JP2000089165A - Production of magneto-optical element - Google Patents

Production of magneto-optical element

Info

Publication number
JP2000089165A
JP2000089165A JP10261208A JP26120898A JP2000089165A JP 2000089165 A JP2000089165 A JP 2000089165A JP 10261208 A JP10261208 A JP 10261208A JP 26120898 A JP26120898 A JP 26120898A JP 2000089165 A JP2000089165 A JP 2000089165A
Authority
JP
Japan
Prior art keywords
magneto
optical element
chip
cut
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10261208A
Other languages
Japanese (ja)
Other versions
JP3602971B2 (en
Inventor
Hirotaka Kawai
博貴 河合
Taro Nakamura
太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP26120898A priority Critical patent/JP3602971B2/en
Publication of JP2000089165A publication Critical patent/JP2000089165A/en
Application granted granted Critical
Publication of JP3602971B2 publication Critical patent/JP3602971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to easily, efficiently and inexpensively produce a magneto-optical element which allows the perfect specification of the full six-faced crystal bearings of a rectangular planar chip from the appearance alone. SOLUTION: This process for producing the magneto-optical element 20 consists in subjecting the rectangular planar chip to grooving from one surface along one cutting line at the time of transversely and longitudinally cutting a magnetic garnet single crystal and processing the single crystal to the rectangular planar chip, thereby forming the chip to the shape formed with a notch 22 along one side. A structure of a difference in level is obtd. by forming the notch at the side edge of the one side or a groove structure is obtd. by forming the notch near the side edge on one side. The chip may be rectangular or square. The front and rear of the chip are made identifiable by putting the notch from one side. In addition, the one side may be specified by the notch. The perfect specification of the full six-faced crystal bearings of the chip is eventually made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性ガーネット単
結晶からなる磁気光学素子の製造方法に関し、更に詳し
く述べると、矩形板状の磁性ガーネット単結晶チップの
1辺に沿って切り込みを形成し、それによって切り出し
た矩形チップの全六面の方位を完全に特定できるように
した磁気光学素子の製造方法に関するものである。この
技術は、特に、偏波スクランブラや光アッテネータなど
偏光面の回転角を連続的に可変するファラデー回転子に
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magneto-optical element made of a magnetic garnet single crystal, and more particularly, to forming a notch along one side of a rectangular plate-shaped magnetic garnet single crystal chip, The present invention relates to a method for manufacturing a magneto-optical element in which the orientations of all six surfaces of a rectangular chip cut out can be completely specified. This technique is particularly useful for a Faraday rotator such as a polarization scrambler or an optical attenuator that continuously varies the rotation angle of a polarization plane.

【0002】[0002]

【従来の技術】光アイソレータ、光サーキュレータ、光
スイッチ等の光デバイスではファラデー回転子が用いら
れている。ファラデー回転子は、磁界の印加によって透
過光の偏光面を一定角度回転させるファラデー素子(磁
気光学素子)を有し、磁気光学素子としては、近年、液
相エピタキシャル(以下、「LPE」と略記する)法に
よる磁性ガーネット単結晶膜が多用されている。通常、
非磁性ガーネット基板の(111)面上に、LPE法に
より磁性ガーネット単結晶膜を育成し、正方形に切り出
して所定厚さの磁気光学素子を作製している。この場合
には、育成した磁性ガーネット単結晶の表面も(11
1)面となる。
2. Description of the Related Art Faraday rotators are used in optical devices such as optical isolators, optical circulators, and optical switches. The Faraday rotator has a Faraday element (magneto-optical element) that rotates a polarization plane of transmitted light by a fixed angle by applying a magnetic field. Recently, liquid-phase epitaxial (hereinafter abbreviated as “LPE”) has been used as the magneto-optical element. The magnetic garnet single crystal film obtained by the method is often used. Normal,
A magnetic garnet single crystal film is grown on the (111) plane of the nonmagnetic garnet substrate by the LPE method, and cut into squares to produce a magneto-optical element having a predetermined thickness. In this case, the surface of the grown magnetic garnet single crystal is also (11)
1) It becomes a plane.

【0003】光アイソレータや光サーキュレータに組み
込むファラデー回転子は、永久磁石の磁界によってファ
ラデー素子が磁気飽和し、偏光面が常に45度回転する
ような構造とする。ファラデー素子を構成している磁気
光学素子は、光が磁性ガーネット単結晶の(111)面
にほぼ垂直に入射するように組み込まれる。光アイソレ
ータや光サーキュレータに用いる場合には、(111)
面以外の磁性ガーネット単結晶の方位はどちらを向いて
いても特に問題は生じない。
A Faraday rotator incorporated in an optical isolator or an optical circulator has a structure in which a Faraday element is magnetically saturated by a magnetic field of a permanent magnet and a polarization plane is always rotated by 45 degrees. The magneto-optical element constituting the Faraday element is incorporated so that light is incident almost perpendicularly to the (111) plane of the magnetic garnet single crystal. When used for an optical isolator or optical circulator, (111)
There is no particular problem regardless of the orientation of the magnetic garnet single crystal other than the plane.

【0004】ファラデー回転子を使用する光デバイスと
しては、上記の光アイソレータや光サーキュレータの他
に、偏波スクランブラや光アッテネータなどが開発され
ている。光の偏光方向を連続的に且つ周期的に可変する
偏波スクランブラ、あるいは光の透過光量を連続的に制
御するための光アッテネータでは、ファラデー素子を透
過する光線のファラデー回転角を制御するファラデー回
転角可変装置を組み込む。ファラデー素子は、偏光面が
90度程度回転可能な厚みの単一の磁気光学素子によっ
て構成するか、あるいは全体として偏光面が90度程度
回転可能な厚みとなるように複数の磁気光学素子を重ね
て構成する。このファラデー素子に2方向以上から磁界
を印加して、それらの合成磁界を可変することにより、
ファラデー回転角を制御する。
As an optical device using a Faraday rotator, a polarization scrambler and an optical attenuator have been developed in addition to the optical isolators and optical circulators described above. In a polarization scrambler that continuously and periodically changes the polarization direction of light, or in an optical attenuator for continuously controlling the amount of transmitted light, a Faraday rotation angle of a light transmitted through the Faraday element is controlled. Incorporate a variable rotation angle device. The Faraday element may be constituted by a single magneto-optical element having a thickness whose polarization plane is rotatable by about 90 degrees, or by stacking a plurality of magneto-optical elements such that the polarization plane is rotatable by about 90 degrees as a whole. It is composed. By applying a magnetic field to the Faraday element from two or more directions and changing the combined magnetic field,
Control the Faraday rotation angle.

【0005】ところが最近の研究により、偏波スクラン
ブラや光アッテネータのように、外部磁界の強さを制御
して偏光面を連続的に変化させるような使用方法では、
ファラデー素子を構成する磁気光学素子の結晶方位と外
部磁界印加方向とに相関があり、ある特定方位方向に磁
界を印加した時のみ良好な特性が得られることが判明し
た。逆に言うと、従来技術のように、ウエハーを単に正
方形に切り出して磁気光学素子とし、それをファラデー
素子としてファラデー回転角可変装置に組み込むと、製
造した光デバイスの特性に大きなばらつきが生じるとい
うことである。高品質の光デバイスを生産するには、磁
気光学素子の結晶方位を特定可能とし、光デバイスに組
み込む時に、その磁気光学素子の結晶方位を特定方向に
配列できるようにする必要がある。
However, according to recent research, in a method of using such a polarization scrambler or an optical attenuator to control the intensity of an external magnetic field to continuously change the plane of polarization,
There is a correlation between the crystal orientation of the magneto-optical element constituting the Faraday element and the direction in which the external magnetic field is applied, and it has been found that good characteristics can be obtained only when a magnetic field is applied in a specific direction. Conversely, as in the prior art, if a wafer is simply cut into a square to form a magneto-optical element, which is then incorporated as a Faraday element into a variable Faraday rotation angle device, the characteristics of the manufactured optical device will vary greatly. It is. In order to produce a high-quality optical device, it is necessary to be able to specify the crystal orientation of the magneto-optical element and to arrange the crystal orientation of the magneto-optical element in a specific direction when incorporating the magneto-optical element into the optical device.

【0006】前記のように磁性ガーネット単結晶は、非
磁性ガーネット基板の(111)面上にLPE成長させ
ていることから、育成した単結晶膜の表面は(111)
面になる。従って、このウエハーから基板を除去し正方
形のチップに切り出すと、表裏の区別、及び切り出し面
(即ち4側面)の結晶方位は特定できなくなる。たとえ
X線回折装置によって、ある側面の結晶方位を特定して
も、その後取り扱っている途中で結晶方位が分からなく
なってしまう。
As described above, since the magnetic garnet single crystal is LPE-grown on the (111) plane of the nonmagnetic garnet substrate, the surface of the grown single crystal film is (111).
Face. Therefore, if the substrate is removed from the wafer and cut into square chips, the front and back sides cannot be distinguished and the crystal orientation of the cut surface (ie, four side surfaces) cannot be specified. Even if the crystal orientation of a certain side surface is specified by the X-ray diffractometer, the crystal orientation cannot be determined during the subsequent handling.

【0007】そこで本発明者等は先に、非磁性ガーネッ
ト基板の(111)面上にLPE法により作製した磁性
ガーネット単結晶を、長辺側の側面が(112)面もし
くは(110)面となるように長方形のチップに切断す
ることで、切り出したチップの側面の結晶方位を特定で
きる磁気光学素子の製造方法を提案した(特願平10−
12140号参照)。
Therefore, the present inventors have previously prepared a magnetic garnet single crystal produced by the LPE method on the (111) plane of a non-magnetic garnet substrate, with the long side being the (112) plane or the (110) plane. A method of manufacturing a magneto-optical element capable of specifying the crystal orientation on the side surface of the cut chip by cutting the chip into rectangular chips as much as possible has been proposed (Japanese Patent Application No. Hei 10-1998).
No. 12140).

【0008】[0008]

【発明が解決しようとする課題】しかし、上記のように
長方形に切り出したチップでは、磁気光学素子の表裏ま
では区別できないし、相対向する側面の結晶方位は完全
には特定できない。
However, in a chip cut into a rectangular shape as described above, the front and back of the magneto-optical element cannot be distinguished, and the crystal orientations of the opposing side surfaces cannot be completely specified.

【0009】チップの全六面の結晶方位を完全に特定す
る必要が無いデバイス構造や使用方法の場合には、前記
の製造方法で特に問題は生じない。しかし、最近、磁気
光学素子の全六面の方位を完全に特定し、規定の向きで
配列する必要があるデバイス構造が開発された(特願平
10−67753号参照)。その典型的な例は、複数の
磁気光学素子でファラデー素子を構成する際、磁気光学
素子の磁化方向と光線方向とのなす角をαとした時、角
度αの温度依存性によるファラデー回転角の変化量と、
ファラデー効果の温度依存性によるファラデー回転角の
変化量とが、全体として互いに異符号で且つ絶対値がほ
ぼ等しい方向に外部磁界を印加するファラデー回転子で
ある。磁気光学素子は磁性ガーネット単結晶からなる
が、磁気光学素子の全六面の結晶方位を完全に特定する
必要があるのは、磁性ガーネット単結晶が(111)面
に垂直な方向で見たときに3回回転対称軸を有する結晶
構造を有するためである。つまり、相対向する側面同士
は等価な面ではないからである。そこで、上記の例で
は、磁気光学素子の全六面の結晶方位を判別可能とする
ため、長方形チップの一角を少し削って方位マーカー
(目印)としている。
In the case of a device structure or usage method in which it is not necessary to completely specify the crystal orientations of all six surfaces of the chip, no particular problem occurs in the above-described manufacturing method. However, recently, a device structure has been developed in which the orientations of all six surfaces of the magneto-optical element must be completely specified and arranged in a prescribed orientation (see Japanese Patent Application No. 10-67753). A typical example is that when a Faraday element is composed of a plurality of magneto-optical elements, when the angle between the magnetization direction of the magneto-optical element and the light beam direction is α, the Faraday rotation angle due to the temperature dependence of the angle α is obtained. The amount of change,
This is a Faraday rotator that applies an external magnetic field in a direction in which the Faraday rotation angle changes due to the temperature dependence of the Faraday effect have mutually opposite signs and substantially equal absolute values. Although the magneto-optical element is made of a magnetic garnet single crystal, it is necessary to completely specify the crystal orientation of all six faces of the magneto-optical element when the magnetic garnet single crystal is viewed in a direction perpendicular to the (111) plane. This is because it has a crystal structure having a three-fold rotational symmetry axis. That is, the opposing side surfaces are not equivalent surfaces. Therefore, in the above example, in order to be able to determine the crystal orientations of all six surfaces of the magneto-optical element, one corner of the rectangular chip is slightly cut to form an orientation marker (mark).

【0010】しかし、切り出された長方形チップについ
て、1個ずつX線回折装置で結晶方位を決定し、方位マ
ーカーを付ける作業は、煩雑で時間がかかり、コストア
ップとなる。
However, the work of determining the crystal orientation of each of the cut rectangular chips one by one with an X-ray diffraction apparatus and attaching an orientation marker is complicated, time-consuming, and increases the cost.

【0011】本発明の目的は、矩形板状チップの全六面
の結晶方位が外観のみで完全に特定できる磁気光学素子
を容易に且つ効率よく安価に製造できる方法を提供する
ことである。
An object of the present invention is to provide a method capable of easily, efficiently and inexpensively manufacturing a magneto-optical element in which crystal orientations of all six faces of a rectangular plate-like chip can be completely specified only by appearance.

【0012】[0012]

【課題を解決するための手段】本発明は、磁性ガーネッ
ト単結晶を縦横に切断して矩形板状チップに加工する
際、一方の切断線に沿って片面から溝加工を施すことに
より、1辺に沿って切り込みが形成されたチップ形状に
する磁気光学素子の製造方法である。切り込みを1辺の
側縁に形成して段差構造にするか、あるいは切り込みを
1辺の側縁近傍に形成して溝構造にする。チップは長方
形でもよいし正方形でもよい。片面から切り込みを入れ
ることでチップの表裏が判別でき、また切り込みによっ
て1辺が特定でき、これらによってチップの全六面の結
晶方位が完全に特定できることになる。
SUMMARY OF THE INVENTION According to the present invention, when a magnetic garnet single crystal is cut lengthwise and crosswise into a rectangular plate-like chip, a groove is formed from one side along one cutting line, thereby forming one side. Is a method of manufacturing a magneto-optical element having a chip shape in which a notch is formed along. A notch is formed on one side edge to form a step structure, or a notch is formed near one side edge to form a groove structure. The tip may be rectangular or square. By making a cut from one side, the front and back of the chip can be determined, and one side can be specified by the cut, whereby the crystal orientations of all six surfaces of the chip can be completely specified.

【0013】磁性ガーネット単結晶は、通常、非磁性ガ
ーネット基板上にLPE法により育成する。その磁性ガ
ーネット単結晶を縦横に切断して矩形チップに加工する
際、一方の切断線に沿って片面から溝加工を施すことに
より、1辺に沿って切り込みが形成されたチップ形状に
する。
A magnetic garnet single crystal is usually grown on a non-magnetic garnet substrate by the LPE method. When the magnetic garnet single crystal is cut lengthwise and crosswise to be processed into a rectangular chip, a groove is formed from one side along one cutting line to form a chip shape with a cut formed along one side.

【0014】磁性ガーネット単結晶は、治具に接着した
状態でダイシングソー等によって切断加工する。従っ
て、切断と溝加工はどちらが先でもよい。即ち、予め切
断した後、その一方の切断線に沿って片面から溝加工を
施してもよいし、予め一方の切断線に沿って片面から溝
加工を施し、その後切断してもよい。勿論、溝加工と切
断を交互に行ってもよい。切断処理後、治具に接着して
いた磁性ガーネット単結晶を剥がし、個々の矩形チップ
とする。
The magnetic garnet single crystal is cut by a dicing saw or the like while being bonded to a jig. Therefore, either cutting or groove processing may be performed first. That is, after cutting in advance, a groove may be formed from one surface along one of the cutting lines, or a groove may be formed from one surface in advance along one of the cutting lines, and thereafter, cutting may be performed. Of course, groove processing and cutting may be performed alternately. After the cutting process, the magnetic garnet single crystal adhered to the jig is peeled off to obtain individual rectangular chips.

【0015】[0015]

【発明の実施の態様】非磁性ガーネット基板の(11
1)面上にLPE法により磁性ガーネット単結晶膜を育
成する。その磁性ガーネット単結晶膜付き基板を縦横に
切断して矩形板状の中間加工物にする際、一方の切断線
に沿って片面から溝加工を施すことにより、1辺に沿っ
て磁性ガーネット単結晶膜に切り込みが形成された長方
形状の中間加工物とする。切り出された中間加工物は、
切り込みによってその全六面が完全に特定できる。次
に、この中間加工物を研磨して仕上げ厚み寸法にした
後、更に縦横に切断して矩形チップに加工する際、一方
の切断線に沿って片面から溝加工を施すことにより、1
辺に沿って切り込みが形成されたチップ形状にする。切
り出されたチップは、切り込みによってその全六面が完
全に特定できる。実際には、切り出した中間加工物を熱
処理した後、仕上げ厚み寸法に鏡面研磨し、その表面に
反射防止膜を形成し、それを仕上げ寸法に切断すること
になる。なお、中間加工物及びチップの切断方向には特
に制限は無く、最終的に得られる磁気光学素子がファラ
デー素子として構成し易いような任意の方向に切り出し
てよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The nonmagnetic garnet substrate (11)
1) A magnetic garnet single crystal film is grown on the surface by the LPE method. When the substrate with the magnetic garnet single crystal film is cut lengthwise and crosswise into a rectangular plate-shaped intermediate product, a groove is formed from one side along one cutting line, thereby forming a magnetic garnet single crystal along one side. A rectangular intermediate workpiece having a cut formed in the film. The cut intermediate workpiece is
The notch allows all six sides to be completely identified. Next, after polishing the intermediate workpiece to a finished thickness dimension, and further cutting it vertically and horizontally to form a rectangular chip, by performing groove processing from one surface along one cutting line, 1
A chip shape with a cut formed along the side is provided. The cut out chip can completely specify all six sides by cutting. Actually, after the heat treatment of the cut-out intermediate workpiece, mirror polishing is performed to a finished thickness dimension, an antireflection film is formed on the surface thereof, and it is cut to the finished dimension. There is no particular limitation on the cutting direction of the intermediate workpiece and the chip, and the cutting may be performed in any direction such that the finally obtained magneto-optical element can be easily configured as a Faraday element.

【0016】[0016]

【実施例】図1に示す工程で磁気光学素子を作製した。
PbO−B2 3 −Bi2 3 を融剤とし、LPE法に
より、格子定数が12.496Å、組成が(CaGd)
3(MgZrGa)5 12、直径3インチ、厚み117
0μmの非磁性ガーネット基板の(111)面上に、B
i置換希土類鉄ガーネット単結晶(LPE膜、組成Tb
1.000.65Bi1.35Fe4.05Ga0.9512、膜厚450
μm)を育成した。図1のAに示すように、非磁性ガー
ネット基板10には予め大小2つのフラット面(オリエ
ンテーションフラット)が付けられており、大きなフラ
ット面は(-110)面、小さなフラット面は(11-2)
面に設定されている。LPE膜を符号12で示す。次
に、図1のBに示すように、得られたLPE膜を刃厚
0.2mmのダイシングソーで縦7.6mm、横5.0mmの
間隔で切断する。LPE膜付き基板は、基板側が上にな
るように治具(図示せず)に接着してあり、刃は基板側
から入る。そのままの状態でx方向の切断位置を0.2
mmずらし、切断深さを1395μmに設定して切り込み
を入れる。図1のBにおいて、点線は切断線(切断位
置)を示し、実線は切り込みを示す。図1のCに、切り
出した中間加工物14の形状を示す。ここでは、1辺に
沿ってLPE膜に達する深さの切り込み段差16を形成
している。(なお、結晶の面及び方位の表記法では、負
の指数についてはその数値の上に横棒を引いて表すが、
本明細書ではそれができないために指数にマイナス符号
を付して表記している。)
EXAMPLE A magneto-optical element was manufactured by the steps shown in FIG.
The PbO-B 2 O 3 -Bi 2 O 3 as a flux, the LPE method, the lattice constant of 12.496A, the composition (CaGd)
3 (MgZrGa) 5 O 12 , diameter 3 inches, thickness 117
B on a (111) plane of a non-magnetic garnet substrate of 0 μm.
i-substituted rare earth iron garnet single crystal (LPE film, composition Tb
1.00 Y 0.65 Bi 1.35 Fe 4.05 Ga 0.95 O 12 , thickness 450
μm). As shown in FIG. 1A, the nonmagnetic garnet substrate 10 is provided with two large and small flat surfaces (orientation flats) in advance. )
Plane is set. The LPE film is indicated by reference numeral 12. Next, as shown in FIG. 1B, the obtained LPE film is cut by a dicing saw having a blade thickness of 0.2 mm at intervals of 7.6 mm in length and 5.0 mm in width. The substrate with the LPE film is adhered to a jig (not shown) so that the substrate side faces upward, and the blade enters from the substrate side. As it is, the cutting position in the x direction is 0.2
The cut is made by shifting by mm and setting the cutting depth to 1395 μm. In FIG. 1B, a dotted line indicates a cutting line (cutting position), and a solid line indicates a cut. FIG. 1C shows the shape of the cut intermediate workpiece 14. Here, the cut step 16 having a depth reaching the LPE film along one side is formed. (Note that in the notation of the plane and orientation of a crystal, a negative index is represented by drawing a horizontal bar over the numerical value.
In this specification, the exponent is indicated by adding a minus sign because it cannot be performed. )

【0017】次に、研磨により基板を除去した後、磁性
ガーネット単結晶を大気中で1100℃で8時間熱処理
した。熱処理したのは、成長誘導による一軸磁気異方性
を低減するためである。その後、再研磨して、7.6mm
×5.0mm×0.33mm(刃厚0.2mmを含む)の形状
に鏡面仕上げし、反射防止膜を蒸着して第2の中間加工
物18とした。そして治具に接着し、図1のDに示すよ
うに、縦1.0mm、横1.2mmの間隔で刃厚0.2mmの
ダイシングソーで切断し、最後にx方向に位置を0.2
mmずらし、切断深さを50μmにして切り込みを入れ
た。図1のDにおいて、点線は切断線(切断位置)を示
し、実線は切り込みを示す。加工終了後、治具からチッ
プを分離した。最終的に得られた磁気光学素子20の形
状及び面を図1のEに示す。1.0mm×1.2mm×0.
33mm(刃厚0.2mmを含む)の長方形であり、その短
辺側の1辺に切り込み段差22が形成されたチップ形状
である。この磁気光学素子は、磁化が光線方向(〈11
1〉方向)と平行方向を向いたとき、約32度のファラ
デー回転角を有する。
Next, after the substrate was removed by polishing, the magnetic garnet single crystal was heat-treated at 1100 ° C. for 8 hours in the air. The heat treatment is performed to reduce the uniaxial magnetic anisotropy due to the growth induction. After that, it was re-polished to 7.6mm
Mirror-finished to a shape of × 5.0 mm × 0.33 mm (including a blade thickness of 0.2 mm), and an antireflection film was deposited to obtain a second intermediate workpiece 18. Then, as shown in FIG. 1D, cut with a dicing saw having a blade thickness of 0.2 mm at intervals of 1.0 mm in length and 1.2 mm in width.
The sheet was shifted by mm, and a cut was made at a cutting depth of 50 μm. In FIG. 1D, a dotted line indicates a cutting line (cutting position), and a solid line indicates a cut. After the processing, the chips were separated from the jig. FIG. 1E shows the shape and surface of the magneto-optical element 20 finally obtained. 1.0 mm x 1.2 mm x 0.
It has a rectangular shape of 33 mm (including a blade thickness of 0.2 mm), and has a chip shape in which a notch step 22 is formed on one short side. In this magneto-optical element, the magnetization is changed in the beam direction (<11
1> direction), it has a Faraday rotation angle of about 32 degrees.

【0018】図2に示す測定系を作製し、はじめに直交
偏光子法によりファラデー回転角の温度特性を測定し
た。次に、偏光子と検光子を通過する光の偏光面のなす
角度が105度になるように設置して光減衰量の温度特
性を測定した。この測定系は、基本的には磁気光学式可
変アッテネータと同じ構成である。図2のAに示すよう
に、光ファイバ30から出射した光はレンズ31により
平行光となり、偏光子32、ファラデー素子33、検光
子34を通過し、レンズ35によって光ファイバ36の
入射端に集光する。ここで符号38の部分がファラデー
回転子であり、その一例を図2のBに示す。ファラデー
素子33には一対の永久磁石40,41によって光軸に
平行方向に飽和磁界が印加され、電磁石42により光軸
と垂直方向に磁界が印加されて、該電磁石42のコイル
電流を変えることでそれらの合成磁界を変化させる。
A measurement system shown in FIG. 2 was prepared, and the temperature characteristics of the Faraday rotation angle were measured by the orthogonal polarizer method. Next, the light passing through the polarizer and the analyzer was installed so that the angle formed by the polarization plane of the light was 105 degrees, and the temperature characteristics of the light attenuation were measured. This measurement system has basically the same configuration as the magneto-optical variable attenuator. As shown in FIG. 2A, the light emitted from the optical fiber 30 becomes parallel light by the lens 31, passes through the polarizer 32, the Faraday element 33, and the analyzer 34, and is collected by the lens 35 at the incident end of the optical fiber 36. Light. Here, the portion denoted by reference numeral 38 is a Faraday rotator, and an example thereof is shown in FIG. A saturation magnetic field is applied to the Faraday element 33 in a direction parallel to the optical axis by a pair of permanent magnets 40 and 41, and a magnetic field is applied in a direction perpendicular to the optical axis by an electromagnet 42 to change the coil current of the electromagnet 42. Change their combined magnetic field.

【0019】ファラデー素子は、図1の方法で作製した
磁気光学素子20を3個組み合わせて図3のように構成
した。図3のAのように、一番手前の磁気光学素子20
の切り込みを形成した方の(-1-12)面が電磁石のS極
側に、後ろの2枚の磁気光学素子20の切り込みを形成
した方の(-1-12)面が電磁石のN極側になるように磁
気光学素子の方位を変えて配列した。比較のために、図
3のBに示すように、全ての磁気光学素子20の切り込
みを形成した方の(-1-12)面が電磁石のS極側になる
ように磁気光学素子の方位を揃えて配列した。なお、こ
れら磁気光学素子と永久磁石との関係では、切り込みの
ある(111)面が永久磁石のS極側に、反対側の面が
永久磁石のN極側となるように配置している。
The Faraday element was constructed as shown in FIG. 3 by combining three magneto-optical elements 20 manufactured by the method shown in FIG. As shown in FIG. 3A, the foremost magneto-optical element 20
The (-1-112) surface on which the notch is formed is on the S pole side of the electromagnet, and the (-1-112) surface on which the notch is formed on the two rear magneto-optical elements 20 is the N pole of the electromagnet. The orientation of the magneto-optical element was changed so as to be on the side. For comparison, as shown in FIG. 3B, the orientation of the magneto-optical element was changed such that the (-1-12) plane where the cuts of all the magneto-optical elements 20 were formed was located on the S pole side of the electromagnet. They were aligned and arranged. In the relationship between the magneto-optical element and the permanent magnet, the cut (111) surface is disposed on the S pole side of the permanent magnet, and the opposite surface is disposed on the N pole side of the permanent magnet.

【0020】ファラデー回転角の測定結果を図4に、光
減衰量の測定結果を図5に示す。いずれも、Aは方位を
変えた配列(図3のA)の場合、Bは方位を揃えた配列
(図3のB)の場合である。これらの結果から、方位を
変えて適切に組み合わせた場合は温度特性が良好である
が、単に方位を揃えた場合は温度特性が悪いことが分か
る。このように、温度特性が大きく異なるため、結晶方
位に対する磁界印加方向を規定する必要があり、そのた
めには本発明方法により得られる磁気光学素子の形状は
極めて有効である。
FIG. 4 shows the measurement result of the Faraday rotation angle, and FIG. 5 shows the measurement result of the optical attenuation. In each case, A is a case where the orientation is changed (A in FIG. 3), and B is a case where the orientation is aligned (B in FIG. 3). From these results, it can be seen that the temperature characteristics are good when the orientation is changed and the combination is appropriately performed, but the temperature characteristics are poor when the orientation is simply aligned. As described above, since the temperature characteristics are largely different, it is necessary to define the direction of the magnetic field application with respect to the crystal orientation. For that purpose, the shape of the magneto-optical element obtained by the method of the present invention is extremely effective.

【0021】図6は本発明方法の他の実施例を示してい
る。基本的には前記図1に示す実施例と同様であるた
め、詳細な説明は省略する。ここで相違点は切断方位で
ある。この実施例の切断方位は、図1に示す実施例の切
断方位と24度異なる。そうすることにより、図6のE
に示すように、最終的に得られる磁気光学素子の切断面
のa面、b面、c面、d面は、次のようになり、それら
は(111)面を中心としたステレオ投影図では図7に
示すような位置となる。 a面:(-1-12)から(-101)へ24度傾いた面 b面:(-110)から(-12-1)へ24度傾いた面 c面:(11-2)から(10-1)へ24度傾いた面 d面:(1-10)から(1-21)へ24度傾いた面
FIG. 6 shows another embodiment of the method of the present invention. Since it is basically the same as the embodiment shown in FIG. 1, detailed description is omitted. The difference here is the cutting direction. The cutting direction of this embodiment differs from the cutting direction of the embodiment shown in FIG. 1 by 24 degrees. By doing so, E in FIG.
As shown in the figure, the a-plane, b-plane, c-plane and d-plane of the cut surface of the finally obtained magneto-optical element are as follows. The position is as shown in FIG. a-plane: a plane inclined 24 degrees from (-1-112) to (-101) b-plane: a plane inclined 24 degrees from (-110) to (-12-1) c-plane: (11-2) to ( 10-1) A plane inclined 24 degrees to d plane: A plane inclined 24 degrees from (1-10) to (1-21)

【0022】この磁気光学素子を、図3のBのように方
位を揃えて配列してファラデー素子とし、図2の測定系
に組み込み、ファラデー回転角と光減衰量の温度依存性
を測定した。磁気光学素子のa面が電磁石のS極側にな
るように配置した。なお、永久磁石との関係では、切り
込みのある(111)面が永久磁石のS極側に、反対側
の面が永久磁石のN極側となるように配置している。
The magneto-optical elements were arranged in the same direction as shown in FIG. 3B to form a Faraday element, which was incorporated in the measurement system of FIG. 2 to measure the temperature dependence of the Faraday rotation angle and the amount of light attenuation. The magneto-optical element was arranged such that the a-plane was on the S pole side of the electromagnet. Note that, in relation to the permanent magnet, the notched (111) surface is disposed on the S pole side of the permanent magnet, and the opposite surface is disposed on the N pole side of the permanent magnet.

【0023】ファラデー回転角の測定結果を図7に、光
減衰量の測定結果を図8に示す。これらの結果から分か
るように、適切な方位に磁界を印加することで良好な温
度特性が得られる。
FIG. 7 shows the measurement result of the Faraday rotation angle, and FIG. 8 shows the measurement result of the optical attenuation. As can be seen from these results, good temperature characteristics can be obtained by applying a magnetic field in an appropriate direction.

【0024】印加磁界方向によってファラデー回転角の
スペクトルが大きく異なるのは、観測されるファラデー
回転角が、ファラデー効果を起源とするものの寄与だけ
でなく、結晶の異方性を起源とするものも含んでいるた
めである。そして磁性ガーネット単結晶は、結晶磁気異
方性を有しており、それによって〈111〉方位とその
対称等価な方位が磁化容易軸であり、〈100〉方位と
その対称等価な方位が磁化困難軸である。ガーネット単
結晶は立方晶であり、(111)面に垂直な方向では3
回回転対称軸をもっているため、切り込みのある側面
と、それと反対側の側面とは等価とはならない。これら
のことから、切り込みによって側面を区別し、適切な向
きで配列することは特性向上の点で極めて有効なのであ
る。なお、結晶磁気異方性の大きさは、低温になるほど
大きくなる(P.Hansen等 Thin Solid Films, 114(1984)
69-107)。
The spectrum of the Faraday rotation angle greatly differs depending on the direction of the applied magnetic field. The observed Faraday rotation angle includes not only the contribution from the Faraday effect but also the contribution from the crystal anisotropy. Because it is. The magnetic garnet single crystal has crystal magnetic anisotropy, whereby the <111> orientation and its symmetrically equivalent orientation are the easy axes of magnetization, and the <100> orientation and its symmetrically equivalent orientation are difficult to magnetize. Axis. The garnet single crystal is cubic, and 3 in the direction perpendicular to the (111) plane.
Due to the rotational symmetry axis, the cut side and the opposite side are not equivalent. From these facts, it is extremely effective to distinguish the side surfaces by the cuts and arrange them in an appropriate direction in terms of improving characteristics. The magnitude of the magnetocrystalline anisotropy increases as the temperature decreases (P. Hansen et al., Thin Solid Films, 114 (1984)
69-107).

【0025】[0025]

【発明の効果】本発明は上記のように、磁性ガーネット
単結晶を縦横に切断して矩形板状チップに切り出す際、
一方の切断線に沿って片面から溝加工を施すことによ
り、1辺に沿って切り込みが形成された矩形板状チップ
に切り出す磁気光学素子の製造方法であるから、チップ
の全六面の結晶方位が外観のみで完全に特定できる磁気
光学素子を容易に且つ効率よく安価に製造できる。この
ように外観のみでチップの全六面の結晶方位を判別でき
る磁気光学素子を用い、それを適切に配列することで、
特性が良好でばらつきの少ない光デバイスが構成でき
る。
As described above, according to the present invention, when a magnetic garnet single crystal is cut lengthwise and crosswise and cut into rectangular plate-shaped chips,
This is a method of manufacturing a magneto-optical element in which a groove is formed from one side along one cutting line to cut out into a rectangular plate-shaped chip having a cut formed along one side. Can easily, efficiently, and inexpensively manufacture a magneto-optical element that can be completely specified only by its appearance. By using a magneto-optical element that can determine the crystal orientation of all six surfaces of the chip only by appearance, and properly arranging it,
An optical device having good characteristics and little variation can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における磁気光学素子の製造方法の一実
施例を示す説明図。
FIG. 1 is an explanatory view showing one embodiment of a method for manufacturing a magneto-optical element according to the present invention.

【図2】本発明で用いる測定系の説明図。FIG. 2 is an explanatory diagram of a measurement system used in the present invention.

【図3】磁気光学素子の配列状況を示す説明図。FIG. 3 is an explanatory view showing an arrangement state of a magneto-optical element.

【図4】電磁石の電流値とファラデー回転角の関係を示
すグラフ。
FIG. 4 is a graph showing a relationship between a current value of an electromagnet and a Faraday rotation angle.

【図5】電磁石の電流値と光減衰量の関係を示すグラ
フ。
FIG. 5 is a graph showing a relationship between a current value of an electromagnet and an optical attenuation.

【図6】本発明における磁気光学素子の製造方法の他の
実施例を示す説明図。
FIG. 6 is an explanatory view showing another embodiment of the method of manufacturing a magneto-optical element according to the present invention.

【図7】それによって作製した磁気光学素子の面を示す
ステレオ投影図。
FIG. 7 is a stereo projection view showing a surface of a magneto-optical element manufactured by the method.

【図8】電磁石の電流値とファラデー回転角の関係を示
すグラフ。
FIG. 8 is a graph showing a relationship between a current value of an electromagnet and a Faraday rotation angle.

【図9】電磁石の電流値と光減衰量の関係を示すグラ
フ。
FIG. 9 is a graph showing the relationship between the current value of an electromagnet and the amount of light attenuation.

【符号の説明】[Explanation of symbols]

10 非磁性ガーネット基板 12 LPE膜 14 中間加工物 16 切り込み段差 18 第2の中間加工物 20 磁気光学素子 22 切り込み段差 DESCRIPTION OF SYMBOLS 10 Non-magnetic garnet board 12 LPE film 14 Intermediate work 16 Cut notch 18 Second intermediate work 20 Magneto-optical element 22 Cut notch

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁性ガーネット単結晶を縦横に切断して
矩形板状チップに加工する際、一方の切断線に沿って片
面から溝加工を施すことにより、1辺に沿って切り込み
が形成されたチップ形状にすることを特徴とする磁気光
学素子の製造方法。
When a magnetic garnet single crystal is cut lengthwise and crosswise to form a rectangular plate-like chip, a notch is formed along one side by performing a groove processing from one surface along one cutting line. A method for manufacturing a magneto-optical element, which is formed into a chip shape.
【請求項2】 非磁性ガーネット基板の(111)面上
に液相エピタキシャル法により磁性ガーネット単結晶膜
を育成し、その磁性ガーネット単結晶を縦横に切断して
矩形チップに加工する際、一方の切断線に沿って片面か
ら溝加工を施すことにより、1辺に沿って切り込みが形
成されたチップ形状にすることを特徴とする磁気光学素
子の製造方法。
2. A method for growing a magnetic garnet single crystal film on a (111) plane of a nonmagnetic garnet substrate by a liquid phase epitaxial method, and cutting the magnetic garnet single crystal vertically and horizontally to form a rectangular chip. A method of manufacturing a magneto-optical element, wherein a groove is formed from one side along a cutting line to form a chip having a cut formed along one side.
【請求項3】 非磁性ガーネット基板の(111)面上
に液相エピタキシャル法により磁性ガーネット単結晶膜
を育成し、その磁性ガーネット単結晶膜付き基板を縦横
に切断して矩形板状の中間加工物にする際、一方の切断
線に沿って片面から溝加工を施すことにより、1辺に沿
って磁性ガーネット単結晶膜に切り込みが形成された長
方形状の中間加工物とし、次にこの中間加工物を研磨し
て仕上げ厚み寸法にした後、更に縦横に切断して矩形チ
ップに加工する際、一方の切断線に沿って片面から溝加
工を施すことにより、1辺に沿って切り込みが形成され
たチップ形状にすることを特徴とする磁気光学素子の製
造方法。
3. A method for growing a magnetic garnet single crystal film on a (111) plane of a nonmagnetic garnet substrate by liquid phase epitaxy, and cutting the substrate with the magnetic garnet single crystal film vertically and horizontally to form a rectangular plate-like intermediate work. When forming a workpiece, a groove is formed from one surface along one cutting line to form a rectangular intermediate workpiece in which a cut is formed in the magnetic garnet single crystal film along one side, and then the intermediate processing is performed. When the object is polished to the finished thickness dimensions, and then cut vertically and horizontally to form a rectangular chip, a notch is formed along one side by applying a groove processing from one side along one cutting line A method for manufacturing a magneto-optical element, comprising:
【請求項4】 切り出した中間加工物を熱処理した後、
仕上げ厚み寸法に鏡面研磨し、その表面に反射防止膜を
形成し、それを仕上げ寸法に切断する請求項3記載の磁
気光学素子の製造方法。
4. After heat-treating the cut intermediate workpiece,
4. The method of manufacturing a magneto-optical element according to claim 3, wherein the surface is mirror-polished to a finished thickness, an antireflection film is formed on the surface, and the surface is cut to a finished dimension.
【請求項5】 切り込みが1辺の側縁に形成されて段差
となっている請求項1乃至4のいずれかに記載の磁気光
学素子の製造方法。
5. The method for manufacturing a magneto-optical element according to claim 1, wherein the cut is formed at one side edge to form a step.
JP26120898A 1998-09-16 1998-09-16 Manufacturing method of magneto-optical element Expired - Lifetime JP3602971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26120898A JP3602971B2 (en) 1998-09-16 1998-09-16 Manufacturing method of magneto-optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26120898A JP3602971B2 (en) 1998-09-16 1998-09-16 Manufacturing method of magneto-optical element

Publications (2)

Publication Number Publication Date
JP2000089165A true JP2000089165A (en) 2000-03-31
JP3602971B2 JP3602971B2 (en) 2004-12-15

Family

ID=17358653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26120898A Expired - Lifetime JP3602971B2 (en) 1998-09-16 1998-09-16 Manufacturing method of magneto-optical element

Country Status (1)

Country Link
JP (1) JP3602971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187496B2 (en) 2002-03-14 2007-03-06 Tdk Corporation Manufacturing method of optical device, optical device, manufacturing method of faraday rotator, and optical communication system
CN113820874A (en) * 2021-10-14 2021-12-21 北京雷生强式科技有限责任公司 Magneto-optical isolator with low crystal stress and high heat transfer efficiency
CN115261795A (en) * 2022-07-28 2022-11-01 弘大芯源(深圳)半导体有限公司 Magneto-optical structure used in optical information processing system and preparation method and preparation equipment thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187496B2 (en) 2002-03-14 2007-03-06 Tdk Corporation Manufacturing method of optical device, optical device, manufacturing method of faraday rotator, and optical communication system
CN113820874A (en) * 2021-10-14 2021-12-21 北京雷生强式科技有限责任公司 Magneto-optical isolator with low crystal stress and high heat transfer efficiency
CN113820874B (en) * 2021-10-14 2023-12-12 北京雷生强式科技有限责任公司 Magneto-optical isolator with low crystal stress and high heat transfer efficiency
CN115261795A (en) * 2022-07-28 2022-11-01 弘大芯源(深圳)半导体有限公司 Magneto-optical structure used in optical information processing system and preparation method and preparation equipment thereof
CN115261795B (en) * 2022-07-28 2023-08-15 弘大芯源(深圳)半导体有限公司 Magneto-optical structure used in optical information processing system and preparation method and preparation equipment thereof

Also Published As

Publication number Publication date
JP3602971B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US20190309440A1 (en) Faraday rotator, optical isolator, and method of manufacturing faraday rotator
US6288827B1 (en) Faraday rotator
JP3720616B2 (en) Faraday rotation angle variable device
EP0811851A2 (en) Faraday rotator having a rectangular shaped hysteresis
JPH09185027A (en) Product consisting of magneto-optical material having low magnetic moment
US6392784B1 (en) Faraday rotator
JP3602971B2 (en) Manufacturing method of magneto-optical element
JP2786078B2 (en) Faraday rotator and optical isolator
JP3493119B2 (en) Faraday rotation angle variable device
EP1050774B1 (en) Variable Optical Attenuator using a temperature dependent Faraday Rotator
JP2009109756A (en) Magneto-optic device
JP4070479B2 (en) Magnetization method
JP3704429B2 (en) Faraday rotation angle variable device
JPH11199390A (en) Production of faraday element
JP3764825B2 (en) Optical attenuator
JPH1031112A (en) Faraday rotator which shows square hysteresis
US7336418B1 (en) Optical attenuator
JP3472524B2 (en) Optical attenuator
EP1182491B1 (en) Optical attenuator
JPH08253395A (en) Garnet crystal and its production
JP2004125840A (en) Faraday rotator using square hysteresis, and its manufacturing method
JP2000122017A (en) Faraday rotating angle variable device
JP2916995B2 (en) Magnetic garnet for optical devices
JP2729464B2 (en) Faraday rotator and optical switch using the same
JPH02306215A (en) Optical isolator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term