JP2000088730A - Device for controlling electronic expansion valve of refrigerator for cold impact device - Google Patents

Device for controlling electronic expansion valve of refrigerator for cold impact device

Info

Publication number
JP2000088730A
JP2000088730A JP10276667A JP27666798A JP2000088730A JP 2000088730 A JP2000088730 A JP 2000088730A JP 10276667 A JP10276667 A JP 10276667A JP 27666798 A JP27666798 A JP 27666798A JP 2000088730 A JP2000088730 A JP 2000088730A
Authority
JP
Japan
Prior art keywords
temperature
pulse
expansion valve
electronic expansion
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10276667A
Other languages
Japanese (ja)
Other versions
JP4100640B2 (en
Inventor
Hideo Nishida
英雄 西田
Masakatsu Ueda
正勝 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP27666798A priority Critical patent/JP4100640B2/en
Publication of JP2000088730A publication Critical patent/JP2000088730A/en
Application granted granted Critical
Publication of JP4100640B2 publication Critical patent/JP4100640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten temperature raising time while maintaining the temperature controllability of a low-temperature chamber. SOLUTION: A device for controlling an electronic expansion valve comprises a constant pulse setting part 5 to set a constant pulse P0, a variable pulse computing part 6 to compute a variable pulse Pd according to the difference between the set temperature SV and measured temperature PV of a testing room, a pulse switching part 7 to switch between the pulses so as to deliver P0 after reaching temperature and to deliver Pd while temperature is being raised or lowered, etc. By this, the electronic expansion valve is fixed at an appropriate opening by constant P0 to be simple and stable control while a low-temperature chamber is in a precooled state, and the opening of the electronic expansion valve is changed by Pd which takes a greater or smaller value than P0 while temperature is changing. By this, it is possible to shorten arrival time at low-temperature exposure, or high-temperature or ordinary- temperature exposure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試験室と与えられ
たパルスで作動する電子膨張弁を備えた冷凍回路の蒸発
器で冷却される予冷室とを備え前記試験室の設定温度が
少なくとも低温条件を含む温度条件に設定されて測定温
度が設定温度になるように制御されることがある冷熱衝
撃装置に使用される電子膨張弁制御装置に関し、特に温
度昇降時間を短縮する技術に関する。
The present invention relates to a test chamber and a pre-cooling chamber which is cooled by an evaporator of a refrigerating circuit having an electronic expansion valve operated by a given pulse, wherein a set temperature of the test chamber is at least low. The present invention relates to an electronic expansion valve control device used for a thermal shock device which is sometimes set to a set temperature condition and a measured temperature is controlled to be a set temperature, and particularly to a technique for shortening a temperature rise / fall time.

【0002】[0002]

【従来の技術】冷熱衝撃装置は、通常高温槽と試験室と
低温槽とを備え、試験室と高温槽及び低温槽の間とで交
互に空気を切換循環させることにより、試料に熱衝撃を
与えるように構成されている。そして、試験室と高温槽
を用いた高温さらしや試験室内の空気を外気と循環させ
る常温さらし中には、低温槽は予め冷却された状態にな
っているように予冷運転されている。この場合、従来の
冷熱衝撃装置では、予冷運転における温度制御を簡単で
安定した制御にするために、電子膨張弁に最大パルスよ
り小さい一定パルスを固定的に与えている。
2. Description of the Related Art A thermal shock apparatus usually includes a high-temperature chamber, a test chamber, and a low-temperature tank, and alternately circulates air between the test chamber, the high-temperature tank, and the low-temperature tank to apply a thermal shock to a sample. Is configured to give. During the high-temperature exposure using the test chamber and the high-temperature tank and the normal-temperature exposure in which the air in the test chamber is circulated with the outside air, the low-temperature tank is precooled so as to be cooled in advance. In this case, in the conventional thermal shock device, a constant pulse smaller than the maximum pulse is fixedly applied to the electronic expansion valve in order to make the temperature control in the pre-cooling operation simple and stable.

【0003】ところが、このように電子膨張弁のパルス
を固定すると、例えば図5に二点鎖線で示す如く、常温
さらしから低温さらしへの移行時に、試験室内の温度と
蓄冷器を備えた予冷室の予冷温度とが同程度まで接近す
る中和温度に到るまでは循環空気の温度が急降下する
が、それから設定温度の低温に到達するまでの時間が長
くなる。特に試料が発熱する場合にはその傾向が大きく
なり、試料に与える熱衝撃効果を低下させるという問題
があった。
However, when the pulse of the electronic expansion valve is fixed as described above, for example, as shown by a two-dot chain line in FIG. 5, at the time of the transition from the normal temperature exposure to the low temperature exposure, the temperature in the test chamber and the pre-cooling chamber equipped with the regenerator are provided. The temperature of the circulating air drops rapidly until the pre-cooling temperature approaches the neutralization temperature, which approaches the same level, but the time from when the circulating air reaches the low temperature of the set temperature increases. In particular, when the sample generates heat, the tendency is increased, and there is a problem that the thermal shock effect given to the sample is reduced.

【0004】なお、例えば冷蔵庫のように、温度制御部
分が一か所であってその部分のみの温度を低温に制御す
る装置では、電子膨張弁の特定の開度制御方法が提案さ
れている。(特開平5ー141788号公報参照)。
[0004] For a device such as a refrigerator that has only one temperature control portion and controls the temperature of only that portion to a low temperature, a specific opening control method of the electronic expansion valve has been proposed. (See JP-A-5-141788).

【0005】[0005]

【発明が解決しようとする課題】本発明は従来技術に於
ける上記問題を解決し、冷熱衝撃装置の予冷室の温度制
御性を良好に維持すると共に、温度降下時間を短縮して
熱衝撃性能を良くする電子膨張弁制御装置を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, maintains good temperature controllability of the pre-cooling chamber of the thermal shock device, shortens the temperature drop time, and reduces the thermal shock performance. An object of the present invention is to provide an electronic expansion valve control device that improves the performance.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、試験室と与えられたパルスで作動する電子
膨張弁を備えた冷凍回路の蒸発器で冷却される予冷室と
を備え前記試験室の設定温度が少なくとも低温条件を含
む温度条件に設定されて測定温度が設定温度になるよう
に制御されることがある冷熱衝撃装置に使用される電子
膨張弁制御装置において、前記電子膨張弁に与えるパル
スを一定パルスに設定する一定パルス設定部と、前記電
子膨張弁に与える変動パルスであって前記設定温度と前
記測定温度との差異に対応した変動パルスを算出する変
動パルス計算部と、前記試験室内の温度がほぼ一定であ
るときには前記一定パルスを与え前記試験室内の温度を
前記低温条件に下げるときには前記変動パルスを与える
ように前記電子膨張弁に与えるパルスを切り換えるパル
ス切換部と、を有することを特徴とする。
In order to solve the above-mentioned problems, the present invention comprises a test chamber and a pre-cooling chamber cooled by an evaporator of a refrigeration circuit having an electronic expansion valve operated by a given pulse. An electronic expansion valve control device for use in a thermal shock device, wherein the set temperature of the test chamber is set to a temperature condition including at least a low temperature condition and the measured temperature may be controlled to be the set temperature. A constant pulse setting unit that sets a pulse applied to the valve to a constant pulse, and a variable pulse calculator that calculates a variable pulse corresponding to a difference between the set temperature and the measured temperature, the variable pulse being applied to the electronic expansion valve. When the temperature in the test chamber is substantially constant, the electronic expansion is performed so that the constant pulse is applied, and when the temperature in the test chamber is reduced to the low temperature condition, the fluctuation pulse is applied. And having a pulse switching unit for switching the pulse to be applied to the valve.

【0007】[0007]

【発明の実施の形態】図1は本発明を適用した電子膨張
弁制御装置及びその関連装置部分の構成例を示し、図2
はこれを装着可能な冷熱衝撃装置の本体部分の構造例を
示す。電子膨張弁制御装置が使用される冷熱衝撃装置の
本体部分100は、断熱壁101で囲われていて、その
内部には、試験室1とその両側に位置する高温槽2及び
予冷室である低温槽3とが配設されている。試験室1と
各槽2、3との間は、開口部を除いて断熱壁101で仕
切られていて、高温槽側及び低温槽側の開口部には、そ
れぞれ循環空気の入口/出口ダンパー11/12及び1
3/14が装着されている。又、本例では常温さらし用
の入口/出口ダンパー15/16設けられていると共
に、これらを介して試験室1に外気を出し入れできるよ
うに本体外部に図示しない常温さらし用送風機が設けら
れている。符号17は試験室1の上部に装着された2個
の温度センサである。試験室1には電子部品等の試験さ
れるべき試料Wが入れられる。
FIG. 1 shows an example of the configuration of an electronic expansion valve control device to which the present invention is applied and its related devices.
Shows an example of the structure of the main body of the thermal shock device to which this can be attached. The main body portion 100 of the thermal shock device in which the electronic expansion valve control device is used is surrounded by a heat insulating wall 101, in which a test room 1 and a high-temperature tank 2 located on both sides thereof and a low-temperature A tank 3 is provided. Except for the openings, the test chamber 1 and the tanks 2 and 3 are partitioned by a heat insulating wall 101. The openings on the high-temperature tank side and the low-temperature tank side have inlet / outlet dampers 11 for circulating air, respectively. / 12 and 1
3/14 is mounted. Further, in this example, an inlet / outlet damper 15/16 for room temperature exposure is provided, and a blower for room temperature exposure (not shown) is provided outside the main body so that outside air can be taken in and out of the test chamber 1 through these dampers. . Reference numeral 17 denotes two temperature sensors mounted on the upper part of the test chamber 1. The test chamber 1 contains a sample W to be tested, such as an electronic component.

【0008】高温槽2及び低温槽3には、それぞれ、高
温槽用及び低温槽用の送風機21及び31、それらの駆
動モータ21a及び31a、加熱器及び温調用加熱器2
2及び32、槽内循環用ダクトを形成する仕切板23/
33、温度センサ24、34、37、等が設けられてい
る。低温槽には更に、低熱量を保有できる蓄冷器35及
び冷凍回路4を構成する蒸発器36が設けられている。
なお図1では、高温さらし状態を実線で示し低温さらし
状態を二点鎖線で示している。これらの間ではダンパー
が切り換えられ、高温空気及び低温空気の循環経路が切
り換えられる。
The high-temperature tank 2 and the low-temperature tank 3 include blowers 21 and 31 for the high-temperature tank and the low-temperature tank, their driving motors 21a and 31a, the heater and the heater 2 for controlling the temperature, respectively.
2 and 32, partition plate 23 / forming a duct for circulation in the tank
33, temperature sensors 24, 34, 37, etc. are provided. The low-temperature tank is further provided with a regenerator 35 capable of holding a low calorific value and an evaporator 36 constituting the refrigeration circuit 4.
In FIG. 1, the high-temperature exposure state is indicated by a solid line, and the low-temperature exposure state is indicated by a two-dot chain line. Between these, the damper is switched, and the circulation path of the high-temperature air and the low-temperature air is switched.

【0009】冷凍回路4は、前記蒸発器36を除いて図
2では図示していないが本体部分100の外部の機械室
に配設されていて、冷媒の流れ方向の順に、蒸発器3
6、圧縮機41、凝縮器42、電子膨張弁43等を主要
構造部分として形成されている。電子膨張弁にはパルス
信号が与えられ、それに対応した開度で蒸発器36に冷
媒が流され、低温槽3が冷却される。
Although not shown in FIG. 2 except for the evaporator 36, the refrigeration circuit 4 is disposed in a machine room outside the main body 100, and is arranged in the order of the flow of the refrigerant.
6. The compressor 41, the condenser 42, the electronic expansion valve 43 and the like are formed as main structural parts. A pulse signal is given to the electronic expansion valve, and the refrigerant flows into the evaporator 36 at an opening corresponding to the pulse signal to cool the low-temperature tank 3.

【0010】電子膨張弁制御装置は、本例では冷熱衝撃
装置の本体部分100の外に配設される操作制御盤20
0に設けられていて、一定パルス設定部5、変動パルス
計算部6、パルス切換部7等で構成されている。操作制
御盤200には、冷熱衝撃試験のための試験条件設定部
201やその他図示しない通常の操作ボタンや制御回路
等が設けられている。試験条件設定部201では、高温
H 、低温TL 及び常温TN の入力が可能になってい
て、試験条件により、例えば図3のように一定の時間間
隔で常温TN と低温TL とが順番に設定され、常温さら
し−低温さらしから成る冷熱衝撃試験が行われる。その
結果、TH 、TL 及びTN のうちの何れか2つ又は全部
の間で、温度をサイクル変動させ、試料Wの冷熱衝撃試
験を行うことができる。
The electronic expansion valve control device is, in this example, an operation control panel 20 disposed outside the main body 100 of the thermal shock device.
0, and includes a constant pulse setting unit 5, a variable pulse calculation unit 6, a pulse switching unit 7, and the like. The operation control panel 200 is provided with a test condition setting unit 201 for a thermal shock test and other ordinary operation buttons and control circuits (not shown). In Test condition setting unit 201, a high temperature T H, and allow an input of a low temperature T L and room temperature T N, the test conditions, the ambient temperature T N and the low temperature T L at regular time intervals as shown in FIG. 3, for example Are set in order, and a thermal shock test consisting of normal temperature exposure-low temperature exposure is performed. As a result, the temperature can be cycled between any two or all of T H , T L, and T N to perform the thermal shock test of the sample W.

【0011】一定パルス設定部5は、電子膨張弁43に
与えるパルスを一定パルスP0 に設定してこれを発信す
る。この一定パルスP0 は、設定する低温側の温度条
件、高−低温の温度差、予冷温度、予冷室の放熱量、温
調のための再加熱の熱量等に対応して定められるが、通
常の試験条件では最大パルスよりかなり小さい値になっ
ていて、冷凍機は最大冷凍能力より低い能力で運転され
ている。
[0011] is a constant pulse setting unit 5, and transmits it to set the pulse to be supplied to the electronic expansion valve 43 to a constant pulse P 0. The constant pulse P 0 is determined in accordance with a set low-temperature temperature condition, a high-low temperature difference, a pre-cooling temperature, a heat release amount of a pre-cooling room, a heat amount of reheating for temperature control, and the like. Under the test conditions, the value is considerably smaller than the maximum pulse, and the refrigerator is operated at a capacity lower than the maximum refrigeration capacity.

【0012】変動パルス設定部6は、電子膨張弁43に
変動パルスPdを与えられるように、試験条件設定部2
01で設定され前記のように一定サイクルで変動する試
験室1の設定温度SVと試験室1内の温度センサ17で
実測された測定温度PVとの差異に対応した変動パルス
として、本例では、前記差異に対応して算出される補正
パルスPcを前記一定パルスP0 に加えた変動パルスP
d=P0 +Pcを算出する。そのため、変動パルス設定
部6には、温度センサ17及び試験条件設定部201か
らそれぞれ測定温度PV及び設定温度SVが送られる。
The fluctuation pulse setting unit 6 is adapted to provide the electronic expansion valve 43 with the fluctuation pulse Pd.
In this example, as a fluctuation pulse corresponding to the difference between the set temperature SV of the test chamber 1 set at 01 and fluctuating in a constant cycle as described above and the measured temperature PV actually measured by the temperature sensor 17 in the test chamber 1, A fluctuation pulse P obtained by adding a correction pulse Pc calculated according to the difference to the constant pulse P 0
Calculate d = P 0 + Pc. Therefore, the measured temperature PV and the set temperature SV are sent to the fluctuation pulse setting unit 6 from the temperature sensor 17 and the test condition setting unit 201, respectively.

【0013】補正パルスPcは適当な方法で計算可能で
あるが、本例では、 Pc=〔PV−(SV+OF)〕×n −−−−(1) の式で計算されている。ここで、OFはオフセットで温
度のオーバーシュートやアンダーシュートを防止するた
めに設けられ、nは温度差とパルスとの対比係数(パル
ス数/℃)であり、共に微調整できるようになってい
る。なお上式によれば、温度降下時にはPcがプラスに
なり、PdはP0 より大きくなり、電子膨張弁43の開
度が大きくなる。
The correction pulse Pc can be calculated by an appropriate method. In this embodiment, the correction pulse Pc is calculated by the following equation: Pc = [PV− (SV + OF)] × n −− (1) Here, OF is provided to prevent temperature overshoot and undershoot by offset, and n is a coefficient of comparison between the temperature difference and the pulse (number of pulses / ° C.), both of which can be finely adjusted. . Incidentally, according to the above equation, Pc becomes positive at the time of temperature drop, Pd is larger than P 0, the opening degree of the electronic expansion valve 43 is increased.

【0014】なお、上式は温度降下時だけに適用される
式であり、変動パルス計算部6は温度降下時だけを対象
としたものであってもよいが、本例では、後述するよう
に温度上昇時に対しても同様の式を適用するようにして
いる。このときには、 Pc=〔PV−(SV−OF)〕×n −−−−(2) の式で計算される。この場合には、PVがSVより小さ
くPcがマイナスになるので、OFをマイナスすること
により、温度のオーバーシュートやアンダーシュートが
防止される。なお、温度上昇時には上記のようにPcが
マイナスになるので、PdはP0 より小さくなり、電子
膨張弁43の開度は小さくなる。
The above equation is applied only when the temperature drops, and the variable pulse calculator 6 may be applied only when the temperature drops. In this example, however, as will be described later. The same equation is applied to the temperature rise. At this time, it is calculated by the following equation: Pc = [PV− (SV−OF)] × n −− (2) In this case, since PV is smaller than SV and Pc is minus, by reducing OF, temperature overshoot and undershoot are prevented. Since Pc is negative as described above at the time of temperature rise, Pd is smaller than P 0, the opening degree of the electronic expansion valve 43 is reduced.

【0015】パルス切換部7は、試験室1内が何れかの
さらし温度になってほぼ一定温度で運転されているとき
には一定パルスP0 を与え、少なくとも試験室1を低温
条件TL に温度降下させるときには変動パルスPdを与
えるように電子膨張弁43に与えるパルスを切り換え
る。なお本例では、前記の如く温度上昇時にもPdを用
いている。
The pulse switching section 7 gives a certain pulse P 0 when the inside the test chamber 1 is operated at a substantially constant temperature becomes either bleached temperature, the temperature drop of at least the test chamber 1 to the low temperature condition T L When it is performed, the pulse given to the electronic expansion valve 43 is switched so as to give the fluctuation pulse Pd. In this example, Pd is used even when the temperature rises as described above.

【0016】パルス切換部7に与える上記のような切換
のための信号としては、SVとPVとの比較値やPVの
変化率等、温度変化中と到達後とを区別できる適当な信
号が用いられる。本例では、変動パルス計算部6から
(PV−SV)の値を受け取り、パルス切換部7でSV
≒PV又は絶対値(PV−SV)<αの式によって温度
昇降中か温度到達後かを判断している。αは小さい値で
ある。そして、TH 、TL 又はTN の何れかの温度到達
後で一定さらし温度になると、一定パルスP0 を通過さ
せて電子膨張弁43に送り、さらし温度間の変動中であ
れば、P0 に代えてPdを通過させるように切り換え
る。
As the signal for switching as described above to be given to the pulse switching unit 7, an appropriate signal which can distinguish between during and after temperature change, such as a comparison value between SV and PV, a change rate of PV, and the like, is used. Can be In this example, the value of (PV−SV) is received from the fluctuation pulse calculation unit 6 and the pulse switching unit 7
≒ It is determined whether the temperature is rising or falling or after the temperature has reached by the expression PV or the absolute value (PV-SV) <α. α is a small value. Then, T H, the constant exposure temperature after any temperature reaches the T L or T N, passed through a constant pulse P 0 is sent to the electronic expansion valve 43, if in variation between exposure temperature, P It is switched to pass Pd instead of 0 .

【0017】なお上記では、変動パルスPdを(P0
Pc)として算出したが、Pd=xP0 のような計算式
により、変数xをSVとPVとの差異に対応させて計算
することも可能である。又、以上ではSVとPVとの差
異として(PV−SV)を用いたが、SV/PVのよう
な他の計算方法を用いることもできる。
In the above description, the fluctuation pulse Pd is set to (P 0 +
Although calculated as Pc), it is also possible to calculate the variable x in accordance with the difference between SV and PV by a calculation formula such as Pd = xP 0 . In the above description, (PV-SV) is used as the difference between SV and PV, but another calculation method such as SV / PV can be used.

【0018】以上のような電子膨張弁制御装置及びこれ
が適用される冷熱衝撃装置は次のように運転され、その
作用効果が発揮される。例えば常温−低温間の冷熱衝撃
試験では、試験条件設定部201には試験条件として常
温さらし温度である常温TN =25℃及び低温さらし温
度である低温TL =−65℃を入力する。このときに
は、ダンパー11〜14が閉まり、常温さらし用空気の
入口/出口ダンパー15/16が開き、外部の常温さら
し用送風機が外気をダンパー15から試験室1内に送り
込んで試料Wに当てつつダンパー16から排出してい
る。高温槽2では送風機21及び加熱器22が運転停止
状態になっている。
The above-described electronic expansion valve control device and the thermal shock device to which the electronic expansion valve control device is applied are operated as follows, and the operation and effect thereof are exhibited. For example, in the thermal shock test between the normal temperature and the low temperature, the test condition setting unit 201 inputs the normal temperature T N = 25 ° C. which is the normal temperature exposure temperature and the low temperature T L = −65 ° C. which is the low temperature exposure temperature. At this time, the dampers 11 to 14 are closed, the inlet / outlet damper 15/16 for the room temperature exposure air is opened, and the external room temperature exposure blower sends the outside air from the damper 15 into the test chamber 1 and hits the sample W while hitting the sample W. It is discharged from 16. In the high-temperature bath 2, the blower 21 and the heater 22 are in an operation stop state.

【0019】電子膨張弁43には一定パルスP0 が送ら
れ、それに対応した開度で冷媒が流れている。低温槽3
内では、送風機31が運転され、空気は蒸発器36で冷
却され、加熱器32で加熱されて温調されつつ蓄冷器3
5を冷却するように内部循環し、内部を−80℃に維持
する予冷運転が行われている。加熱器32の出力は温度
センサ34の温度検出によって制御されている。この状
態では、低温槽3において試料からの発熱負荷がないの
で、一定パルスP0 に対応した適当な冷凍能力による冷
却と再加熱とにより、少ない消費電力で制御性良く予冷
温度を保持することができる。
[0019] The electronic expansion valve 43 constant pulse P 0 is sent, the refrigerant flows in the opening corresponding thereto. Low temperature bath 3
Inside, the blower 31 is operated, the air is cooled by the evaporator 36, and is heated by the heater 32 to control the temperature while the regenerator 3 is cooled.
5, a pre-cooling operation is performed to cool the inside of the container 5 and maintain the inside at -80 ° C. The output of the heater 32 is controlled by detecting the temperature of a temperature sensor 34. In this state, since there is no heating load from the sample in the cryostat 3, to retain a constant pulse P 0 by cooling and reheating and by appropriate refrigeration capacity corresponding to, good controllability precooling temperature with low power consumption it can.

【0020】この状態で所定時間が経過し、低温さらし
に移行すべく設定温度SVが低温TL に設定されると、
常温空気入口/出口ダンパー15/16が閉じると共に
常温さらし用送風機が停止し、低温槽3への入口/出口
ダンパー13/14が開き、送風機31によって予冷さ
れた空気が試験室1内に送り込まれる。これにより、試
験室1内の温度は急降下し、短時間で中和温度Tmに到
達する。
In this state, when a predetermined time elapses and the set temperature SV is set to the low temperature TL to shift to low temperature exposure,
The normal temperature air inlet / outlet damper 15/16 closes and the normal temperature exposure blower stops, the inlet / outlet damper 13/14 to the low temperature tank 3 opens, and the air precooled by the blower 31 is sent into the test chamber 1. . As a result, the temperature in the test chamber 1 drops rapidly and reaches the neutralization temperature Tm in a short time.

【0021】一方、SVがTL に設定されることによ
り、温度センサ17で検出されるPVとの間で大きな温
度差(PV−SV)が発生する。これにより、電子膨張
弁制御装置の変動パルス設定部6では、式(1)によっ
て補正パルスPc及び変動パルスPd=P0 +Pcが算
出される。又、上記温度差が大きくなるため、パルス切
換部7ではこれを温度降下中と判断し、P0 をPdに切
り換えて通過させる。そして、電子膨張弁43にはP0
より大きく最初はほぼ最大パルスに近いパルスが送られ
る。その結果、冷凍能力が増大し、試験室1内の温度降
下を促進させ、特に前記中和温度Tmより低い範囲にお
いてSVへの到達を早めることになる。この場合、試料
Wに発熱負荷があっても、大きな冷凍能力により、発熱
負荷を処理しつつ試験室1を迅速に温度降下させること
ができる。
On the other hand, when the SV is set to T L , a large temperature difference (PV-SV) occurs between the SV and the PV detected by the temperature sensor 17. As a result, the fluctuation pulse setting unit 6 of the electronic expansion valve control device calculates the correction pulse Pc and the fluctuation pulse Pd = P 0 + Pc by equation (1). Further, since the temperature difference increases, the pulse switching unit 7 so determined that during the temperature drop, pass switches the P 0 to Pd. The electronic expansion valve 43 has P 0
A pulse that is larger and initially near the maximum pulse is sent. As a result, the refrigerating capacity is increased, and the temperature drop in the test chamber 1 is promoted. In this case, even if the sample W has an exothermic load, the temperature of the test chamber 1 can be rapidly lowered while processing the exothermic load due to the large refrigerating capacity.

【0022】測定温度PVが設定温度SVに到達する
と、所定時間の低温さらしが続行されると共に、PV≒
SVになることにより、パルス切換部7は設定温度に到
達したと判断してPdに代えてP0 を通過させる。温度
到達後には、冷凍能力は低温さらしの温度の−80℃を
維持するだけで足りるので、このようにパルスを下げて
弁開度を絞ることにより、省エネ運転と良好な制御性と
を得ることができる。低温さらし時間が経過すると、常
温さらしのために常温TN が設定される。これにより、
低温槽3への入口/出口ダンパー13/14が閉じて常
温空気入口/出口ダンパー15/16が開くと共に常温
さらし用送風機が運転され、常温空気が試験室1内に流
れ込んで通過する。これによって試験室1内の温度は急
上昇する。
When the measured temperature PV reaches the set temperature SV, the low-temperature exposure for a predetermined time is continued, and PV ≒
By become SV, the pulse switching unit 7 passes the P 0 in place of Pd is judged to have reached the set temperature. After reaching the temperature, the refrigeration capacity only needs to maintain the low-temperature exposure temperature of -80 ° C. Thus, by reducing the pulse and narrowing the valve opening, it is possible to obtain energy-saving operation and good controllability. Can be. After the low temperature exposure time has elapsed, the normal temperature T N is set for normal temperature exposure. This allows
The inlet / outlet damper 13/14 to the low temperature tank 3 is closed, the room temperature air inlet / outlet damper 15/16 is opened, and the blower for room temperature exposure is operated, so that room temperature air flows into the test chamber 1 and passes therethrough. As a result, the temperature in the test chamber 1 rises rapidly.

【0023】一方、SVがTN に設定されることによ
り、温度センサ17で検出されるPVとの間で大きな温
度差(PV−SV)が今度はマイナス値として発生す
る。これにより、電子膨張弁制御装置の変動パルス設定
部6では式(2)によって補正パルスPc及び変動パル
スPd=P0 +Pcが算出される。この場合のPcはマ
イナス値になる。又、上記温度差が大きくなるため、パ
ルス切換部7にはその数値が入れられ、P0 をPdに切
り換えて通過させる。そして、電子膨張弁43にはP0
より更に小さい変動パルスPdが送られる。その結果、
冷凍能力が減少し、低温槽3では低温さらし温度−65
℃からこれより更に低い予冷温度−80℃への移行が緩
慢になり、低温槽3の温度低下の抑制によって試験室1
の常温への復帰が促進される。又、常温空気による冷凍
能力の持ち出しが減り、省エネも図られる。
On the other hand, when SV is set to T N , a large temperature difference (PV-SV) is generated as a negative value from PV detected by the temperature sensor 17 this time. Accordingly, the fluctuation pulse setting unit 6 of the electronic expansion valve control device calculates the correction pulse Pc and the fluctuation pulse Pd = P 0 + Pc by equation (2). In this case, Pc has a negative value. Further, since the temperature difference increases, the pulse switching unit 7 is the numerical value is placed, passing by switching the P 0 to Pd. The electronic expansion valve 43 has P 0
An even smaller fluctuation pulse Pd is sent. as a result,
The refrigeration capacity is reduced, and the low-temperature tank 3 has a low-temperature exposure temperature of -65.
The transition from the pre-cooling temperature to a lower pre-cooling temperature of −80 ° C. becomes slower, and the lowering of the temperature of the low-temperature tank 3 suppresses the test chamber 1.
Is returned to room temperature. In addition, the refrigeration capacity brought out by the room temperature air is reduced, and energy is saved.

【0024】測定温度PVが設定温度SVに到達する
と、所定時間の常温さらしが続行されると共に、PV≒
SVになることによってパルス切換部7はPdに代えて
0 を通過させる。これにより、設定温度到達後には低
温槽3内を予冷するのに適当な冷凍能力に復帰し、次の
低温さらしに備えて低温槽が好条件で予冷される。
When the measured temperature PV reaches the set temperature SV, exposure to normal temperature for a predetermined time is continued, and PV 、
Pulse switching unit 7 by becoming SV passes the P 0 in place of Pd. As a result, after reaching the set temperature, the refrigeration capacity returns to an appropriate level for pre-cooling the inside of the low-temperature bath 3 and the low-temperature bath is pre-cooled under favorable conditions in preparation for the next low-temperature exposure.

【0025】高温−低温間の冷熱衝撃試験でも、同様な
方法で試験条件設定部201に試験条件として例えば高
温さらし温度TH =160℃及び低温TL =−65℃を
入力する。このときには、最初に全てのダンパー11〜
16が閉まり、高温槽2では送風機21及び加熱器22
が運転され、空気が循環され内部は例えば175℃に予
熱される。低温槽3側も前記と同様に予冷される。そし
て、高温側及び低温側のダンパーが所定時間毎に交互に
開閉し、高温さらしと低温さらしとが繰り返し実行され
る。
In a thermal shock test between a high temperature and a low temperature, a high temperature exposure temperature T H = 160 ° C. and a low temperature T L = −65 ° C. are input to the test condition setting unit 201 in the same manner. At this time, first, all the dampers 11 to 11
16 is closed, and a blower 21 and a heater 22
Is operated, air is circulated, and the inside is preheated to 175 ° C., for example. The low-temperature tank 3 is also pre-cooled in the same manner as described above. Then, the high temperature side and low temperature side dampers are alternately opened and closed at predetermined time intervals, and the high temperature exposure and the low temperature exposure are repeatedly executed.

【0026】この場合にも、電子膨張弁制御装置は同様
に作動し、試験室1の温度昇降時には電子膨張弁43を
変動パルスPdで開閉させ、温度到達後には一定パルス
0の開度にする。そして、温度到達時間の短縮、ハン
チング等のない良好な予冷制御、省エネ等、常温−低温
さらしの場合と同様の効果を得ることができる。
[0026] Also in this case, the electronic expansion valve control device operates in the same manner, at the time of temperature raising and lowering of the test chamber 1 to open and close the electronic expansion valve 43 at a variable pulse Pd, and after the temperature reaches the opening of the fixed pulse P 0 I do. The same effects as in the case of normal temperature-low temperature exposure, such as shortening of the temperature arrival time, good precooling control without hunting, energy saving, etc., can be obtained.

【0027】なお、冷熱衝撃装置では、高温さらし−常
温さらしの試験が行われることもあるが、このときに
は、通常冷凍回路4や低温槽3の諸機器の運転が停止さ
れる。但し、運転の継続性等の要請から、冷凍回路の運
転を継続させる場合には、本例の電子膨張弁制御装置を
適用することが可能である。その場合には、本例の電子
膨張弁制御装置による冷凍能力の調整により、高温−常
温間の温度移行を間接的に補助することになる。
In the thermal shock device, a test of high temperature exposure-normal temperature exposure may be performed. At this time, the operation of the refrigeration circuit 4 and the low-temperature tank 3 are usually stopped. However, when the operation of the refrigeration circuit is to be continued due to a request for continuity of operation or the like, the electronic expansion valve control device of the present embodiment can be applied. In this case, adjustment of the refrigerating capacity by the electronic expansion valve control device of the present embodiment indirectly assists the temperature transition between high temperature and normal temperature.

【0028】図4は発明者等が行った実験結果の一例を
示す。図において左側の「パルス可変時」は本例の電子
膨張弁制御装置を採用した運転結果であり、右側の「パ
ルス固定時」は比較のために行ったと従来の装置による
運転結果である。図示の如く、25℃士の常温さらしか
ら−65℃の低温さらしに移行させると、従来の装置で
は、最大パルスNの70%程度の一定パルスP0 が電子
膨張弁に与えられ、温度降下時間が12分であったが、
本例の装置では、常温から低温への設定変更後に変動パ
ルスPdが直ちに最大パルスNに近い値まで上昇し、温
度降下が促進され、温度降下時間が従来の装置の場合よ
り2分間短縮されて10分になった。その結果、熱衝撃
性能の向上と試験時間の短縮を図ることができた。
FIG. 4 shows an example of the results of an experiment conducted by the inventors. In the figure, “when the pulse is variable” on the left is the operation result using the electronic expansion valve control device of this example, and “when the pulse is fixed” on the right is the operation result using the conventional device, which was performed for comparison. As shown in the drawing, when the exposure is changed from the normal temperature exposure of 25 ° C. to the low temperature exposure of −65 ° C., in the conventional apparatus, a constant pulse P 0 of about 70% of the maximum pulse N is given to the electronic expansion valve, and the temperature drop time Was 12 minutes,
In the apparatus of this example, the fluctuation pulse Pd immediately rises to a value close to the maximum pulse N after the setting change from the normal temperature to the low temperature, the temperature drop is accelerated, and the temperature drop time is shortened by 2 minutes as compared with the conventional apparatus. It was 10 minutes. As a result, it was possible to improve the thermal shock performance and shorten the test time.

【0029】[0029]

【発明の効果】以上の如く本発明によれば、電子膨張弁
に与えるパルスを一定パルスに設定する一定パルス設定
部を備えているので、設定する低温条件に対応して一定
パルスを適当な値に固定することにより、予冷室を一定
温度にする予冷運転時には、通常設けられる温度制御用
の加熱器によって予冷室内の温度を簡単に且つ精度良く
制御することができる。又、このときには、予冷室内に
試料からの発熱負荷がないので、一定パルスを大きい値
にする必要がない。従って運転時の省エネも図られる。
As described above, according to the present invention, since the constant pulse setting section is provided for setting the pulse applied to the electronic expansion valve to a constant pulse, the constant pulse is set to an appropriate value corresponding to the set low temperature condition. In the pre-cooling operation in which the pre-cooling chamber is kept at a constant temperature, the temperature in the pre-cooling chamber can be easily and accurately controlled by the usually provided heater for temperature control. At this time, since there is no heat load from the sample in the pre-cooling chamber, it is not necessary to set the constant pulse to a large value. Therefore, energy saving during operation can be achieved.

【0030】又、設定温度と測定温度との差異に対応し
た変動パルスを算出する変動パルス計算部を設けている
ので、試験室を例えば常温条件から低温条件に温度降下
させるために温度を低温に設定したときには、一定パル
スより大きくなるように変動パルスを算出し、これを電
子膨張弁に与えてその開度を大きくすることが可能にな
る。
Further, since a fluctuating pulse calculator for calculating a fluctuating pulse corresponding to the difference between the set temperature and the measured temperature is provided, the temperature of the test chamber is reduced to a low temperature, for example, to lower the temperature from a normal temperature condition to a low temperature condition. When it is set, it is possible to calculate a fluctuating pulse so as to be larger than a certain pulse, and to apply the fluctuating pulse to the electronic expansion valve to increase its opening.

【0031】そして、試験室内が一定温度で運転されて
いるときには一定パルスを与え、少なくとも試験室を低
温条件に温度降下させるときには変動パルスを与えるよ
うに、電子膨張弁に与えるパルスを切り換える切換手段
を設けているので、前記の如く予冷室の予冷運転時に
は、冷凍能力を一定にして、通常予冷室内に設けられる
温度制御用の加熱器によって予冷室内の温度を精度良く
制御できると共に、温度降下時には、一定パルスより大
きくなった変動パルスによって電子膨張弁の開度を大き
くして冷凍機の冷却能力を増大させ、低温条件への温度
到達時間を短くすることができる。特に、試料からの発
熱があるときには温度降下時間が長くなるが、この場合
にも低温への到達時間を短縮し、冷熱衝撃装置としての
性能を良好に維持することができる。
Switching means for switching the pulse applied to the electronic expansion valve is provided so that a constant pulse is given when the test chamber is operated at a constant temperature, and a variable pulse is given at least when the temperature of the test chamber is lowered to a low temperature condition. Since it is provided, during the pre-cooling operation of the pre-cooling chamber as described above, the refrigerating capacity is kept constant, and the temperature in the pre-cooling chamber can be accurately controlled by a temperature control heater normally provided in the pre-cooling chamber, and at the time of temperature drop, The opening degree of the electronic expansion valve is increased by the fluctuation pulse that is larger than the fixed pulse, the cooling capacity of the refrigerator is increased, and the time to reach the low temperature condition can be shortened. In particular, when there is heat generation from the sample, the temperature drop time becomes longer. In this case as well, the time required to reach a lower temperature can be shortened, and the performance as a thermal shock device can be maintained satisfactorily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した電子膨張弁制御装置及び関連
部分の全体構成の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of the overall configuration of an electronic expansion valve control device and related parts to which the present invention is applied.

【図2】上記装置を適用できる冷熱衝撃装置の一例を示
す断面図である。
FIG. 2 is a sectional view showing an example of a thermal shock device to which the above device can be applied.

【図3】上記装置による常温さらし−低温さらしのサイ
クル図である。
FIG. 3 is a cycle diagram of normal temperature exposure-low temperature exposure by the above apparatus.

【図4】上記装置及び従来の装置を用いた実験結果を示
す説明図である。
FIG. 4 is an explanatory diagram showing experimental results using the above-described apparatus and a conventional apparatus.

【図5】従来の電子膨張弁制御の場合の常温さらし−低
温さらしにおける温度変化状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a temperature change state between normal temperature exposure and low temperature exposure in the case of conventional electronic expansion valve control.

【符号の説明】[Explanation of symbols]

1 試験室 3 低温槽(予冷室) 4 冷凍回路 5 一定パルス設定部 6 変動パルス計算部 7 パルス切換部 36 蒸発器 43 電子膨張弁 100 本体部分(冷熱衝撃装置) P0 一定パルス Pc 補正パルス Pd 変動パルス SV 設定温度 PV 測定温度 TL 低温(低温条件) TH 、TN 高温、常温(温度条件)DESCRIPTION OF SYMBOLS 1 Test room 3 Low-temperature tank (pre-cooling room) 4 Refrigeration circuit 5 Constant pulse setting part 6 Fluctuation pulse calculation part 7 Pulse switching part 36 Evaporator 43 Electronic expansion valve 100 Main part (Cold and thermal shock device) P 0 Constant pulse Pc Correction pulse Pd Fluctuating pulse SV set temperature PV measured temperature TL low temperature (low temperature condition) TH , TN high temperature, normal temperature (temperature condition)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試験室と与えられたパルスで作動する電
子膨張弁を備えた冷凍回路の蒸発器で冷却される予冷室
とを備え前記試験室の設定温度が少なくとも低温条件を
含む温度条件に設定されて測定温度が設定温度になるよ
うに制御されることがある冷熱衝撃装置に使用される電
子膨張弁制御装置において、 前記電子膨張弁に与えるパルスを一定パルスに設定する
一定パルス設定部と、前記電子膨張弁に与える変動パル
スであって前記設定温度と前記測定温度との差異に対応
した変動パルスを算出する変動パルス計算部と、前記試
験室内の温度がほぼ一定であるときには前記一定パルス
を与え前記試験室内の温度を前記低温条件に下げるとき
には前記変動パルスを与えるように前記電子膨張弁に与
えるパルスを切り換えるパルス切換部と、を有すること
を特徴とする電子膨張弁制御装置。
1. A test chamber and a pre-cooling chamber cooled by an evaporator of a refrigerating circuit having an electronic expansion valve operated by a given pulse, wherein the test chamber is set to a temperature condition including at least a low temperature condition. In an electronic expansion valve control device used for a thermal shock device that may be controlled so that a measured temperature is set to a set temperature, a constant pulse setting unit that sets a pulse given to the electronic expansion valve to a constant pulse. A variable pulse calculator for calculating a variable pulse applied to the electronic expansion valve, the variable pulse corresponding to a difference between the set temperature and the measured temperature; and the constant pulse when the temperature in the test chamber is substantially constant. And a pulse switching unit that switches a pulse applied to the electronic expansion valve so as to provide the fluctuation pulse when the temperature in the test chamber is reduced to the low temperature condition. Electronic expansion valve control device which is characterized in that.
JP27666798A 1998-09-11 1998-09-11 Electronic expansion valve controller for refrigerator for cold shock equipment Expired - Lifetime JP4100640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27666798A JP4100640B2 (en) 1998-09-11 1998-09-11 Electronic expansion valve controller for refrigerator for cold shock equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27666798A JP4100640B2 (en) 1998-09-11 1998-09-11 Electronic expansion valve controller for refrigerator for cold shock equipment

Publications (2)

Publication Number Publication Date
JP2000088730A true JP2000088730A (en) 2000-03-31
JP4100640B2 JP4100640B2 (en) 2008-06-11

Family

ID=17572649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27666798A Expired - Lifetime JP4100640B2 (en) 1998-09-11 1998-09-11 Electronic expansion valve controller for refrigerator for cold shock equipment

Country Status (1)

Country Link
JP (1) JP4100640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841940A (en) * 2016-03-29 2016-08-10 中国计量学院 Thermal expansion valve time constant testing device and testing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841940A (en) * 2016-03-29 2016-08-10 中国计量学院 Thermal expansion valve time constant testing device and testing method

Also Published As

Publication number Publication date
JP4100640B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JPH11351725A (en) Method for preventing freezing of damper of refrigerator
US7775058B2 (en) Cooler and refrigerator
JPH07104092B2 (en) Refrigerator and its temperature control method
CN108885050B (en) Refrigerator with a door
CA2365747A1 (en) Deterministic refrigerator defrost method and apparatus
TWI391618B (en) Control method of cooling storage and its compressor
US5787718A (en) Method for controlling quick cooling function of refrigerator
JP2004078440A (en) Cooling and heating device of vending machine
JP7207697B2 (en) refrigerator
JP2000249643A (en) Cold impact-testing device
US6105377A (en) Air curtain fan driving device and method for a refrigerator
JP3911567B2 (en) Thermal shock test equipment
US5211713A (en) Temperature control method with simultaneous heating and cooling near the set-point
JP3530041B2 (en) Refrigerator control device
JP2000088730A (en) Device for controlling electronic expansion valve of refrigerator for cold impact device
JP3658529B2 (en) Temperature control device
KR101164815B1 (en) Refrigerator and controlling method for the same
AU2016406934B2 (en) Refrigerator
JP2857472B2 (en) Thermal shock test equipment
JP2019191841A (en) Temperature controller for warm/cold storage
KR100577420B1 (en) Refrigerator and Control Method Thereof
JPH04302976A (en) Control method of electric refrigerator
KR20070103450A (en) A cooling device and a control method thereof
KR100568173B1 (en) Kimchi refrigerator and Control method thereof
KR100286173B1 (en) Defrost operation control apparatus for refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term