JP2000088601A - Magnetic type encoder - Google Patents

Magnetic type encoder

Info

Publication number
JP2000088601A
JP2000088601A JP10259586A JP25958698A JP2000088601A JP 2000088601 A JP2000088601 A JP 2000088601A JP 10259586 A JP10259586 A JP 10259586A JP 25958698 A JP25958698 A JP 25958698A JP 2000088601 A JP2000088601 A JP 2000088601A
Authority
JP
Japan
Prior art keywords
magnetic field
signal
field detection
detection unit
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10259586A
Other languages
Japanese (ja)
Other versions
JP3882974B2 (en
Inventor
Kazunari Matsuzaki
一成 松崎
Takefumi Kabashima
武文 椛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP25958698A priority Critical patent/JP3882974B2/en
Publication of JP2000088601A publication Critical patent/JP2000088601A/en
Application granted granted Critical
Publication of JP3882974B2 publication Critical patent/JP3882974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate magnetic type encoder which can remove harmonic components of odd orders. SOLUTION: In a magnetic type encoder, first and second magnetic field detection units 2 and 3 which are respectively provided with permanent magnets 21 and 32 mounted in the axial direction of a rotor 1 and magnetic field detectors 23 and 33 arranged on stators 22 and 23 are linked through gears 24 and 34 and the gear ratio of the gears 24 and 34 is set in ratio so that the number of revolutions of the second magnetic field detection unit 3 is odd times as much as the number of revolutions of the first magnetic filed detection unit 2. A signal processing circuit 4 is provided with differential amplifiers 41-44 to process a differential signal between the magnetic field detectors 23 and 33 respectively disposed on the two magnetic field detection units 2 and 3, a signal shaping circuit 45 to shape a differential signal from the second magnetic field detection unit 3 with the speed thereof increased by the gears 24 and 34 and an angle detection circuit 4 to correct a differential signal of the first magnetic field detection unit 2 by a signal obtained by the signal shaping circuit 45.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転体の回転位置
を検出する磁気式エンコーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder for detecting a rotational position of a rotating body.

【0002】[0002]

【従来の技術】従来、回転体の回転位置を検出する磁気
式エンコーダの構成図および磁界検出素子から出力され
る各相信号を処理する信号処理回路のブロック図は、図
2の(a)、(b)のようになっている。図2(a)に
おいて、1は回転体、10は回転軸、51は回転体1に
回転軸10を同一になるように固定された中空円板状の
発磁体を構成する永久磁石で、材質はフェライト磁石、
Sm−Co系磁石、Ne−Fe−B系磁石、または前記
各種磁石を高分子材料で結合した分散型複合磁石の何れ
か一つによって形成し、回転軸10に垂直な一方向に磁
化されている。52は永久磁石51の外周側に設けられ
たリング状の固定体、53は固定体52に互いに周方向
に90度間隔で取り付けられた4個の磁界検出素子で、
永久磁石51の外周面に対して空隙を介して対向し、且
つ、互いに機械角で90度位相をずらしてA1相検出素
子531とB1相検出素子532を設け、さらにA1相検
出素子531に対して機械角で180度位相をずらして
2相検出素子533を、B1相検出素子532に対して
機械角で180度位相をずらしてB2相検出素子534
を設けている。図2(b)は磁界検出素子53から出力
されるA1、A2、B1、B2の各相信号を処理する信号処
理回路6を示す回路図である。信号処理回路6はA1
とA2相の差動信号Vaを出力する差動アンプ61と、B
1相とB2相の差動信号Vbを出力する差動アンプ62
と、差動信号VaとVbとからarctan(Va/Vb
の演算を行って回転角度を演算する角度演算回路63と
を設けている。このような構成により回転体の回転に応
じて、永久磁石が回転した時、回転角度をθとすると、
1相検出素子からはsinθ、B1相検出素子からはc
osθに比例した電圧が発生する。ここで、A1相検出
素子とA2相検出素子の検出信号に着目すると、両者の
基本信号は180度位相がずれているため、正負が逆転
しているが、基本信号に重畳している偶数次の高調波成
分の位相はシフトしない。したがって、A1相検出素子
とA2相検出素子の差動信号Vaを用いることで偶数次の
高調波を含有しない波形を得ることができる。同様にし
て得られたB1相検出素子とB2相検出素子の差動信号V
bと、A1相検出素子とA2相検出素子の差動信号Vaを信
号処理回路6を用いて分割することにより、回転体1の
角度情報を得ることができる。
2. Description of the Related Art Conventionally, a configuration diagram of a magnetic encoder for detecting a rotational position of a rotating body and a block diagram of a signal processing circuit for processing each phase signal output from a magnetic field detecting element are shown in FIGS. (B). In FIG. 2A, reference numeral 1 denotes a rotating body, 10 denotes a rotating shaft, and 51 denotes a permanent magnet forming a hollow disk-shaped magnetized body in which the rotating shaft 10 is fixed to the rotating body 1 so as to be the same. Is a ferrite magnet,
It is formed by one of an Sm-Co based magnet, a Ne-Fe-B based magnet, or a dispersion type composite magnet in which the various magnets are combined with a polymer material, and is magnetized in one direction perpendicular to the rotation axis 10. I have. 52 is a ring-shaped fixed body provided on the outer peripheral side of the permanent magnet 51, 53 is four magnetic field detecting elements attached to the fixed body 52 at 90 ° intervals in the circumferential direction,
Face each other with a gap with respect to the outer peripheral surface of the permanent magnet 51, and the A 1 phase detection element 531 and B 1 phase detection element 532 provided by shifting the 90-degree phase in mechanical angle from each other, further A 1-phase detecting element The A 2 phase detection element 533 is shifted 180 degrees in mechanical angle with respect to 531, and the B 2 phase detection element 534 is shifted 180 degrees in mechanical angle with respect to the B 1 phase detection element 532.
Is provided. FIG. 2B is a circuit diagram illustrating the signal processing circuit 6 that processes the phase signals A 1 , A 2 , B 1 , and B 2 output from the magnetic field detection element 53. The signal processing circuit 6 is a differential amplifier 61 for outputting a differential signal V a of A 1-phase and A 2-phase, B
A differential amplifier 62 that outputs a one- phase and a two- phase differential signal Vb
If, arctan and a differential signal V a and V b (V a / V b )
And an angle calculation circuit 63 for calculating the rotation angle by performing the above calculation. When the permanent magnet is rotated according to the rotation of the rotating body by such a configuration, and the rotation angle is θ,
Sin θ from the A 1 phase detector, c from the B 1 phase detector
A voltage proportional to osθ is generated. Here, paying attention to the detection signals of the A 1 phase detection element and the A 2 phase detection element, since the basic signals of both are 180 degrees out of phase, the positive and negative are reversed, but they are superimposed on the basic signal. The phase of the even-order harmonic component does not shift. Therefore, it is possible to obtain a waveform which does not contain the even-order harmonics by using a differential signal V a of A 1 phase detection element and A 2-phase detecting element. The differential signal V of the B 1 phase detection element and the B 2 phase detection element obtained in the same manner
and b, by dividing with a signal processing circuit 6 a differential signal V a of A 1 phase detection element and A 2-phase detecting element can be obtained angle information of the rotating body 1.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、エンコーダの精度は高調波に起因する波形の歪み、
すなわち理想的な正弦波、余弦波に対する誤差に依存す
るため、エンコーダの精度を高めるには高調波成分を低
減する必要があった。しかしながら、上記に示した従来
の構成では、偶数次の高調波を除去することはできる
が、奇数次の高調波を除去することができず、次数の高
い成分のレベルは大きくないので影響は少ないが、実質
的には3、5次程度の高調波のレベルが大きいため、そ
の結果、エンコーダの精度を向上することができないと
いった問題があった。そこで、本発明は、磁界検出素子
の検出信号に重畳した奇数次の高調波成分を除去するこ
とができ、高精度の磁気式エンコーダを提供することを
目的とする。
However, in the prior art, the accuracy of the encoder is such that waveform distortion due to harmonics,
That is, since it depends on an error with respect to ideal sine waves and cosine waves, it is necessary to reduce harmonic components in order to increase the accuracy of the encoder. However, in the above-described conventional configuration, even-order harmonics can be removed, but odd-order harmonics cannot be removed, and the level of high-order components is not large, so the effect is small. However, since the levels of the third and fifth harmonics are substantially large, there has been a problem that the accuracy of the encoder cannot be improved. Therefore, an object of the present invention is to provide a high-precision magnetic encoder capable of removing odd-order harmonic components superimposed on a detection signal of a magnetic field detection element.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は回転体に固定され、且つ、前記回転体の軸
と垂直な一方向に磁化された円板状の永久磁石と、前記
永久磁石の外周側に空隙を介して対向するように配置さ
れたリング状の固定体と、前記固定体の周方向に少なく
とも2個取り付けた磁界検出素子と、前記磁界検出素子
からの信号を処理する信号処理回路とを備えた磁気式エ
ンコーダにおいて、前記回転体の回転軸端部から軸方向
に向かって、前記永久磁石と前記磁界検出素子とをそれ
ぞれ一組とする第1の磁界検出ユニットおよび第2の磁
界検出ユニットがギヤを介して連結してあり、前記第1
の磁界検出ユニットに連結されたギヤと第2の磁界検出
ユニットに連結されたギヤの歯数比は、前記第2の磁界
検出ユニットに設けた永久磁石の回転数が前記第1の磁
界検出ユニットに設けた永久磁石の回転数の奇数倍にな
るような増速する比率に設定してあり、前記信号処理回
路は、前記第1および第2の磁界検出ユニットのそれぞ
れに設けた磁界検出素子間の差動信号を処理する差動ア
ンプと、前記差動アンプにより処理された前記第2の磁
界検出ユニットの差動信号を整形する信号整形回路と、
前記差動アンプにより処理された前記第1の磁界検出ユ
ニットの差動信号を前記信号整形回路により得た信号で
補正する角度演算回路とが設けてあり、前記角度演算回
路により前記第1の磁界検出ユニットに重畳した奇数次
の高調波成分を除去するようにしたものである。上記手
段により、第1の磁界検出ユニットの磁界検出素子から
奇数次の高調波成分を含んだ正弦波信号と余弦波信号が
発生しても、第1の磁界検出ユニットからの信号を第2
の磁界検出ユニットに設けた信号整形回路により補正し
た回転角度信号として検出されるので、理想波形に重畳
した奇数次の高調波成分が除去される。その結果、歪み
のない理想的な正弦波または余弦波を生成することが可
能となる。
According to the present invention, there is provided a disk-shaped permanent magnet fixed to a rotating body and magnetized in one direction perpendicular to the axis of the rotating body. A ring-shaped fixed body disposed so as to face the outer peripheral side of the permanent magnet via a gap, at least two magnetic field detecting elements attached in the circumferential direction of the fixed body, and processing signals from the magnetic field detecting element A magnetic field encoder comprising: a first magnetic field detection unit including a pair of the permanent magnet and the magnetic field detection element in the axial direction from an end of the rotation shaft of the rotating body; A second magnetic field detection unit connected via a gear;
The ratio of the number of teeth of the gear connected to the magnetic field detecting unit to the number of gears connected to the second magnetic field detecting unit is determined by the rotational speed of the permanent magnet provided in the second magnetic field detecting unit. The signal processing circuit is configured to increase the speed so as to be an odd multiple of the number of revolutions of the permanent magnet provided in the first and second magnetic field detection units. And a signal shaping circuit that shapes the differential signal of the second magnetic field detection unit processed by the differential amplifier;
An angle calculation circuit for correcting a differential signal of the first magnetic field detection unit processed by the differential amplifier with a signal obtained by the signal shaping circuit, wherein the first magnetic field is corrected by the angle calculation circuit. In this configuration, odd-order harmonic components superimposed on the detection unit are removed. Even if a sine wave signal and a cosine wave signal containing odd harmonic components are generated from the magnetic field detecting element of the first magnetic field detecting unit, the signal from the first magnetic field detecting unit is converted to the second signal.
Is detected as a rotation angle signal corrected by a signal shaping circuit provided in the magnetic field detection unit, and thus, odd-order harmonic components superimposed on the ideal waveform are removed. As a result, it is possible to generate an ideal sine wave or cosine wave without distortion.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は本発明の実施例を示す磁気式エン
コーダであって、(a)は磁気式エンコーダの構成を示
す斜視図、(b)は磁界検出素子から出力される各相信
号を処理する信号処理回路を示すブロック図である。本
発明の磁気式エンコーダは、回転体の回転軸の回りに装
着した永久磁石と、固定体に設けた磁界検出素子とを設
けた点は基本的に同じであるが、永久磁石と磁界検出素
子とを一組とする磁界検出ユニットを二組設け、回転体
側の一方の磁界検出ユニットから他方の磁界検出ユニッ
トに対してギヤを介して増速するようにした点で異なっ
ている。以下この相違点について説明する。まず、本発
明の磁気式エンコーダの構成について説明する。図1
(a)において、2は回転体1の回転軸10に装着した
永久磁石21と、固定体22に設けた磁界検出素子23
とからなる第1の磁界検出ユニットであり、3は第1の
磁界検出ユニット2の回転体1と反対側の端部に配置し
た永久磁石31と、固定体32に設けた磁界検出素子3
3とよりなる第2の磁界検出ユニットである。また、2
4は第1の磁界検出ユニット2の回転軸1に連結したギ
ヤ、34は第2の磁界検出ユニット3の回転軸30に連
結したギヤである。ここで、磁界検出ユニット2の検出
信号に重畳した奇数次の高調波成分を除去するために、
第1および第2の磁界検出ユニット2、3にそれぞれ連
結されたギヤ24と34の歯数比を、第2の磁界検出ユ
ニット3に設けた永久磁石31の回転数が第1の磁界検
出ユニット2に設けた永久磁石21の回転数の奇数倍に
なるような比率に設定してある。次に、本発明の磁気式
エンコーダにおける信号処理回路について説明する。信
号処理回路5には、磁界検出ユニット2に対して、A11
相検出素子231、A 12相検出素子233それぞれの出
力信号であるVA11とVA12の差動信号VA1を出力する差
動アンプ41と、B11相検出素子232、B12相検出素
子234それぞれの出力信号であるVB11とVB12の差動
信号VB1を出力する差動アンプ42とを設けている。さ
らに、磁界検出ユニット3に対して、A21相検出素子3
31、A 22相検出素子333それぞれの出力信号である
A21とVA22の差動信号VA2を出力する差動アンプ43
と、B21相検出素子332、B22相検出素子334それ
ぞれの出力信号であるVB21とVB22の差動信号VB2を出
力する差動アンプ42とを設けている。また、45は信
号整形回路で、磁界検出ユニット3により生成された信
号の振幅および位相を整形する信号処理回路である。4
6は磁界検出ユニット2より検出される角度信号を信号
整形回路45で整形した信号で補正するようにした角度
演算回路である。次に磁気式エンコーダの動作について
説明する。まず、第1の磁界検出ユニット2に設けたギ
ヤ24と第2の磁界検出ユニット3に設けたギヤ34と
の歯数比を、第2の磁界検出ユニット3の回転数が、第
1の磁界検出ユニット2の回転数の3倍になるような比
率3:1に設定する。このようなギヤ比で連結された二
組の磁界検出ユニットのうち、第1の磁界検出ユニット
2に接続された回転体1を回転させると、第2の磁界検
出ユニット3の永久磁石31は第1の磁界検出ユニット
2の永久磁石21の3倍に増速されるため、第2の磁界
検出ユニット3において、第1の磁界検出ユニット2に
重畳する3次高調波と同周期の信号が発生する。この
後、第2の磁界検出ユニット3で生成された3次高調波
成分の信号は信号整形回路45に送られ、信号整形回路
45において その信号の振幅および位相が整形され
る。さらに信号整形回路45で整形された信号と第1の
磁界検出ユニット2より検出される角度信号とが角度演
算回路46に送られ、第1の磁界検出ユニット2の角度
検出信号が信号整形回路45で整形された信号によって
補正される。これより最終的に第1の磁界検出ユニット
に重畳した奇数次の3次高調波が除去される。このよう
に、第1の磁界検出ユニットと、第1の磁界検出ユニッ
トからの正弦波および余弦波信号に重畳している奇数次
の高調波成分と同周期の信号を発生させるようにギヤ機
構を介して配設された第2の磁界検出ユニットと、第2
の磁界検出ユニットに重畳した3次高調波と同周期の信
号を整形する信号整形回路と、第1の磁界検出ユニット
の信号から第2の磁界検出ユニットの信号を差し引くこ
とで回転角度信号を補正する角度演算回路を設けたの
で、第1の磁界検出ユニットの重畳している奇数次の高
調波成分を除去することができる。なお、磁界検出ユニ
ット2により検出された信号に重畳した3次高調波の振
幅および位相と、磁界検出ユニット3により生成された
信号の振幅および位相と異なっている場合は、振幅に関
しては、処理回路に設けた図示しないオペアンプで信号
を増幅することにより振幅の調整が可能であり、また、
位相に関しては、磁界検出ユニット3により生成された
2つの信号を適当な配分で足し合わせることで調整可能
である。また、本実施例では、簡略化のために永久磁石
と磁界検出素子を組み合わせた一組の磁界検出ユニット
を2組用いているが、複数個の磁界検出ユニットを配設
するようにしても構わない。すなわち、第3、第4の磁
界検出ユニットとギヤを配設することで、5次、7次の
高調波成分を除去することができる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;
Will be described. FIG. 1 is a magnetic engine showing an embodiment of the present invention.
(A) shows the configuration of a magnetic encoder
FIG. 3B is a perspective view, and FIG.
FIG. 3 is a block diagram illustrating a signal processing circuit that processes a signal. Book
The magnetic encoder of the invention is mounted around the rotation axis of the rotating body.
The attached permanent magnet and the magnetic field detecting element
The digits are basically the same, but the permanent magnet and the magnetic field
Two sets of magnetic field detection units, one set of
From one magnetic field detection unit on the other side.
In that the speed is increased through gears
ing. Hereinafter, this difference will be described. First,
The configuration of the magnetic encoder will be described. FIG.
In (a), 2 is attached to the rotating shaft 10 of the rotating body 1.
Permanent magnet 21 and magnetic field detecting element 23 provided on fixed body 22
And 3 is a first magnetic field detecting unit.
It is arranged at the end of the magnetic field detecting unit 2 opposite to the rotating body 1.
Permanent magnet 31 and magnetic field detecting element 3 provided on fixed body 32
3 is a second magnetic field detection unit. Also, 2
Reference numeral 4 denotes a gear connected to the rotation shaft 1 of the first magnetic field detection unit 2.
And 34 are connected to the rotating shaft 30 of the second magnetic field detection unit 3.
This is a tied gear. Here, the detection of the magnetic field detection unit 2
In order to remove odd harmonic components superimposed on the signal,
Connected to the first and second magnetic field detection units 2 and 3, respectively.
The gear ratio between the connected gears 24 and 34 is determined by the second magnetic field detection unit.
The number of rotations of the permanent magnet 31 provided on the knit 3 is determined by the first magnetic field detection.
Odd number times the number of rotations of the permanent magnet 21 provided in the output unit 2
The ratio is set as follows. Next, the magnetic type of the present invention
A signal processing circuit in the encoder will be described. Faith
The signal processing circuit 5 includes, for the magnetic field detection unit 2,11
Phase detection element 231, A 12Output of each phase detection element 233
V which is a force signalA11And VA12Differential signal VA1Output difference
Dynamic amplifier 41 and B11Phase detection element 232, B12Phase detector
V, which is the output signal of eachB11And VB12Differential
Signal VB1Is output. Sa
Further, for the magnetic field detection unit 3, Atwenty onePhase detection element 3
31, A twenty twoIt is an output signal of each of the phase detection elements 333.
VA21And VA22Differential signal VA2Differential amplifier 43 that outputs
And Btwenty onePhase detection element 332, Btwenty twoPhase detection element 334 it
Each output signal VB21And VB22Differential signal VB2Out
And a differential amplifier 42 for powering. In addition, 45
Signal generated by the magnetic field detection unit 3 in the signal shaping circuit.
This is a signal processing circuit for shaping the amplitude and phase of the signal. 4
Reference numeral 6 denotes an angle signal detected by the magnetic field detection unit 2.
Angle corrected by signal shaped by shaping circuit 45
An arithmetic circuit. Next, the operation of the magnetic encoder
explain. First, the gear provided in the first magnetic field detection unit 2
Gear 24 and a gear 34 provided on the second magnetic field detection unit 3.
And the number of rotations of the second magnetic field detection unit 3
A ratio that is three times the number of rotations of the magnetic field detection unit 2
Set the ratio to 3: 1. Two gears connected with such a gear ratio
A first magnetic field detection unit of the set of magnetic field detection units
When rotating the rotating body 1 connected to the second magnetic field 2, the second magnetic field detection
The permanent magnet 31 of the output unit 3 is a first magnetic field detection unit.
The second magnetic field is increased by three times the speed of the second permanent magnet 21.
In the detection unit 3, the first magnetic field detection unit 2
A signal having the same cycle as the third harmonic to be superimposed is generated. this
Then, the third harmonic generated by the second magnetic field detection unit 3
The signal of the component is sent to the signal shaping circuit 45,
At 45, the amplitude and phase of the signal are shaped
You. Further, the signal shaped by the signal shaping circuit 45 and the first
The angle signal detected by the magnetic field detection unit 2 and the angle signal
The angle of the first magnetic field detection unit 2
The detection signal is obtained by the signal shaped by the signal shaping circuit 45.
Will be corrected. From this, finally, the first magnetic field detection unit
And the third harmonic of the odd number superimposed on the third harmonic is removed. like this
A first magnetic field detection unit and a first magnetic field detection unit.
Odd order superimposed on the sine and cosine signals from
Gear machine to generate a signal with the same period as the harmonic components of
A second magnetic field detection unit disposed via the
Of the same period as the third harmonic superimposed on the magnetic field detection unit
Signal shaping circuit for shaping a signal, and a first magnetic field detection unit
Subtract the signal of the second magnetic field detection unit from the signal of
And an angle calculation circuit to correct the rotation angle signal is provided.
, The odd-order high superimposed on the first magnetic field detection unit.
Harmonic components can be removed. The magnetic field detection unit
Of the third harmonic superimposed on the signal detected by
Width and phase and generated by the magnetic field detection unit 3
If it is different from the signal amplitude and phase,
The signal is output by an operational amplifier (not shown) provided in the processing circuit.
The amplitude can be adjusted by amplifying
As for the phase, the phase was generated by the magnetic field detection unit 3.
Adjustable by adding the two signals together in an appropriate distribution
It is. In the present embodiment, a permanent magnet is used for simplicity.
Set of magnetic field detection unit combining a magnetic field detection element
, But two or more magnetic field detection units are provided.
You may do it. That is, the third and fourth magnetic
By arranging the field detection unit and the gear, the 5th and 7th order
Harmonic components can be removed.

【0006】[0006]

【発明の効果】以上述べたように、本発明によれば、従
来除去することができなかった磁界検出素子の検出信号
に重畳した奇数次の高調波成分を除去することが可能と
なり、歪みのない理想的な正弦波および余弦波を生成で
き、その結果、精度の高い磁気式エンコーダを提供でき
るという効果がある。
As described above, according to the present invention, it is possible to remove an odd-order harmonic component superimposed on a detection signal of a magnetic field detection element, which cannot be removed conventionally, and to reduce distortion. It is possible to generate ideal sine waves and cosine waves, and as a result, it is possible to provide a highly accurate magnetic encoder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す磁気式エンコーダであっ
て、(a)は磁気式エンコーダの構成を示す斜視図、
(b)は磁界検出素子から出力される各相信号を処理す
る信号処理回路を示すブロック図である。
FIG. 1 is a magnetic encoder showing an embodiment of the present invention, in which (a) is a perspective view showing a configuration of a magnetic encoder;
FIG. 3B is a block diagram illustrating a signal processing circuit that processes each phase signal output from the magnetic field detection element.

【図2】従来の磁気式エンコーダであって、(a)は磁
気式エンコーダの構成を示す斜視図、(b)は磁界検出
素子から出力される各相信号を処理する信号処理回路を
示すブロック図である。
FIG. 2 is a perspective view showing a conventional magnetic encoder, in which (a) is a perspective view showing a configuration of the magnetic encoder, and (b) is a block showing a signal processing circuit for processing each phase signal output from a magnetic field detection element. FIG.

【符号の説明】[Explanation of symbols]

1:回転体 10、30 回転軸 2 第1の磁界検出ユニット 3 第2の磁界検出ユニット 21、31 永久磁石 22、32 固定体 23、33 磁界検出素子 231 A11相検出素子 232 B11相検出素子 233 A12相検出素子 234 B12相検出素子 24、34 ギヤ 331 A21相検出素子 332 B21相検出素子 333 A22相検出素子 334 B22相検出素子 4 信号処理回路 41〜44 差動アンプ 45 信号整形回路 46 角度演算回路1: Rotating body 10, 30 Rotation axis 2 First magnetic field detecting unit 3 Second magnetic field detecting unit 21, 31 Permanent magnet 22, 32 Fixed body 23, 33 Magnetic field detecting element 231 A 11 phase detecting element 232 B 11 phase detecting Element 233 A 12- phase detection element 234 B 12- phase detection element 24, 34 Gear 331 A 21- phase detection element 332 B 21- phase detection element 333 A 22- phase detection element 334 B 22- phase detection element 4 Signal processing circuit 41 to 44 Differential Amplifier 45 Signal shaping circuit 46 Angle calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転体に固定され、且つ、前記回転体の軸
と垂直な一方向に磁化された円板状の永久磁石と、前記
永久磁石の外周側に空隙を介して対向するように配置さ
れたリング状の固定体と、前記固定体の周方向に少なく
とも2個取り付けた磁界検出素子と、前記磁界検出素子
からの信号を処理する信号処理回路とを備えた磁気式エ
ンコーダにおいて、前記回転体の回転軸端部から軸方向
に向かって、前記永久磁石と前記磁界検出素子とをそれ
ぞれ一組とする第1の磁界検出ユニットおよび第2の磁
界検出ユニットがギヤを介して連結してあり、前記第1
の磁界検出ユニットに連結されたギヤと第2の磁界検出
ユニットに連結されたギヤの歯数比は、前記第2の磁界
検出ユニットに設けた永久磁石の回転数が前記第1の磁
界検出ユニットに設けた永久磁石の回転数の奇数倍にな
るような増速する比率に設定してあり、前記信号処理回
路は、前記第1および第2の磁界検出ユニットのそれぞ
れに設けた磁界検出素子間の差動信号を処理する差動ア
ンプと、前記差動アンプにより処理された前記第2の磁
界検出ユニットの差動信号を整形する信号整形回路と、
前記差動アンプにより処理された前記第1の磁界検出ユ
ニットの差動信号を前記信号整形回路により得た信号で
補正する角度演算回路とが設けてあり、前記角度演算回
路により、前記第1の磁界検出ユニットに重畳した奇数
次の高調波成分を除去するようにしたことを特徴とする
磁気式エンコーダ。
1. A disk-shaped permanent magnet fixed to a rotating body and magnetized in one direction perpendicular to the axis of the rotating body so as to face an outer peripheral side of the permanent magnet via a gap. In a magnetic encoder comprising a ring-shaped fixed body disposed, at least two magnetic field detecting elements attached in a circumferential direction of the fixed body, and a signal processing circuit for processing a signal from the magnetic field detecting element, A first magnetic field detection unit and a second magnetic field detection unit each including a pair of the permanent magnet and the magnetic field detection element are connected to each other via a gear from the end of the rotation shaft of the rotating body toward the axial direction. Yes, the first
The ratio of the number of teeth of the gear connected to the magnetic field detecting unit to the number of gears connected to the second magnetic field detecting unit is determined by the rotational speed of the permanent magnet provided in the second magnetic field detecting unit. The signal processing circuit is configured to increase the speed so as to be an odd multiple of the number of revolutions of the permanent magnet provided in the first and second magnetic field detection units. And a signal shaping circuit that shapes the differential signal of the second magnetic field detection unit processed by the differential amplifier;
An angle calculation circuit for correcting a differential signal of the first magnetic field detection unit processed by the differential amplifier with a signal obtained by the signal shaping circuit, wherein the angle calculation circuit A magnetic encoder characterized in that odd harmonic components superimposed on a magnetic field detection unit are removed.
JP25958698A 1998-09-14 1998-09-14 Magnetic encoder Expired - Fee Related JP3882974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25958698A JP3882974B2 (en) 1998-09-14 1998-09-14 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25958698A JP3882974B2 (en) 1998-09-14 1998-09-14 Magnetic encoder

Publications (2)

Publication Number Publication Date
JP2000088601A true JP2000088601A (en) 2000-03-31
JP3882974B2 JP3882974B2 (en) 2007-02-21

Family

ID=17336175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25958698A Expired - Fee Related JP3882974B2 (en) 1998-09-14 1998-09-14 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP3882974B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451107B1 (en) * 2002-03-13 2004-10-06 주식회사 협성사 Absolute Encoder
KR101379007B1 (en) 2011-12-30 2014-03-27 주식회사 트루윈 Signal Processing Method for Wide Angle Realization of Inductive Angle Sensor
JP2014142300A (en) * 2013-01-25 2014-08-07 A & D Co Ltd Apparatus and method for rotational analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451107B1 (en) * 2002-03-13 2004-10-06 주식회사 협성사 Absolute Encoder
KR101379007B1 (en) 2011-12-30 2014-03-27 주식회사 트루윈 Signal Processing Method for Wide Angle Realization of Inductive Angle Sensor
JP2014142300A (en) * 2013-01-25 2014-08-07 A & D Co Ltd Apparatus and method for rotational analysis

Also Published As

Publication number Publication date
JP3882974B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP4836058B2 (en) Magnetic encoder device
JP4858855B2 (en) Rotation angle detector and rotating machine
CN108291799B (en) Angle detection device and electric power steering device
US4791366A (en) Apparatus including a pair of angularly spaced sensors for detecting angle of rotation of a rotary member
CN101400971A (en) System for detecting an absolute angular position by differential comparison, rolling bearing and rotary machine
US10584953B2 (en) Angle detection device and electric power steering device
JP6969581B2 (en) Rotation angle detector
JP4142607B2 (en) Variable reluctance resolver
JP4239051B2 (en) Magnetic encoder and motor with magnetic encoder
JPH0587512A (en) Multiple-displacement detection device
JPWO2007055135A1 (en) Magnetic encoder device
JP2001033277A5 (en) Magnetic encoder and motor with magnetic encoder
JP2012042353A (en) Rotation angle and torque sensor
JP2000065596A (en) Magnetic encoder
JP2005180942A (en) Rotational angle detector
JP2006208049A (en) Rotation angle detection apparatus
WO2009084346A1 (en) Magnetic encoder
JP2000088601A (en) Magnetic type encoder
JPH1019602A (en) Magnetic encoder
JP4862838B2 (en) Rotation detector
WO2021158265A1 (en) Position sensor system using equidistantly spaced magnetic sensor arrays
JP4798473B2 (en) Position detection device
JP2613059B2 (en) Magnetic sensor
JP2003161643A (en) Combined detector on angle and angular velocity
JP2554472B2 (en) Rotation position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees