JP2000088719A - Division ratio-controlling method in flow diverging diluting tunnel - Google Patents

Division ratio-controlling method in flow diverging diluting tunnel

Info

Publication number
JP2000088719A
JP2000088719A JP10263634A JP26363498A JP2000088719A JP 2000088719 A JP2000088719 A JP 2000088719A JP 10263634 A JP10263634 A JP 10263634A JP 26363498 A JP26363498 A JP 26363498A JP 2000088719 A JP2000088719 A JP 2000088719A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
control
amount
division ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10263634A
Other languages
Japanese (ja)
Inventor
Masaki Takamoto
正樹 高本
Satoru Yamazaki
哲 山崎
Katsuo Misumi
勝夫 三角
Atsushi Tanimoto
淳 谷本
Naomoto Matsubara
直基 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Oval Corp
Original Assignee
Agency of Industrial Science and Technology
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Oval Corp filed Critical Agency of Industrial Science and Technology
Priority to JP10263634A priority Critical patent/JP2000088719A/en
Publication of JP2000088719A publication Critical patent/JP2000088719A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a division ratio controlling method which can be adapted to transient operational mode. SOLUTION: Exhaust gases from an engine are introduced to an exhaust pipe 3, and part of them is diverged to a diluting tunnel 1 by an exhaust gas introducing pipe 5 to control the division ratio of the exhaust gases by the quantity of flow of high-pressure air injection nozzles 6 and 6. A central arithmetic processing unit 14 stores (learns) the discharge amount of the exhaust gases every elapsed time from the start of operational mode to its completion, next, stores (learns) the amount of operation at the time of controlling the quantity of flow injection of high-pressure air so that a division ratio may become a predetermined value at predetermined points where the above-mentioned amount of discharge is different, and creates a table of the amount of control over the amount of operation which can be controlled at a desired resolution from the stored amount of discharge and amount of operation. The above-mentioned high-pressure air is controlled to control the division ratio of exhaust gases according to the table of the amount of control. As the table of the amount of control is corrected by repeated learning, it becomes possible to perform accurate control and to perform the real-time display of a division ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明属する技術分野】本発明は、分流希釈トンネルに
おける分割比制御方法に関し、より詳細には、過渡運転
モードに対応できる分流希釈トンネルにおける分割比制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a split ratio control method in a split-flow dilution tunnel, and more particularly, to a split ratio control method in a split-flow dilution tunnel capable of coping with a transient operation mode.

【0002】[0002]

【従来の技術】デイーゼルエンジンが排出する粒子状物
質を低減させるための研究をするためには、その排出量
を精度よく簡便に測定する方法が不可欠であり、排気ガ
スの全量を希釈する全量希釈トンネルは、大がかりな設
備で多大な経費を必要とするため、排気ガスを分流し、
一部分だけを小型の希釈トンネルに導く分流希釈トンネ
ルが開発されている。例えば、多管式分流式希釈トンネ
ルと呼ばれるものがある。この希釈トンネルでは、寸法
や形状が等しい多数の細管によって分流される。そのう
ちの一本が排気ガスを希釈トンネルへ導かれ、他の細管
はサージタンクを経て排気煙道へ導かれる構成になって
いる。分流された排気ガスはトンネル内で清浄な空気と
混合され希釈排気ガスとなる。この希釈排気ガスの一部
をサンプルし、フイルタで粒子状物質を捕集してその排
出量を測定している。
2. Description of the Related Art In order to conduct research for reducing particulate matter emitted by a diesel engine, a method for accurately and easily measuring the amount of exhaust is indispensable. Since the tunnel is a large facility and requires a lot of expense, it divides the exhaust gas,
Divergent dilution tunnels have been developed that guide only a portion to a small dilution tunnel. For example, there is a so-called multitubular split-flow type dilution tunnel. In this dilution tunnel, the flow is divided by a number of small tubes having the same size and shape. One of them is configured to guide the exhaust gas to the dilution tunnel, and the other narrow tube is guided to the exhaust flue via the surge tank. The diverted exhaust gas is mixed with clean air in the tunnel to become diluted exhaust gas. A part of the diluted exhaust gas is sampled, the particulate matter is collected by a filter, and the emission amount is measured.

【0003】分流希釈トンネルで粒子状物質を測定する
には、エンジンの運転条件の変化に対してエンジンの排
気ガスの全流量と分流して希釈トンネルに導いた流量の
比率、つまり排気ガスの分割比を一定に保つよう制御し
なければならない。このような制御のために従来はフイ
ードバック制御が行われていた。
[0003] In order to measure particulate matter in a split-flow dilution tunnel, the ratio of the total flow rate of the exhaust gas of the engine to the flow rate of the split flow into the dilution tunnel with respect to changes in the operating conditions of the engine, that is, the division of the exhaust gas, It must be controlled to keep the ratio constant. Conventionally, feedback control has been performed for such control.

【0004】[0004]

【発明が解決しようとする課題】近年デイーゼルエンジ
ンの高性能化に伴い、従来の定常運転モードでの排気ガ
ス濃度測定に留まらず、過渡運転モードでの排気ガス濃
度や粒子状物質の測定が要請されている。エンジンの運
転モード(回転数及び負荷率)は時間経過毎に決まって
いる。最近は、0.1秒以下の極めて急峻な過渡応答を
必要とする運転モードでのエンジンの開発が進められて
いる。このような運転モードでは、従来の制御方法では
応答が遅いため排気ガス濃度の正確な測定ができないと
いう問題点があった。
In recent years, as the performance of diesel engines has been improved, it has been required to measure not only the exhaust gas concentration in the conventional steady operation mode but also the exhaust gas concentration and the particulate matter in the transient operation mode. Have been. The operation mode (rotation speed and load factor) of the engine is determined every time. Recently, the development of an engine in an operation mode requiring an extremely steep transient response of 0.1 seconds or less has been promoted. In such an operation mode, the conventional control method has a problem that the response is slow, so that the exhaust gas concentration cannot be accurately measured.

【0005】本発明は、上述のような実情に鑑みてなさ
れたもので、本発明は、急峻な過渡運転モードで排気ガ
スの分割比制御を可能にする分流希釈トンネルにおける
分割比制御方法を提供するものである。
The present invention has been made in view of the above circumstances, and the present invention provides a method of controlling a split ratio in a split-flow dilution tunnel that enables control of an exhaust gas split ratio in a steep transient operation mode. Is what you do.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、エン
ジンから排出される排気ガスの一部を希釈トンネルに分
流し、前記分流した排気ガスの流量を高圧空気の噴射流
量により制御する分流希釈トンネルにおける分割比制御
方法において、前記排気ガスの一部が分流された後の排
気ガス流量をQex′前記希釈トンネルに導入される空気
の流量Qin、前記高圧空気の噴射流量をQc、前記希釈
トンネル出口の全流量をQconとするとき、排気ガス分
割比SRを、 SR=[Qex′÷{Qcon−(Qin+Qc)}]+1 として測定し、前記排出ガスの分流を止めた状態で、運
転モードの開始から終了までの経過時間毎に前記排気ガ
スの排出流量を記憶し、次に前記排気ガスの分流を行っ
た状態で、運転モードの開始から終了までの前記排出流
量が、異なる所定点における前記排気ガス分割比SRが
所定値になるよう前記高圧空気の噴射流量を制御したと
きの操作量を記憶し、これら記憶した排出流量と操作量
から、排気ガス流量の流量範囲内において所望の分解能
で前記分割比SRの制御が可能な操作量の制御量テーブ
ルを作成して記憶し、前記運転モードでエンジンが運転
されるとき、経過時間毎に該制御量テーブルに従って前
記分割比の流量を制御することを特徴とし、もって、急
峻な過渡特性を有する運転モードに対応した分割比の制
御ができるようにするものである。
According to a first aspect of the present invention, a part of exhaust gas discharged from an engine is divided into a dilution tunnel, and a flow rate of the divided exhaust gas is controlled by an injection flow rate of high-pressure air. In the method of controlling the division ratio in the dilution tunnel, the flow rate of the exhaust gas after a part of the exhaust gas is divided is Qex ′, the flow rate Qin of the air introduced into the dilution tunnel, the injection flow rate of the high-pressure air is Qc, and the dilution flow rate is Qc. Assuming that the total flow rate at the tunnel exit is Qcon, the exhaust gas split ratio SR is measured as SR = [Qex '{Qcon- (Qin + Qc)}] + 1. The discharge flow rate of the exhaust gas is stored for each elapsed time from the start to the end of the operation mode, and the discharge flow rate from the start to the end of the operation mode is different in a state where the exhaust gas is divided. A manipulated variable when controlling the injection flow rate of the high-pressure air so that the exhaust gas division ratio SR at a point becomes a predetermined value is stored, and a desired exhaust gas flow rate within the flow rate range of the exhaust gas flow rate is stored based on the stored discharge flow rate and manipulated variable. A control amount table of an operation amount capable of controlling the split ratio SR at a resolution of is created and stored, and when the engine is operated in the operation mode, the flow rate of the split ratio according to the control amount table for each elapsed time. , So that the division ratio can be controlled corresponding to the operation mode having a steep transient characteristic.

【0007】請求項2の発明は、請求項1の発明におい
て、前記運転モードの開始から終了までの分割比SRを
リアルタイムで表示し、前記分割比の制御結果の検証を
行うことを特徴とし、併せて、制御プログラムの改善の
要否判断を容易に行うことができるようにするものであ
る。
According to a second aspect of the present invention, in the first aspect of the present invention, the division ratio SR from the start to the end of the operation mode is displayed in real time, and the control result of the division ratio is verified. At the same time, it is possible to easily determine whether the control program needs to be improved.

【0008】請求項3の発明は、請求項1の発明におい
て、前記分割比の制御結果の検証により前記制御量テー
ブルの作成動作を繰り返すことを特徴とし、もって、予
測制御の精度を高め、より正確な分割比制御を行うこと
ができるようにするものである。
According to a third aspect of the present invention, in the first aspect of the invention, the operation of creating the control amount table is repeated by verifying the control result of the division ratio, thereby improving the accuracy of the prediction control. This enables accurate division ratio control to be performed.

【0009】[0009]

【発明の実施の形態】図1は、本発明の実施例を説明す
るための分流希釈トンネルの全体構成図で、図中、1は
希釈空気が導入される希釈トンネル、2は希釈トンネル
1に設けられた混合オリフイス、3は排気ガスが導入さ
れる排気管、4は排気管3に設けられたベンチュリー
管、5は排気管3から排出ガスを希釈トンネル1に分流
する排気ガス導入管、5′は排気ガス導入管5に設置し
た開閉弁、6は希釈トンネル1内の前記排気ガス導入管
5の出口部近傍に設けられた高圧空気の噴射ノズル、7
は高圧空気流量計、8は高圧空気のコントロール弁、9
はコントロール弁8を制御するバルブ制御装置である。
コントロール弁8は、高速応答型で、複数のポートを切
替えて制御するデジタルコントロール弁を使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the overall construction of a diversion tunnel for explaining an embodiment of the present invention. In the drawing, reference numeral 1 denotes a dilution tunnel into which dilution air is introduced, and 2 denotes a dilution tunnel. The mixing orifice 3 is provided with an exhaust pipe through which exhaust gas is introduced, 4 is a venturi pipe provided in the exhaust pipe 3, 5 is an exhaust gas introducing pipe which divides exhaust gas from the exhaust pipe 3 to the dilution tunnel 1, 'Is an on-off valve installed in the exhaust gas introduction pipe 5, 6 is a high-pressure air injection nozzle provided in the dilution tunnel 1 near the outlet of the exhaust gas introduction pipe 5, 7
Is a high pressure air flow meter, 8 is a high pressure air control valve, 9
Is a valve control device for controlling the control valve 8.
The control valve 8 is a high-speed response type and uses a digital control valve for switching and controlling a plurality of ports.

【0010】また、10は希釈空気流量計、11は熱交
換器、12は音速ノズル、13は排気ガス流量計、14
は中央演算処理装置である。中央演算処理装置14は、
高圧空気流量計7,希釈空気流量計10,音速ノズル1
2,排気ガス流量計13からの流量情報に従って排気ガ
スの流量比を一定に保つためにバルブ制御装置9を制御
する。15は表示装置、16は希釈トンネル1に配置さ
れた排気ガス分析計である。
Reference numeral 10 is a dilution air flow meter, 11 is a heat exchanger, 12 is a sonic nozzle, 13 is an exhaust gas flow meter, 14
Is a central processing unit. The central processing unit 14
High pressure air flow meter 7, Dilution air flow meter 10, Sonic nozzle 1
2. The valve control device 9 is controlled in accordance with the flow rate information from the exhaust gas flow meter 13 to keep the flow rate ratio of the exhaust gas constant. Reference numeral 15 denotes a display device, and reference numeral 16 denotes an exhaust gas analyzer arranged in the dilution tunnel 1.

【0011】排気ガスの分割比を一定に保つ態様につい
て説明すると、分割比SRは、 SR=Qex÷Qind=(Qex′+Qind)÷Qind =(Qex′÷Qind)+1 …(1)式 ここで、Qexはエンジンからの排気ガスの全量、Qind
は排気ガスの分流量、Qex′は排気ガス流量計13で測
定される排気ガス流量である。また、Qcは高圧空気の
噴射ノズル6、6における噴射量、Qconは音速ノズル
12における流量で、質量流量は一定値であるので、 Qcon=Qin+Qind+Qc、 即ち Qind=Qcon−(Qin+Qc) …(2)式 となり、(2)式を(1)式に代入し、 SR=[Qex′÷{Qcon−(Qin+Qc)}]+1 …(3)式 即ち Qin=Qcon−{Qex′÷(SR−1)}−Qc …(4)式 なお、各流量値は、全て質量流量に換算しておくものと
する。
The manner in which the exhaust gas split ratio is kept constant will be described. The split ratio SR is given by: SR = Qex ÷ Qind = (Qex ′ + Qind) ÷ Qind = (Qex ′ ÷ Qind) +1 (1) , Qex is the total amount of exhaust gas from the engine, Qind
Is the exhaust gas partial flow rate, and Qex 'is the exhaust gas flow rate measured by the exhaust gas flow meter 13. Further, Qc is the injection amount of the high pressure air at the injection nozzles 6 and 6, Qcon is the flow rate at the sonic nozzle 12, and the mass flow rate is a constant value. Therefore, Qcon = Qin + Qind + Qc, that is, Qind = Qcon- (Qin + Qc) (2) Equation (2) is substituted into Equation (1), and SR = [Qex '{Qcon- (Qin + Qc)}] + 1 Equation (3) That is, Qin = Qcon- {Qex'} (SR-1) } −Qc (4) It is assumed that all the flow values are converted into mass flow rates.

【0012】上述のように、分割比は、上記(3)式よ
り求められる。即ち、排気ガス流量計13、音速ノズル
12、希釈空気流量計10、高圧空気流量計7における
各流量を測定することにより求められる。従って、排気
ガス流量Qex′が変化した場合、分割比を一定にするた
めには、上記各流量計における流量値を中央演算装置1
4で演算し、バルブ制御装置9によりコントロールバル
ブ8を制御し噴射ノズル6,6の流速を変化させ排気ガ
スの分流量Qindを制御すればよい。なお、ここで分流
量Qindを直接測定しない理由としては、排気ガス導入
管5に流量計を設置すると、エンジンから排出された浮
遊微粒子が流量計に付着するためで、この付着を防止す
るため、直接流量測定はできない。同様に排気ガスの全
量Qexを直接測定しないで、排気ガス導入管5の下流で
測定するのも同様な理由である。
As described above, the division ratio is obtained from the above equation (3). That is, it is obtained by measuring each flow rate in the exhaust gas flow meter 13, the sonic nozzle 12, the dilution air flow meter 10, and the high pressure air flow meter 7. Therefore, when the exhaust gas flow rate Qex 'is changed, the flow rate value in each of the flow meters is changed by the central processing unit 1 in order to keep the division ratio constant.
4, the control valve 8 is controlled by the valve controller 9 to change the flow velocity of the injection nozzles 6, 6 to control the exhaust gas partial flow rate Qind. The reason why the partial flow rate Qind is not directly measured here is that if a flowmeter is installed in the exhaust gas introduction pipe 5, floating particles discharged from the engine adhere to the flowmeter. Direct flow measurement is not possible. Similarly, it is the same reason that the total amount Qex of the exhaust gas is not measured directly but is measured downstream of the exhaust gas introduction pipe 5.

【0013】而して、これは、定常運転モードで実施可
能であるが、急峻な過渡応答が求められる運転モードで
は、各種機器がモード変化に追随できず制御が難しい。
そこで発明者らは、運転モードがエンジンの回転数と負
荷が経過時間によってプログラム化されていることに着
目し、予め制御プログラムを学習により習得させ急峻な
変化モードに対応できるようにしたものである。
Although this can be performed in the steady operation mode, in an operation mode in which a steep transient response is required, various devices cannot follow the mode change and control is difficult.
In view of this, the inventors have focused on the fact that the operation mode is programmed with the engine speed and the load according to the elapsed time, and learned the control program by learning in advance so that it can cope with the steep change mode. .

【0014】以下に、制御プログラムを学習させる手順
について説明する。 (排気ガス流量の学習) 排気ガス導入管5の開閉弁5′を閉とし、テストすべき
運転モードで一度運転させ、スタートから時間経過毎の
排気ガス流量を排気ガス流量計13により測定し、中央
演算処理装置14に記憶(学習)させる。 (排気ガス流量とバルブ制御量の関係の学習) 排気ガス導入管5の開閉弁5′を開とし、エンジンを運
転させ排気ガス流量を運転モードに対応させて変化させ
(通常は4〜5点となる)、変化時点での分割比が所定
の値になるようバルブ制御装置9の操作量を中央演算処
理装置14のメモリに記憶(学習)させる。 (バルブ操作量のテーブル化) 上記、の学習結果から排気ガス流量の流量範囲内で
必要とする分解能(0.2〜0.4%)で流量制御が可
能なバルブ制御装置9の操作量を内挿法により中央演算
処理装置14に自動作成させ、制御量テーブルとして記
憶させる。 (学習制御) 学習させた運転モードでエンジンを運転させ、学習させ
た排気ガス流量に応じたバルブ制御装置9の操作量を中
央演算処理装置14の制御量テーブルから出力させ、分
割比SRを一定にするために分流量Qindを制御する。 (制御結果の検証) 上記(3)式により分割比SRを求め、運転開始から運
転終了までの分割比SRを中央演算処理装置14から表
示装置15にリアルタイムでグラフイック等で表示し制
御結果の検証を行う。 (学習作業の再実施) 検証結果が所定の分割比の範囲に入らなかった場合や、
運転条件、配管条件等が変わった場合は、上記〜の
学習作業をやり直す。
The procedure for learning the control program will be described below. (Learning of Exhaust Gas Flow Rate) The on-off valve 5 'of the exhaust gas introduction pipe 5 is closed, the operation is performed once in the operation mode to be tested, and the exhaust gas flow rate is measured by the exhaust gas flow meter 13 every time from the start. It is stored (learned) in the central processing unit 14. (Learning the relationship between the exhaust gas flow rate and the valve control amount) Opening the on-off valve 5 'of the exhaust gas introduction pipe 5, operating the engine and changing the exhaust gas flow rate in accordance with the operation mode (usually 4 to 5 points) The operation amount of the valve control device 9 is stored (learned) in the memory of the central processing unit 14 so that the division ratio at the time of the change becomes a predetermined value. (Tabulation of valve operation amount) Based on the learning result described above, the operation amount of the valve control device 9 capable of controlling the flow rate with the required resolution (0.2 to 0.4%) within the flow rate range of the exhaust gas flow rate is shown. It is automatically created by the central processing unit 14 by interpolation and stored as a control amount table. (Learning control) The engine is operated in the learned operation mode, the operation amount of the valve control device 9 corresponding to the learned exhaust gas flow rate is output from the control amount table of the central processing unit 14, and the division ratio SR is kept constant. Is controlled to control the flow rate. (Verification of control result) The division ratio SR is obtained from the above equation (3), and the division ratio SR from the start of operation to the end of operation is displayed on the display device 15 in real time from the central processing unit 14 by graphic or the like, and the control result is verified. I do. (Re-implementation of learning work) When the verification result does not fall within the range of the predetermined division ratio,
If the operating conditions, piping conditions, etc. have changed, the above learning operations (1) to (4) are repeated.

【0015】前記運転モードでエンジンが運転されると
き、このようにして得た制御量テーブルに従って前記排
気ガスの分割比を制御する。制御された分割比のもと
で、排気ガス分析計16により排気ガス分析が実施され
る。
When the engine is operated in the operation mode, the split ratio of the exhaust gas is controlled according to the control amount table thus obtained. Exhaust gas analysis is performed by the exhaust gas analyzer 16 under the controlled split ratio.

【0016】[0016]

【発明の効果】請求項1の発明によれば、エンジンから
排出される排気ガスの一部を希釈トンネルに分流し、前
記分流した排気ガスの流量を高圧空気の噴射流量により
制御する分流希釈トンネルにおける分割比制御方法にお
いて、前記排気ガスの一部が分流された後の排気ガス流
量をQex′前記希釈トンネルに導入される空気の流量Q
in、前記高圧空気の噴射流量をQc、前記希釈トンネル
出口の全流量をQconとするとき、排気ガス分割比SR
を、 SR=[Qex′÷{Qcon−(Qin+Qc)}]+1 として測定し、前記排出ガスの分流を止めた状態で、運
転モードの開始から終了までの経過時間毎に前記排気ガ
スの排出流量を記憶し、次に前記排気ガスの分流を行っ
た状態で、運転モードの開始から終了までの前記排出流
量が、異なる所定点における前記排気ガス分割比SRが
所定値になるよう前記高圧空気の噴射流量を制御したと
きの操作量を記憶し、これら記憶した排出流量と操作量
から、排気ガス流量の流量範囲内において所望の分解能
で前記分割比SRの制御が可能な操作量の制御量テーブ
ルを作成して記憶し、前記運転モードでエンジンが運転
されるとき、経過時間毎に該制御量テーブルに従って前
記分割比の流量を制御するので、学習効果による予測制
御であるため、急峻な過渡特性を有する運転モードに対
応した分割比の制御を行うことができる。
According to the first aspect of the invention, a part of the exhaust gas discharged from the engine is diverted to the dilution tunnel, and the flow rate of the diverted exhaust gas is controlled by the injection flow rate of the high-pressure air. In the division ratio control method described in the above, the exhaust gas flow rate after a part of the exhaust gas is diverted is changed to Qex 'the flow rate Q of the air introduced into the dilution tunnel.
in, the injection flow rate of the high-pressure air is Qc, and the total flow rate at the exit of the dilution tunnel is Qcon.
Is measured as SR = [Qex '{Qcon- (Qin + Qc)}] + 1. With the exhaust gas diverting stopped, the exhaust gas discharge flow rate is calculated every time elapsed from the start to the end of the operation mode. Then, in a state where the exhaust gas is divided, the discharge flow rate from the start to the end of the operation mode is different from that of the high-pressure air so that the exhaust gas division ratio SR at a different predetermined point becomes a predetermined value. An operation amount when the injection flow rate is controlled is stored, and a control amount table of the operation amount capable of controlling the division ratio SR at a desired resolution within a flow rate range of the exhaust gas flow rate from the stored discharge flow rate and the operation amount. When the engine is operated in the operation mode, the flow rate of the division ratio is controlled in accordance with the control amount table for each elapsed time. It is possible to control the division ratio corresponding to the operation mode with the transient characteristics.

【0017】請求項2の発明によれば、請求項1の発明
の効果に加えて、前記運転モードの開始から終了までの
分割比SRをリアルタイムで表示し、前記分割比の制御
結果の検証を行うので、併せて、制御プログラムの改善
の要否判断を容易に行うことができる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the division ratio SR from the start to the end of the operation mode is displayed in real time, and the verification of the control result of the division ratio is verified. Therefore, it is possible to easily determine whether the control program needs to be improved.

【0018】請求項3の発明によれば、請求項1の発明
の効果に加えて、前記分割比の制御結果の検証により前
記制御量テーブルの作成動作を繰り返すので、予測制御
の精度を高めることができ、より正確な分割比制御を行
うことができるようになる。
According to the invention of claim 3, in addition to the effect of the invention of claim 1, the operation of creating the control amount table is repeated by verifying the control result of the division ratio, so that the accuracy of the prediction control is improved. And more accurate division ratio control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を説明するための分流希釈ト
ンネルの全体構成図である。
FIG. 1 is an overall configuration diagram of a diversion dilution tunnel for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…希釈トンネル、2…混合オリフイス、3…排気管、
4…ベンチュリー管、5…排気ガス導入管、5′…開閉
弁、6…高圧空気の噴射ノズル、7…高圧空気流量計、
8…高圧空気のコントロール弁、9…バルブ制御装置、
10…希釈空気流量計、11…熱交換器、12…音速ノ
ズル、13…排気ガス流量計、14…中央演算処理装
置、15…表示装置、16…排気ガス分析計。
1: dilution tunnel, 2: mixing orifice, 3: exhaust pipe,
4 ... Venturi pipe, 5 ... Exhaust gas introduction pipe, 5 '... On-off valve, 6 ... High pressure air injection nozzle, 7 ... High pressure air flow meter,
8 ... high pressure air control valve, 9 ... valve control device,
10: dilution air flow meter, 11: heat exchanger, 12: sonic nozzle, 13: exhaust gas flow meter, 14: central processing unit, 15: display device, 16: exhaust gas analyzer.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 598157812 高本 正樹 茨城県つくば市梅園1丁目1番4 工業技 術院計量研究所内 (71)出願人 598172181 山崎 哲 茨城県つくば市梅園1丁目1番4 工業技 術院計量研究所内 (74)上記2名の代理人 100079843 弁理士 高野 明近 (72)発明者 高本 正樹 茨城県つくば市梅園一丁目1番4 工業技 術院 計量研究所内 (72)発明者 山崎 哲 茨城県つくば市梅園一丁目1番4 工業技 術院 計量研究所内 (72)発明者 三角 勝夫 東京都新宿区上落合3丁目10番8号 株式 会社オーバル内 (72)発明者 谷本 淳 東京都新宿区上落合3丁目10番8号 株式 会社オーバル内 (72)発明者 松原 直基 東京都新宿区上落合3丁目10番8号 株式 会社オーバル内 Fターム(参考) 2G087 AA15 BB28 CC27 CC29 DD20 ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 598157812 Masaki Takamoto 1-1-4 Umezono, Tsukuba City, Ibaraki Pref. Inside the Institute of Metrology, Industrial Technology Institute (71) Applicant 598172181 Satoshi Yamazaki 1-1-1 Umezono Umezono, Tsukuba City, Ibaraki Prefecture 4 Within the Institute of Metrology, Japan Institute of Industrial Technology (74) The above two agents 100079843 Attorney, Akachika Takano (72) The inventor Masaki Takamoto, 1-4-1 Umezono, Tsukuba, Ibaraki Pref. ) Inventor Tetsu Yamazaki 1-4-1 Umezono, Tsukuba, Ibaraki Pref.Institute of Metrology, Institute of Industrial Technology (72) Inventor Katsuo Triangle 3-10-8 Kamiochiai, Shinjuku-ku, Tokyo Oval Co., Ltd. (72) Inventor Tanimoto Jun 3-10-8 Kamiochiai, Shinjuku-ku, Tokyo Inside the oval company (72) Inventor Naoki Matsubara 3-10-8, Kamiochiai, Shinjuku-ku, Tokyo Stock Association F term in the company oval (reference) 2G087 AA15 BB28 CC27 CC29 DD20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジンから排出される排気ガスの一部
を希釈トンネルに分流し、前記分流した排気ガスの流量
を高圧空気の噴射流量により制御する分流希釈トンネル
における分割比制御方法において、前記排気ガスの一部
が分流された後の排気ガス流量をQex′前記希釈トンネ
ルに導入される空気の流量Qin、前記高圧空気の噴射流
量をQc、前記希釈トンネル出口の全流量をQconとする
とき、排気ガス分割比SRを、 SR=[Qex′÷{Qcon−(Qin+Qc)}]+1 として測定し、前記排出ガスの分流を止めた状態で、運
転モードの開始から終了までの経過時間毎に前記排気ガ
スの排出流量を記憶し、次に前記排気ガスの分流を行っ
た状態で、運転モードの開始から終了までの前記排出流
量が、異なる所定点における前記排気ガス分割比SRが
所定値になるよう前記高圧空気の噴射流量を制御したと
きの操作量を記憶し、これら記憶した排出流量と操作量
から、排気ガス流量の流量範囲内において所望の分解能
で前記分割比SRの制御が可能な操作量の制御量テーブ
ルを作成して記憶し、前記運転モードでエンジンが運転
されるとき、経過時間毎に該制御量テーブルに従って前
記分割比の流量を制御することを特徴とする分流希釈ト
ンネルにおける分割比制御方法。
1. A split ratio control method in a split dilution tunnel, wherein a part of exhaust gas discharged from an engine is split into a dilution tunnel, and a flow rate of the split exhaust gas is controlled by an injection flow rate of high-pressure air. When the exhaust gas flow rate after a part of the gas is divided is Qex ′, the flow rate Qin of the air introduced into the dilution tunnel, the injection flow rate of the high-pressure air is Qc, and the total flow rate at the exit of the dilution tunnel is Qcon, The exhaust gas split ratio SR is measured as SR = [Qex '{Qcon- (Qin + Qc)}] + 1. With the exhaust gas diverting stopped, the exhaust gas split ratio SR is calculated for each elapsed time from the start to the end of the operation mode. In a state where the exhaust gas discharge flow rate is stored and then the exhaust gas is divided, the exhaust gas flow rate from the start to the end of the operation mode is different from the exhaust gas split ratio SR at a predetermined point. An operation amount when controlling the injection flow rate of the high-pressure air to be a predetermined value is stored, and the control of the split ratio SR at a desired resolution within a flow rate range of the exhaust gas flow rate is performed based on the stored discharge flow rate and operation amount. Generating and storing a control amount table of an operation amount capable of performing the operation, and when the engine is operated in the operation mode, controlling the flow rate of the division ratio in accordance with the control amount table for each elapsed time. Split ratio control method in dilution tunnel.
【請求項2】 前記運転モードの開始から終了までの分
割比SRをリアルタイムで表示し、前記分割比の制御結
果の検証を行うことを特徴とする請求項1に記載の分流
希釈トンネルにおける分割比制御方法。
2. The split ratio in the split-flow dilution tunnel according to claim 1, wherein the split ratio SR from the start to the end of the operation mode is displayed in real time, and the control result of the split ratio is verified. Control method.
【請求項3】 前記分割比の制御結果の検証により前記
制御量テーブルの作成動作を繰り返すことを特徴とする
請求項1に記載の分流希釈トンネルにおける分割比制御
方法。
3. The division ratio control method according to claim 1, wherein the operation of creating the control amount table is repeated by verifying the control result of the division ratio.
JP10263634A 1998-09-17 1998-09-17 Division ratio-controlling method in flow diverging diluting tunnel Pending JP2000088719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10263634A JP2000088719A (en) 1998-09-17 1998-09-17 Division ratio-controlling method in flow diverging diluting tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10263634A JP2000088719A (en) 1998-09-17 1998-09-17 Division ratio-controlling method in flow diverging diluting tunnel

Publications (1)

Publication Number Publication Date
JP2000088719A true JP2000088719A (en) 2000-03-31

Family

ID=17392232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10263634A Pending JP2000088719A (en) 1998-09-17 1998-09-17 Division ratio-controlling method in flow diverging diluting tunnel

Country Status (1)

Country Link
JP (1) JP2000088719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815438B2 (en) * 2004-07-21 2011-11-16 センサーズ インコーポレイテッド Dilution flow control system and method for collected exhaust gas analysis
JP2019074388A (en) * 2017-10-13 2019-05-16 株式会社堀場製作所 Exhaust gas analyzer, exhaust gas measuring method, program for exhaust gas analyzer, and method for calibrating exhaust gas analyzer
WO2023063139A1 (en) * 2021-10-15 2023-04-20 株式会社堀場製作所 Exhaust gas sampling device, exhaust gas analysis system, exhaust gas sampling method, and program for exhaust gas sampling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815438B2 (en) * 2004-07-21 2011-11-16 センサーズ インコーポレイテッド Dilution flow control system and method for collected exhaust gas analysis
JP2019074388A (en) * 2017-10-13 2019-05-16 株式会社堀場製作所 Exhaust gas analyzer, exhaust gas measuring method, program for exhaust gas analyzer, and method for calibrating exhaust gas analyzer
US11592364B2 (en) 2017-10-13 2023-02-28 Horiba, Ltd. Exhaust gas analysis apparatus, exhaust gas analysis system, exhaust gas measurement method, program recording medium recorded with program for exhaust gas analysis apparatus, and calibration method for exhaust gas analysis
WO2023063139A1 (en) * 2021-10-15 2023-04-20 株式会社堀場製作所 Exhaust gas sampling device, exhaust gas analysis system, exhaust gas sampling method, and program for exhaust gas sampling device

Similar Documents

Publication Publication Date Title
US6412333B2 (en) Exhaust gas analyzing system
JP5792956B2 (en) Gas analyzer
CN103076151B (en) Selective catalytic reduction (SCR) flue gas denitrification flow field cold state testing system and method
CN101167025A (en) System and method for measuring flow
JPWO2011074382A1 (en) Exhaust gas sampling device
US4938256A (en) Apparatus for the production of particular concentrations of gaseous materials as well as for mixing various gaseous materials in a specified ratio
US4815536A (en) Analysis of multi-phase mixtures
JP2000028499A (en) Apparatus for collecting mixed material in exhaust gas
JP2000088719A (en) Division ratio-controlling method in flow diverging diluting tunnel
Geršl et al. Flow rate measurement in stacks with cyclonic flow–Error estimations using CFD modelling
CN109682653A (en) A kind of X-shaped flue gas multidraw device
US20150316447A1 (en) Verification system
JP4925493B1 (en) Mixed gas flow rate control device and exhaust gas purification catalyst evaluation device
JP2013217821A (en) Simulated exhaust gas evaluation system
WO2023015888A1 (en) Scr catalyst performance evaluation system for marine engine
CN109260948A (en) Denitration uniformity measurement optimization system and method under fluctuating load
JPH075084A (en) Device and method for capturing substance mixed in exhaust gas
JP3131406B2 (en) Calibration curve creation system for gas analyzer
CN113019123A (en) SCR (Selective catalytic reduction) accurate ammonia spraying device with mixing and partition measurement functions at outlet
CN111523246A (en) Composite flue gas flow field measuring method and measuring system
Sorokes et al. Sidestream Optimization Through The Use Of Computational Fluid Dynamics And Model Testing.
Heitor et al. On the analysis of turbulent transport processes in nonreacting multijet burner flows
Lai et al. Instantaneous velocity measurements in a vane-excited plane jet
Johnson et al. US National standards for high pressure natural gas flow measurement
JP2004141754A (en) Apparatus and method for denitrifying stack gas