必要がある。
An a-Si thin film formed by using such a plasma CVD method contains a large amount of hydrogen. For example, an a-Si thin film formed at 300 ° C. contains 10 to 20 atomic%. In that case, the hydrogen in the a-Si thin film can be reduced by heating the substrate on which the a-Si thin film is formed. When the temperature is raised again to release hydrogen, it is necessary to heat for a long time.

【0014】本発明の発明者等は、a-Si薄膜を形成
した基板を大気に曝さず、その表面を直ちに不活性ガス
のプラズマに曝すと、短時間で脱水素処理を行えること
を見出した。
The inventors of the present invention have found that if the surface on which the a-Si thin film is formed is not exposed to the atmosphere and the surface thereof is immediately exposed to an inert gas plasma, the dehydrogenation treatment can be performed in a short time. .

【0015】本発明は上記知見に基いて創作されたもの
であり、請求項1記載の発明は、基板表面にアモルファ
スシリコン薄膜を形成するアモルファスシリコン薄膜製
造方法であって、真空雰囲気中に原料ガスを導入し、前
記原料ガスプラズマを発生させて前記基板表面にアモル
ファスシリコン薄膜を形成した後、前記基板が置かれた
真空雰囲気中に、不活性ガス、又は水素ガス、又は不活
性ガスに水素ガスを処理ガスとして導入し、前記処理ガ
スのプラズマを発生させ、前記アモルファスシリコン薄
膜表面を前記プラズマに曝し、前記アモルファスシリコ
ン薄膜の脱水素処理を行うことを特徴とする。
The present invention has been made based on the above findings, and an invention according to claim 1 is a method for producing an amorphous silicon thin film on an amorphous silicon thin film on a substrate surface. To form an amorphous silicon thin film on the surface of the substrate by generating the source gas plasma, and then, in a vacuum atmosphere in which the substrate is placed, an inert gas, or a hydrogen gas, or a hydrogen gas to an inert gas. Is introduced as a processing gas, a plasma of the processing gas is generated, the surface of the amorphous silicon thin film is exposed to the plasma, and dehydrogenation of the amorphous silicon thin film is performed.

【0016】請求項2記載の発明は、請求項1記載のア
モルファスシリコン薄膜製造方法であって、前記基板表
面に前記アモルファスシリコン薄膜を形成した後、前記
基板を大気に曝さずに、前記脱水素処理を行うことを特
徴とする。
According to a second aspect of the present invention, there is provided the method of manufacturing an amorphous silicon thin film according to the first aspect, wherein after forming the amorphous silicon thin film on the surface of the substrate, the dehydrogenation is performed without exposing the substrate to the atmosphere. Processing is performed.

【0017】請求項3記載の発明は、請求項1又は請求
項2のいずれか1項記載のアモルファスシリコン薄膜製
造方法であって、前記アモルファスシリコン薄膜の形成
と前記脱水素処理とを、同一の反応槽内で行うことを特
徴とする。
According to a third aspect of the present invention, there is provided the method of manufacturing an amorphous silicon thin film according to any one of the first and second aspects, wherein the formation of the amorphous silicon thin film and the dehydrogenation treatment are performed in the same manner. It is performed in a reaction tank.

【0018】本発明は上記のように構成されており、基
板が置かれた真空雰囲気中に原料ガスを導入し、原料ガ
スプラズマを発生させて基板表面にa-Si薄膜を形成
した後、基板が置かれた雰囲気に不活性ガス、又は水素
ガス、又は不活性ガスに水素ガスを添加したガスのいず
れかのガスを処理ガスとして導入し、a-Si薄膜表面
をその処理ガスのプラズマに曝し、a-Si薄膜の脱水
素処理を行っている。
The present invention is configured as described above. A source gas is introduced into a vacuum atmosphere in which a substrate is placed, and a source gas plasma is generated to form an a-Si thin film on the substrate surface. An inert gas, a hydrogen gas, or a gas obtained by adding a hydrogen gas to an inert gas is introduced as a processing gas into the atmosphere where the a-Si thin film is placed, and the a-Si thin film surface is exposed to the plasma of the processing gas. , A-Si thin film is dehydrogenated.

【0019】この場合、a-Si薄膜が処理ガスのプラ
ズマからエネルギーを受けるため、高温に加熱しなくて
も短時間で十分な脱水素処理を行うことができる。
In this case, since the a-Si thin film receives energy from the plasma of the processing gas, a sufficient dehydrogenation process can be performed in a short time without heating to a high temperature.

【0020】a-Si薄膜の形成後の基板を大気に曝さ
ずに脱水素処理を行うと、基板がa-Si薄膜を形成し
た直後の昇温した状態のまま脱水素処理を行うことがで
きるので、加熱に要する時間が短くて済み、脱水素処理
時間が一層短縮する。
If the substrate after the formation of the a-Si thin film is subjected to the dehydrogenation treatment without exposing the substrate to the atmosphere, the dehydrogenation treatment can be performed with the substrate heated immediately after the formation of the a-Si thin film. Therefore, the time required for heating can be shortened, and the time for dehydrogenation treatment is further reduced.

【0021】一般に、a-Si薄膜をプラズマCVD法
で形成する場合、その反応室にはプラズマ発生装置が設
けられているから、a-Si薄膜を形成した後、原料ガ
スを真空排気し、不活性ガス、水素ガス、又は不活性ガ
スに水素ガスを添加したガスを導入し、プラズマを発生
させると、簡単にa-Si薄膜表面をプラズマに曝すこ
とができる。
Generally, when an a-Si thin film is formed by a plasma CVD method, a plasma generator is provided in the reaction chamber. Therefore, after forming the a-Si thin film, the raw material gas is evacuated to vacuum, When an active gas, a hydrogen gas, or a gas obtained by adding a hydrogen gas to an inert gas is introduced to generate plasma, the surface of the a-Si thin film can be easily exposed to the plasma.

【0022】[0022]

【発明の実施の形態】本発明の実施形態を図面を用いて
説明する。図1を参照し、符号1は、本発明を適用可能
なa-Si薄膜形成装置を示している。
Embodiments of the present invention will be described with reference to the drawings. 1, reference numeral 1 indicates an a-Si thin film forming apparatus to which the present invention can be applied.

【0023】このa-Si薄膜形成装置1は、搬送室1
0を有しており、その周囲には、搬送室10を中心にし
て、1台の仕込取出室11及び予備加熱室12と、4台
の反応室151〜154とが配置されている。仕込取出室
11と搬送室10と各反応室151〜154は、独立して
真空排気できるように構成されている。
This a-Si thin film forming apparatus 1
Has a 0, to its periphery, around the transfer chamber 10, and one charge ejecting chamber 11 and the preheating chamber 12, four and reaction chamber 15 1-15 4 is arranged . Each reaction chamber 15 1-15 4 loading ejecting chamber 11 and the transfer chamber 10 is configured so as to be evacuated independently.

【0024】上記構成のa-Si薄膜形成装置1を使用
し、a-Si薄膜を形成する場合には、予め各室10〜
12、151〜154を真空排気しておく。次に、仕込取
出室11内だけに大気を導入し、板厚0.5〜3mm程
度の大口径のガラス基板を所定枚数配置し、大気との間
の扉を閉じる。
When an a-Si thin film is formed using the a-Si thin film forming apparatus 1 having the above-described configuration, each of the chambers 10 to 10 must be prepared in advance.
12, 15 1 to 15 4 are evacuated. Next, the atmosphere is introduced only into the loading / unloading chamber 11, a predetermined number of large-diameter glass substrates having a plate thickness of about 0.5 to 3 mm are arranged, and the door to the atmosphere is closed.

【0025】仕込取出室11内を所定圧力まで真空排気
した後、搬送室10との間の仕切を開ける。搬送室10
内には基板搬送ロボット19が配置されており、仕込取
出室11内のガラス基板を1枚取り出し、予備加熱室1
2内に搬入する。予備加熱室12内でガラス基板を加熱
し、a-Si薄膜の形成温度まで昇温させた後、所望の
反応室(ここでは符号151で示す反応室とする)に搬入
する。
After the interior of the charging / discharging chamber 11 is evacuated to a predetermined pressure, a partition between the charging chamber 11 and the transfer chamber 10 is opened. Transfer room 10
A substrate transfer robot 19 is disposed in the inside, and one glass substrate in the loading / unloading chamber 11 is taken out, and the pre-heating chamber 1 is taken out.
Carry in 2 The glass substrate was heated in the preliminary heating chamber 12, the temperature was raised to forming temperature of the a-Si film is carried into a desired reaction chamber (here, the reaction chamber indicated at 15 1).

【0026】この反応室151と他の反応室152〜15
4の構成は同一であり、それらの概略構成を、図2の符
号15で示す。図2を参照し、この反応室15は、真空
槽20を有しており、その内部底壁側にはホットプレー
ト21が配置され、天井側には高周波電極22が配置さ
れている。ホットプレート21内にはリフトピン24が
挿通されており、そのリフトピン24と基板搬送ロボッ
ト19を動作させ、反応室15内に搬入したガラス基板
をホットプレート21上に載置する。
[0026] The reaction chamber 15 1 and the other of the reaction chamber 15 2-15
4 are the same, and their schematic configuration is indicated by reference numeral 15 in FIG. Referring to FIG. 2, the reaction chamber 15 has a vacuum chamber 20, a hot plate 21 is disposed on an inner bottom wall side, and a high-frequency electrode 22 is disposed on a ceiling side. Lift pins 24 are inserted through the hot plate 21, and the lift pins 24 and the substrate transport robot 19 are operated to place the glass substrate carried into the reaction chamber 15 on the hot plate 21.

【0027】図2の符号2はその状態のガラス基板を示
しており、搬送室10と反応室15との間の搬出入口2
5を閉じた後、ホットプレート21内に設けられたヒー
タによってガラス基板2を所定温度に加熱する。
Reference numeral 2 in FIG. 2 indicates a glass substrate in that state, and a loading / unloading port 2 between the transfer chamber 10 and the reaction chamber 15.
After closing 5, the glass substrate 2 is heated to a predetermined temperature by a heater provided in the hot plate 21.

【0028】高周波電極22には、ガス導入系27が接
続されており、ガス導入系27から原料ガス(SiH4
Ar、H2)が供給されると、高周波電極22内に充満す
る。高周波電極22のガラス基板2に対向する面は、シ
ャワーノズル23が設けられており、高周波電極22内
に充満したガスは、真空槽20内にシャワー状に放出さ
れる。
A gas introduction system 27 is connected to the high-frequency electrode 22, and a raw material gas (SiH 4 ,
When Ar, H 2 ) is supplied, the inside of the high-frequency electrode 22 is filled. A shower nozzle 23 is provided on a surface of the high-frequency electrode 22 facing the glass substrate 2, and gas filled in the high-frequency electrode 22 is discharged into the vacuum chamber 20 in a shower shape.

【0029】高周波電極22は、真空槽20とは絶縁さ
れた状態で高周波電源26に接続されており、真空槽2
0を接地させ、高周波電極22に高周波電圧を印加する
と、原料ガスのプラズマが発生し、ガラス基板2表面に
a-Si薄膜が成長する(プラズマCVD法)。
The high-frequency electrode 22 is connected to a high-frequency power supply 26 while being insulated from the vacuum chamber 20.
When 0 is grounded and a high-frequency voltage is applied to the high-frequency electrode 22, plasma of the source gas is generated, and an a-Si thin film grows on the surface of the glass substrate 2 (plasma CVD method).

【0030】a-Si薄膜が所定膜厚に形成されると、
ガラス基板2を降温させずに、高周波電極22への高周
波電圧の印加と原料ガスの供給を停止する。そして、真
空槽20内に残留する原料ガスを真空排気した後、ガス
導入系27から高周波電極22にアルゴンガスを供給す
ると、真空槽20内にアルゴンガスが放出される。
When the a-Si thin film is formed to a predetermined thickness,
The application of the high-frequency voltage to the high-frequency electrode 22 and the supply of the source gas are stopped without lowering the temperature of the glass substrate 2. Then, after evacuating the source gas remaining in the vacuum chamber 20 and then supplying argon gas from the gas introduction system 27 to the high-frequency electrode 22, the argon gas is released into the vacuum chamber 20.

【0031】その状態で、高周波電極22への高周波電
圧印加を再開すると、アルゴンガスプラズマが発生す
る。
In this state, when the application of the high-frequency voltage to the high-frequency electrode 22 is restarted, argon gas plasma is generated.

【0032】ガラス基板2表面のa-Si薄膜がアルゴ
ンガスプラズマに曝されると、a-Si薄膜中に取り込
まれていた水素が放出され、a-Si薄膜の脱水素処理
が行われる。また、プラズマ中に、水素ガス、又は水素
ガスと不活性ガスとを混合したガスを導入しても、脱水
素処理が行われることは確認されている。
When the a-Si thin film on the surface of the glass substrate 2 is exposed to argon gas plasma, hydrogen taken into the a-Si thin film is released, and the a-Si thin film is dehydrogenated. It has also been confirmed that dehydrogenation is performed even when hydrogen gas or a mixture of hydrogen gas and inert gas is introduced into plasma.

【0033】図3は、反応室15内にアルゴンガスを導
入し、圧力200Paの雰囲気でプラズマを発生させた
場合の、放電時間(プラズマ発生時間)と残留水素濃度の
関係を示すグラフである。高周波電極22への投入電力
は、500W、1kW、2kWの場合を示した。a-S
i薄膜中の残留水素濃度は低いほど望ましいので、短時
間で脱水素処理を完了するためには、2kWの投入電力
が適当であることが分かる。
FIG. 3 is a graph showing the relationship between the discharge time (plasma generation time) and the residual hydrogen concentration when argon gas is introduced into the reaction chamber 15 and plasma is generated in an atmosphere at a pressure of 200 Pa. The case where the input power to the high-frequency electrode 22 is 500 W, 1 kW, and 2 kW is shown. a-S
Since the residual hydrogen concentration in the i-thin film is preferably as low as possible, it is understood that a power input of 2 kW is appropriate for completing the dehydrogenation treatment in a short time.

【0034】脱水素処理の終了後、ガラス基板2を、そ
の処理を行った反応室151から搬出し、搬出入室11
内に戻す。そのときは、予備加熱室12内での他のガラ
ス基板の予備加熱が終了しており、そのガラス基板を反
応室151内に搬入し、a-Si薄膜の形成と脱水素処理
を行う。
[0034] After completion of the dehydrogenation process, the glass substrate 2, and unloaded from the reaction chamber 15 1 subjected to the processing, transport room 11
Put back inside. If this occurs, and pre-heating of a glass substrate in the pre-heating chamber 12 is completed, and carries the glass substrate into the reaction chamber 15 1, and formation and dehydrogenation treatment of the a-Si thin film.

【0035】他の反応室152〜154内にも、同様に予
備加熱室12での予備加熱が終了したガラス基板を搬入
し、a-Si薄膜の形成と脱水素処理を行った後、搬出
入室11内に戻す。
[0035] Other reaction chamber 15 2-15 4, likewise carries the glass substrate preheating is completed in the preheating chamber 12, after the formation and dehydrogenation treatment of the a-Si thin film, Return to the loading / unloading room 11.

【0036】搬出入室11に装着したガラス基板が全て
の処理が終了し、搬出入室11内に戻ったところで、搬
出入室11と搬送室10との間の仕切を閉じ、搬出入室
11を大気に開放してガラス基板を取り出し、a-Si
薄膜形成作業を終了する。
When all the processing of the glass substrate mounted in the loading / unloading chamber 11 is completed and the glass substrate returns to the loading / unloading chamber 11, the partition between the loading / unloading chamber 11 and the transfer chamber 10 is closed, and the loading / unloading chamber 11 is opened to the atmosphere. And take out the glass substrate, a-Si
The thin film forming operation ends.

【0037】比較例として、反応室151〜154のうち
の1台を脱水素処理専用の処理室に替え、その処理室内
でa-Si薄膜の脱水素処理を行った。a-Si薄膜形成
後、大気に曝さないでその処理室内に搬入し、133P
aの窒素雰囲気中でホットプレートによって加熱した。
その場合のa-Si薄膜の脱水素処理時間と残留水素濃
度の関係を図4のグラフに示す。加熱だけでa-Si薄
膜から水素を放出させているため、本発明に比べて処理
時間が非常に長くなっている。
[0037] As a comparative example, except replacing one of the reaction chamber 15 1-15 4 into the processing chamber of the dehydrogenation treatment only, it was subjected to dehydrogenation treatment of the a-Si thin film at the process chamber. After forming the a-Si thin film, it is carried into the processing chamber without being exposed to the air,
Heated by a hot plate in the nitrogen atmosphere of a.
FIG. 4 is a graph showing the relationship between the dehydrogenation time of the a-Si thin film and the residual hydrogen concentration in that case. Since hydrogen is released from the a-Si thin film only by heating, the processing time is much longer than in the present invention.

【0038】以上説明したように、本発明によれば、a
-Si薄膜を形成したガラス基板を大気に曝さずに脱水
素処理を行うことができるので、基板温度の低下によっ
て脱水素処理時間が長くなることはない。
As described above, according to the present invention, a
Since the dehydrogenation treatment can be performed without exposing the glass substrate on which the -Si thin film is formed to the atmosphere, the dehydrogenation treatment time does not increase due to a decrease in the substrate temperature.

【0039】また、本発明によれば、a-Si薄膜表面
がアルゴンガスプラズマに曝され、a-Si薄膜がプラ
ズマからエネルギーを受けるため、比較的低温に加熱す
るだけで十分な脱水素処理を行えるようになっている。
According to the present invention, the surface of the a-Si thin film is exposed to argon gas plasma, and the a-Si thin film receives energy from the plasma. You can do it.

【0040】以上は、a-Si薄膜を形成した反応室1
1〜154内で脱水素処理を行ったが、4台の反応室1
1〜154のうち、1室を脱水素処理専用の反応室とし
て用いたり、専用の脱水素処理室を設け、他の反応室で
a-Si薄膜が形成された基板を搬入してアルゴンガス
プラズマを発生させて脱水素処理を行ってもよい。
The above is the description of the reaction chamber 1 in which the a-Si thin film is formed.
5 1 were subjected to dehydrogenation treatment at 15 within 4, the four reaction chamber 1
5 1-15 of 4, or using the first chamber as the reaction chamber of the dehydrogenation process only, the dehydrogenation process chamber dedicated provided, and carries the substrate to a-Si thin film is formed in the other reaction chamber argon Dehydrogenation treatment may be performed by generating gas plasma.

【0041】なお、上記例では脱水素処理の際にアルゴ
ンガスプラズマを発生させたが、ヘリウムガス、ネオン
ガス、キセノンガス等の希ガスの他、例えばH2ガス、
それらの混合ガス等のa-Si薄膜に影響を与えない不
活性ガスを広く用いることができる(但し、窒素ガスは
不適当である。)。
In the above example, the argon gas plasma was generated during the dehydrogenation treatment. However, in addition to rare gases such as helium gas, neon gas, and xenon gas, for example, H 2 gas,
An inert gas which does not affect the a-Si thin film, such as a mixed gas thereof, can be widely used (however, nitrogen gas is inappropriate).

【0042】[0042]

【発明の効果】本発明によれば、ガラス基板の処理時間
を大幅に短縮することができる。a-Si薄膜を形成し
た反応室内で脱水素処理を行えるので、特別な装置が不
要で低コストである。
According to the present invention, the processing time of a glass substrate can be greatly reduced. Since dehydrogenation can be performed in the reaction chamber where the a-Si thin film is formed, no special device is required and the cost is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用できるa-Si薄膜製造装置の一
例のブロック図
FIG. 1 is a block diagram of an example of an a-Si thin film manufacturing apparatus to which the present invention can be applied.

【図2】その反応室の一例の概略構成図FIG. 2 is a schematic configuration diagram of an example of the reaction chamber.

【図3】放電時間と残留水素濃度の関係を示すグラフFIG. 3 is a graph showing a relationship between discharge time and residual hydrogen concentration.

【図4】加熱時間と残留水素濃度の関係を示すグラフFIG. 4 is a graph showing a relationship between a heating time and a residual hydrogen concentration.

【図5】従来技術のa-Si薄膜製造装置の一例FIG. 5 shows an example of a conventional a-Si thin film manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1……a-Si薄膜製造装置 2……基板 151
〜154……反応室
1 ... a-Si thin film manufacturing apparatus 2 ... substrate 15 1
~ 15 4 ...... Reaction chamber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 31/04 H01L 31/04 V (72)発明者 辻 直人 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 森村 太郎 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 小柴 陽子 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 安井 孝騎 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 斎藤 一也 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 4G072 AA03 BB09 FF01 GG03 HH04 NN13 QQ06 RR01 RR11 RR25 UU30 4K030 AA06 BA30 BB05 CA06 FA01 HA03 LA18 5F045 AA08 AB04 AC01 AC16 AF07 BB08 DP04 DQ17 EB08 EE14 EF05 EH05 EH14 EN04 5F051 AA05 BA14 CA07 CA08 CA15 CA21 CA32 GA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 31/04 H01L 31/04 V (72) Inventor Naoto Tsuji 523 Yokota, Sanmu-cho, Sanmu-gun, Chiba Nihonshin Sora Technology Co., Ltd.Chiba Super Materials Research Laboratory (72) Inventor Taro Morimura 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Prefecture Nippon Masaki Technology Co., Ltd.Chiba Super Materials Research Laboratory (72) Inventor Yoko Koshiba 523 Japan Vapor Technology Co., Ltd.Chiba Super Materials Laboratory (72) Inventor Takaki Yasui 523 Yamatake-cho, Yamatake-gun, Chiba Prefecture Japan Vacuum Technology Co., Ltd.Chiba Super Materials Laboratory (72) Inventor Kazuya Saito Ibaraki 5-9-7 Tokodai, Tsukuba, Japan F-term (reference) in Tsukuba Super Materials Research Laboratory, Japan Vacuum Engineering Co., Ltd. 4G072 AA03 BB09 FF01 GG03 HH0 4 NN13 QQ06 RR01 RR11 RR25 UU30 4K030 AA06 BA30 BB05 CA06 FA01 HA03 LA18 5F045 AA08 AB04 AC01 AC16 AF07 BB08 DP04 DQ17 EB08 EE14 EF05 EH05 EH14 EN04 5F051 AA05 BA14 CA07 CA32 CA32 CA21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板表面にアモルファスシリコン薄膜を形
成するアモルファスシリコン薄膜製造方法であって、 真空雰囲気中に原料ガスを導入し、前記原料ガスプラズ
マを発生させて前記基板表面にアモルファスシリコン薄
膜を形成した後、 前記基板が置かれた真空雰囲気中に不活性ガス、又は水
素ガス、又は不活性ガスに水素ガスを添加したガスを処
理ガスとして導入し、前記処理ガスのプラズマを発生さ
せ、前記アモルファスシリコン薄膜表面を前記プラズマ
に曝し、前記アモルファスシリコン薄膜の脱水素処理を
行うことを特徴とするアモルファスシリコン薄膜製造方
法。
An amorphous silicon thin film manufacturing method for forming an amorphous silicon thin film on a substrate surface, comprising introducing a source gas into a vacuum atmosphere and generating the source gas plasma to form an amorphous silicon thin film on the substrate surface. After that, an inert gas, or a hydrogen gas, or a gas obtained by adding a hydrogen gas to an inert gas is introduced as a processing gas into a vacuum atmosphere in which the substrate is placed, and a plasma of the processing gas is generated, and the amorphous gas is generated. A method for manufacturing an amorphous silicon thin film, comprising exposing a surface of a silicon thin film to the plasma and performing a dehydrogenation treatment on the amorphous silicon thin film.
【請求項2】前記基板表面に前記アモルファスシリコン
薄膜を形成した後、前記基板を大気に曝さずに、前記脱
水素処理を行うことを特徴とする請求項1記載のアモル
ファスシリコン薄膜製造方法。
2. The method for producing an amorphous silicon thin film according to claim 1, wherein after the amorphous silicon thin film is formed on the surface of the substrate, the dehydrogenation treatment is performed without exposing the substrate to the atmosphere.
【請求項3】前記アモルファスシリコン薄膜の形成と前
記脱水素処理とを、同一の反応槽内で行うことを特徴と
する請求項1又は請求項2のいずれか1項記載のアモル
ファスシリコン薄膜製造方法。
3. The method for producing an amorphous silicon thin film according to claim 1, wherein the formation of the amorphous silicon thin film and the dehydrogenation treatment are performed in the same reaction tank. .
JP10262550A 1998-09-17 1998-09-17 Manufacture of amorphous silicon thin film Pending JP2000091242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262550A JP2000091242A (en) 1998-09-17 1998-09-17 Manufacture of amorphous silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262550A JP2000091242A (en) 1998-09-17 1998-09-17 Manufacture of amorphous silicon thin film

Publications (1)

Publication Number Publication Date
JP2000091242A true JP2000091242A (en) 2000-03-31

Family

ID=17377375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262550A Pending JP2000091242A (en) 1998-09-17 1998-09-17 Manufacture of amorphous silicon thin film

Country Status (1)

Country Link
JP (1) JP2000091242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384828B2 (en) 2001-06-01 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device and method of their production
RU2650381C1 (en) * 2016-12-12 2018-04-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Method of forming amorphous silicon thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384828B2 (en) 2001-06-01 2008-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device and method of their production
RU2650381C1 (en) * 2016-12-12 2018-04-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Method of forming amorphous silicon thin films

Similar Documents

Publication Publication Date Title
US5288329A (en) Chemical vapor deposition apparatus of in-line type
US5512320A (en) Vacuum processing apparatus having improved throughput
US6444277B1 (en) Method for depositing amorphous silicon thin films onto large area glass substrates by chemical vapor deposition at high deposition rates
US8092603B2 (en) Substrate processing apparatus
JP2648746B2 (en) Insulating film formation method
JPH10149984A (en) Method and device for forming polycrystalline silicon
JP2000091242A (en) Manufacture of amorphous silicon thin film
KR100719330B1 (en) Plasma enhanced chemical vapor deposition equipment for the fabrication of organic light emission diode and liquid crystal display panel
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JP2000031058A (en) Manufacture of amorphous silicon thin film
JPH02226721A (en) Treating apparatus and treating method
JPS59167012A (en) Plasma cvd equipment
JP3313088B2 (en) Film formation method
JP5026248B2 (en) Method for producing amorphous silicon thin film
JPH01298169A (en) Film formation
JP2737540B2 (en) Method and apparatus for forming thin film transistors
JPS6112035A (en) Semiconductor manufacturing device
JP4076591B2 (en) Semiconductor device manufacturing method and substrate processing method
JPH11260738A (en) Vacuum heat treatment apparatus
JP2000345348A (en) Film forming method
JPH07288252A (en) Cvd device
JP2001089859A (en) Film deposition by thin film deposition device, self- cleaning method and thin film deposition device
JP2000012480A (en) Heat treatment system
JPH0652728B2 (en) Substrate heating method in low pressure CVD apparatus
JPH11214305A (en) Crystalline silicon first-part film and method for forming the same, and crystalline silicon film and its forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021