JP2000088427A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2000088427A
JP2000088427A JP10254190A JP25419098A JP2000088427A JP 2000088427 A JP2000088427 A JP 2000088427A JP 10254190 A JP10254190 A JP 10254190A JP 25419098 A JP25419098 A JP 25419098A JP 2000088427 A JP2000088427 A JP 2000088427A
Authority
JP
Japan
Prior art keywords
valve
evaporator
temperature
refrigerator
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10254190A
Other languages
Japanese (ja)
Other versions
JP3456902B2 (en
Inventor
Shinji Hirai
愼二 平井
Norifumi Iimura
典史 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP25419098A priority Critical patent/JP3456902B2/en
Priority to TW088103850A priority patent/TW558625B/en
Priority to KR1019990015841A priority patent/KR100332290B1/en
Priority to CNB991086910A priority patent/CN1332165C/en
Publication of JP2000088427A publication Critical patent/JP2000088427A/en
Application granted granted Critical
Publication of JP3456902B2 publication Critical patent/JP3456902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of sensing a valve leakage and removing refuse adhered to a valve mechanism. SOLUTION: In the refrigerator for switching via a three-way valve 68 in the case of supplying a refrigerant to an R evaporator 34 (evaporator for a deep freezing chamber) and an F evaporator 24 (evaporator for a cold storage chamber), a condenser 46 is connected to a compressor 20, and the valve 68 is connected to the condenser 26. One of two refrigerant channels branched from the valve 68 is connected to a capillary tube 50 for a cold storage chamber, and connected to the R evaporator 34. The other channel branched from the valve 68 is connected to the F evaporator 24 via a capillary tube 52 for a deep freezing chamber. The channels of the evaporators 24, 34 are converged to one and circulated to the compressor 20. In the case of sensing a valve leakage of the valve 68 the valve 68 is forcibly operated to remove refuse thereby releasing the leakage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2つの蒸発器を持
つ冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having two evaporators.

【0002】[0002]

【従来の技術】最近の冷蔵庫においては、冷蔵室と冷凍
室をそれぞれ効率よく冷却するために、冷蔵用蒸発器と
冷凍用蒸発器を持つものが提案されている。
2. Description of the Related Art In recent years, a refrigerator having a refrigerating evaporator and a refrigerating evaporator has been proposed in order to efficiently cool a refrigerating compartment and a freezing compartment, respectively.

【0003】そして、これら2つの蒸発器を1つの圧縮
機から送られてきた冷媒で効率よく冷却するために、冷
媒流路の途中に三方弁を配し、この三方弁の切り替えに
よって冷媒が冷蔵用蒸発器または冷凍用蒸発器に送られ
るかが決定される。
In order to efficiently cool these two evaporators with the refrigerant sent from one compressor, a three-way valve is arranged in the middle of the refrigerant flow path, and the refrigerant is refrigerated by switching the three-way valve. It is determined whether it is sent to the evaporator or the refrigeration evaporator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、冷媒流
路には製造時等においてゴミが混入する場合があり、こ
のゴミが三方弁の中で詰まって、三方弁が正常に作動せ
ず、いわゆる弁漏れが発生する場合がある。
However, dust may be mixed in the refrigerant flow path during manufacturing or the like, and the dust is clogged in the three-way valve, and the three-way valve does not operate normally. Leaks may occur.

【0005】弁漏れとは、三方弁が冷凍用蒸発器に切り
替わっているのにもかかわらず、冷媒が冷凍用蒸発器側
に流れるだけでなく冷蔵用蒸発器側に漏れて流れたり、
また逆に、冷蔵用蒸発器に切り替わっているにもかかわ
らず、冷媒が冷蔵用蒸発器側に流れるだけでなく冷凍用
蒸発器に漏れて流れたりする現象である。そして、従来
の冷蔵庫ではこのような弁漏れ現象を検知することがで
きなかった。
[0005] Valve leakage means that, despite the fact that the three-way valve is switched to the refrigeration evaporator, the refrigerant not only flows to the refrigeration evaporator but also leaks and flows to the refrigeration evaporator.
Conversely, despite the switching to the refrigeration evaporator, the phenomenon is such that the refrigerant not only flows to the refrigeration evaporator but also leaks and flows to the refrigeration evaporator. And the conventional refrigerator could not detect such a valve leakage phenomenon.

【0006】また、このような弁漏れ現象が発生した場
合に、三方弁に付着したゴミを取り除く構造は従来の冷
蔵庫にはなかった。
Further, when such a valve leakage phenomenon occurs, there is no structure in a conventional refrigerator for removing dust adhering to the three-way valve.

【0007】そこで、本発明は上記問題点に鑑み、弁漏
れを検知することができるとともに、弁機構に付着した
ゴミを取り除くことができる冷蔵庫を提供する。
In view of the above problems, the present invention provides a refrigerator capable of detecting valve leakage and removing dust adhering to the valve mechanism.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1の冷蔵
庫は、圧縮機と、凝縮器と、冷蔵用絞り機構と、冷蔵室
に対応した冷蔵用蒸発器と、冷凍用絞り機構と、冷凍室
に対応した冷凍用蒸発器とを接続して冷媒流路を構成
し、弁機構により冷媒流路を切替えて、冷蔵用絞り機構
を介して冷蔵用蒸発器側へ冷媒を流す冷蔵モードと、冷
凍用絞り機構を介して冷凍用蒸発器のみに冷媒を流す冷
凍モードとが実現できる冷蔵庫において、弁機構の冷蔵
用蒸発器への冷媒の弁漏れ、または、冷凍用蒸発器への
冷媒の弁漏れを判断する弁漏れ判断手段とを有するもの
である。
According to a first aspect of the present invention, there is provided a refrigerator comprising a compressor, a condenser, a refrigerating throttle mechanism, a refrigerating evaporator corresponding to a refrigerating chamber, a refrigerating throttle mechanism, A refrigeration mode in which a refrigerant flow path is formed by connecting a refrigeration evaporator corresponding to a freezing room, a refrigerant flow path is switched by a valve mechanism, and refrigerant flows to the refrigeration evaporator side via a refrigeration throttle mechanism. In a refrigerator that can realize a refrigerating mode in which a refrigerant flows only to a refrigerating evaporator through a refrigerating throttle mechanism, a valve leaks to a refrigerating evaporator of a valve mechanism, or a refrigerant leaks to a refrigerating evaporator. And a valve leakage determining means for determining valve leakage.

【0009】請求項2の冷蔵庫は、請求項1のものにお
いて、前記冷蔵庫は、冷蔵用蒸発器の温度を検知する冷
蔵用蒸発器温度検知手段を有し、弁漏れ判断手段は、冷
凍モードにおいて、冷蔵用蒸発器温度検知手段で検知し
た温度が設定温度以下になると、弁機構の冷蔵用蒸発器
への冷媒の弁漏れと判断するものである。
A refrigerator according to a second aspect of the present invention is the refrigerator according to the first aspect, wherein the refrigerator has refrigeration evaporator temperature detection means for detecting the temperature of the refrigeration evaporator, and the valve leak determination means is provided in the freezing mode. When the temperature detected by the refrigeration evaporator temperature detecting means becomes equal to or lower than the set temperature, it is determined that the refrigerant is leaking to the refrigeration evaporator of the valve mechanism.

【0010】請求項3の冷蔵庫は、請求項1のものにお
いて、前記冷蔵庫は、冷蔵用蒸発器の温度を検知する冷
蔵用蒸発器温度検知手段を有し、弁漏れ判断手段は、冷
凍モードにおいて、冷蔵用蒸発器温度検知手段で検知し
た温度が設定温度以下になり、かつ、圧縮機の運転周波
数が設定周波数より高い時に、弁機構の冷蔵用蒸発器へ
の冷媒の弁漏れと判断するものである。
A refrigerator according to a third aspect of the present invention is the refrigerator according to the first aspect, wherein the refrigerator has a refrigerator evaporator temperature detecting means for detecting a temperature of the refrigerator evaporator, and the valve leak judging means is in a freezing mode. When the temperature detected by the refrigerating evaporator temperature detecting means is equal to or lower than the set temperature and the operating frequency of the compressor is higher than the set frequency, it is determined that the refrigerant leaks to the refrigerating evaporator of the valve mechanism. It is.

【0011】請求項4の冷蔵庫は、請求項1のものにお
いて、前記冷蔵庫は、冷蔵用蒸発器の温度を検知する冷
蔵用蒸発器温度検知手段を有し、弁漏れ判断手段は、冷
凍モードにおいて、冷蔵用蒸発器温度検知手段で検知し
た温度と、この冷蔵用蒸発器温度検知手段の冷蔵モード
時の温度との差が設定温度範囲内になると、弁機構の冷
蔵用蒸発器への冷媒の弁漏れと判断するものである。
According to a fourth aspect of the present invention, in the refrigerator according to the first aspect, the refrigerator has a refrigerator evaporator temperature detecting means for detecting a temperature of the refrigerator evaporator, and the valve leak judging means is provided in the freezing mode. When the difference between the temperature detected by the refrigerating evaporator temperature detecting means and the temperature in the refrigerating mode of the refrigerating evaporator temperature detecting means falls within a set temperature range, the refrigerant is supplied to the refrigerating evaporator of the valve mechanism. It is determined that the valve is leaking.

【0012】請求項5の冷蔵庫は、請求項1のものにお
いて、前記冷蔵庫は、冷凍用蒸発器の温度を検知する冷
凍用蒸発器温度検知手段を有し、弁漏れ判断手段は、冷
凍モードにおいて、冷凍用蒸発器温度検知手段で検知し
た温度と、この冷凍用蒸発器温度検知手段の冷蔵モード
時の温度との差が設定温度範囲内になると、弁機構の冷
蔵用蒸発器への冷媒の弁漏れと判断するものである。
A refrigerator according to a fifth aspect of the present invention is the refrigerator according to the first aspect, wherein the refrigerator has a refrigerating evaporator temperature detecting means for detecting a temperature of the refrigerating evaporator, and the valve leak judging means is provided in a refrigerating mode. When the difference between the temperature detected by the refrigerating evaporator temperature detecting means and the temperature in the refrigerating mode of the refrigerating evaporator temperature detecting means falls within a set temperature range, the refrigerant is supplied to the refrigerating evaporator of the valve mechanism. It is determined that the valve is leaking.

【0013】請求項6の冷蔵庫は、請求項1のものにお
いて、前記冷蔵庫は、冷凍用蒸発器の温度を検知する冷
凍用蒸発器温度検知手段を有し、弁漏れ判断手段は、冷
凍モードにおいて、冷凍用蒸発器温度検知手段で検知し
た温度が、この冷凍用蒸発器温度検知手段の冷蔵モード
時の温度との差が設定温度範囲内になると、弁機構の冷
凍用蒸発器への冷媒の弁漏れと判断するものである。
According to a sixth aspect of the present invention, there is provided the refrigerator according to the first aspect, wherein the refrigerator has a refrigerating evaporator temperature detecting means for detecting a temperature of the refrigerating evaporator, and the valve leak judging means is provided in a refrigerating mode. When the difference between the temperature detected by the refrigerating evaporator temperature detecting means and the temperature in the refrigerating mode of the refrigerating evaporator temperature detecting means falls within a set temperature range, the refrigerant is supplied to the refrigerating evaporator of the valve mechanism. It is determined that the valve is leaking.

【0014】請求項7の冷蔵庫は、請求項1のものにお
いて、弁漏れ判断手段が弁漏れと判断したときに、弁機
構を強制的に動作させて弁機構のゴミを取除くゴミ取除
き手段を有するものである。
According to a seventh aspect of the present invention, there is provided a refrigerator according to the first aspect, wherein when the valve leak determining means determines that the valve is leaking, the valve mechanism is forcibly operated to remove dust from the valve mechanism. It has.

【0015】請求項8の冷蔵庫は、請求項7のものにお
いて、ゴミ取除き手段は、弁漏れ判断手段が弁漏れと判
断したときに、圧縮機の運転周波数を上昇させつつ、弁
機構を強制的に動作させるものである。
In a refrigerator according to an eighth aspect of the present invention, the dust removing means forcibly activates the valve mechanism while increasing the operating frequency of the compressor when the valve leak determining means determines that the valve is leaking. It is intended to operate in a typical manner.

【0016】請求項9の冷蔵庫は、請求項7のものにお
いて、ゴミ取除き手段は、弁漏れ判断手段が弁漏れと判
断したときに、圧縮機の運転周波数を上昇させつつ、弁
機構を冷媒流路を切替えの途中で停止させるものであ
る。
According to a ninth aspect of the present invention, in the refrigerator according to the seventh aspect, when the valve leak determining means determines that the valve is leaking, the dust removing means increases the operating frequency of the compressor and changes the valve mechanism to the refrigerant. The flow path is stopped during the switching.

【0017】請求項10の冷蔵庫は、請求項7のものに
おいて、ゴミ取除き手段は、弁漏れ判断手段が弁漏れと
判断したときに、弁機構を通常の動作時間より短縮させ
て強制的に動作させるものである。
According to a tenth aspect of the present invention, in the refrigerator of the seventh aspect, the dust removing means forcibly shortens the valve mechanism from a normal operation time when the valve leak determining means determines that the valve is leaking. To make it work.

【0018】請求項11の冷蔵庫は、請求項10のもの
において、ゴミ取除き手段がゴミを取除いた後に、弁漏
れ判断手段が弁漏れと再び判断したときに、冷凍用蒸発
器と冷蔵用蒸発器との弁漏れ用除霜運転を行なう除霜制
御手段を有する。
The refrigerator according to an eleventh aspect of the present invention is the refrigerator according to the tenth aspect, wherein after the dust removing means removes the dust, when the valve leak judging means judges again that the valve is leaking, the refrigerating evaporator and the refrigeration unit are removed. There is a defrost control unit for performing a valve leak defrosting operation with the evaporator.

【0019】請求項12の冷蔵庫は、請求項11のもの
において、除霜制御手段は、通常の状態で冷凍用蒸発器
の除霜運転の間隔を冷蔵用蒸発器の除霜運転の間隔より
短く制御するものであり、弁漏れ用除霜運転を行なった
後に、弁漏れ判断手段が3回弁漏れと判断したときに、
冷凍用蒸発器と冷蔵用蒸発器との除霜運転の間隔を、冷
凍用蒸発器の除霜間隔とするものである。
According to a twelfth aspect of the present invention, in the refrigerator according to the eleventh aspect, the defrosting control means makes the interval of the defrosting operation of the refrigerating evaporator shorter than the interval of the defrosting operation of the refrigerating evaporator in a normal state. After performing the valve defrosting operation for valve leakage, when the valve leakage determining means determines that the valve is leaking three times,
The interval between the defrosting operations of the refrigerating evaporator and the refrigerating evaporator is defined as the defrosting interval of the refrigerating evaporator.

【0020】請求項1の冷蔵庫であると、弁漏れ判断手
段が、弁機構の弁漏れを判断することができる。
According to the refrigerator of the first aspect, the valve leak determining means can determine the valve leak of the valve mechanism.

【0021】請求項2の冷蔵庫であると、弁漏れ判断手
段は、冷凍モードにおいて、冷蔵用蒸発器温度検出手段
で検知した温度が設定温度以下になると、弁機構の冷蔵
用蒸発器への冷媒の弁漏れが発生していると判断する。
In the refrigerator according to the second aspect, the valve leak judging means, in the freezing mode, when the temperature detected by the refrigeration evaporator temperature detecting means falls below the set temperature, the refrigerant flowing to the refrigeration evaporator of the valve mechanism. It is determined that valve leakage has occurred.

【0022】請求項3の冷蔵庫であると、弁漏れ判断手
段は、冷凍モードにおいて、冷蔵用蒸発器温度検知手段
で検知した温度が設定温度以下になり、かつ、圧縮機の
運転周波数が設定周波数より高いときに、弁機構の冷蔵
用蒸発器への冷媒の弁漏れが発生したと判断する。
In the refrigerator according to the third aspect, the valve leak determining means is configured such that, in the refrigerating mode, the temperature detected by the refrigeration evaporator temperature detecting means becomes equal to or lower than the set temperature, and the operating frequency of the compressor is set to the set frequency. When it is higher, it is determined that the valve leakage of the refrigerant to the refrigerating evaporator of the valve mechanism has occurred.

【0023】請求項4の冷蔵庫であると、弁漏れ判断手
段は、冷凍モードにおいて、冷蔵用蒸発器温度検知手段
で検知した温度と、冷蔵モード時の温度との差が、設定
温度範囲内になると、弁機構の冷蔵用蒸発器への冷媒の
弁漏れが発生したと判断する。
In the refrigerator according to the fourth aspect, the valve leak judging means sets the difference between the temperature detected by the refrigerating evaporator temperature detecting means in the refrigerating mode and the temperature in the refrigerating mode within a set temperature range. Then, it is determined that the refrigerant has leaked to the refrigeration evaporator of the valve mechanism.

【0024】請求項5の冷蔵庫であると、弁漏れ判断手
段は、冷凍モードにおいて、冷凍用蒸発器温度検知手段
で検知した温度と、冷蔵モード時の温度との差が、設定
温度範囲内になると、弁機構の冷蔵用蒸発器への冷媒の
弁漏れが発生したと判断する。
In the refrigerator according to the fifth aspect, the valve leak judging means sets the difference between the temperature detected by the refrigerating evaporator temperature detecting means in the refrigerating mode and the temperature in the refrigerating mode within a set temperature range. Then, it is determined that the refrigerant has leaked to the refrigeration evaporator of the valve mechanism.

【0025】請求項6の冷蔵庫であると、弁漏れ判断手
段は、冷蔵モードにおいて、冷凍用蒸発器温度検知手段
で検知した温度が、冷蔵モード時の温度との差が、設定
温度範囲内になると、弁機構の冷凍用蒸発器への冷媒の
弁漏れが発生したと判断する。
In the refrigerator according to the sixth aspect, the valve leak judging means sets the difference between the temperature detected by the refrigerating evaporator temperature detecting means in the refrigeration mode and the temperature in the refrigeration mode within a set temperature range. Then, it is determined that the valve leakage of the refrigerant to the refrigeration evaporator of the valve mechanism has occurred.

【0026】請求項7の冷蔵庫であると、弁漏れ判断手
段が弁漏れと判断したときに、ゴミが弁機構に詰まって
いるため、ゴミ取除き手段は、弁機構を強制的に動作さ
せてそのゴミを取除く。
In the refrigerator according to the seventh aspect, when the valve leak judging means judges that the valve is leaking, dust is clogged in the valve mechanism. Therefore, the dust removing means forcibly operates the valve mechanism. Remove the trash.

【0027】請求項8の冷蔵庫であると、弁漏れ判断手
段が弁漏れと判断したときに、ゴミ取除き手段は、圧縮
機の運転周波数を上昇させつつ、弁機構を強制的に動作
させてゴミを吹き飛ばす。
In the refrigerator according to the eighth aspect, when the valve leak determining means determines that the valve is leaking, the dust removing means forcibly operates the valve mechanism while increasing the operating frequency of the compressor. Blow away garbage.

【0028】請求項9のゴミ取除き手段は、弁漏れ判断
手段が弁漏れと判断したときに、ゴミ取除き手段は、圧
縮機の運転周波数を上昇させつつ、弁機構を冷媒流路を
切り替える途中で停止させてゴミを取除く。
According to a ninth aspect of the present invention, when the valve leak determining means determines that the valve is leaking, the dust removing means switches the valve mechanism between the refrigerant flow paths while increasing the operating frequency of the compressor. Stop halfway and remove the trash.

【0029】請求項10の冷蔵庫であると、弁漏れ判断
手段が弁漏れと判断したときに、ゴミ取除き手段は、弁
機構を通常の動作時間より短縮させて強制的に動作させ
てゴミを取除く。
In the refrigerator according to the tenth aspect, when the valve leak determining means determines that the valve is leaking, the dust removing means forcibly operates the valve mechanism by shortening the valve mechanism from the normal operation time to remove the dust. Remove.

【0030】請求項11の冷蔵庫であると、ゴミ取除き
手段が弁機構を強制的に動作させた後に、弁漏れ判断手
段が弁漏れと再び判断したときに、冷凍用蒸発器と冷蔵
用蒸発器への着霜を防止するため弁漏れ用除霜運転を行
う。
In the refrigerator according to the eleventh aspect, after the dust removing means forcibly operates the valve mechanism and the valve leak judging means judges again that the valve is leaking, the refrigerating evaporator and the refrigerating evaporator may be used. Perform a valve defrosting defrosting operation to prevent frost formation on the vessel.

【0031】請求項12の冷蔵庫であると、除霜制御手
段は、除霜運転を行った後に弁漏れ判断手段が弁漏れと
3回判断したときに、冷凍用蒸発器と冷蔵用蒸発器の除
霜運転の間隔を、冷凍用蒸発器の除霜間隔として、従来
より短く除霜運転を行うものである。
In the refrigerator according to the twelfth aspect, the defrosting control means includes means for controlling the refrigerating evaporator and the refrigerating evaporator when the valve leak judging means judges the valve leak three times after performing the defrosting operation. The interval between the defrosting operations is set as the defrosting interval of the refrigerating evaporator, and the defrosting operation is performed shorter than before.

【0032】[0032]

【発明の実施の形態】以下、本発明の一実施例の冷蔵庫
10について図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator 10 according to one embodiment of the present invention will be described below with reference to the drawings.

【0033】図1は冷蔵庫10の簡略した縦断面図であ
り、電気系統の説明も兼ねた図である。また、図2は冷
蔵庫10の冷凍サイクルの説明図である。
FIG. 1 is a simplified vertical sectional view of the refrigerator 10 and also serves as an explanation of the electric system. FIG. 2 is an explanatory diagram of a refrigeration cycle of the refrigerator 10.

【0034】まず、図1に基づいて説明する。First, a description will be given with reference to FIG.

【0035】冷蔵庫10のキャビネット12には、上段
から冷蔵室14、野菜室16、冷凍室18が設けられて
いる。なお、この冷凍室18には、不図示の製氷装置が
設けられている。
In the cabinet 12 of the refrigerator 10, a refrigerator compartment 14, a vegetable compartment 16 and a freezing compartment 18 are provided from the top. The freezing compartment 18 is provided with an ice making device (not shown).

【0036】冷凍室18の背面底部には、圧縮機20が
配される機械室22が設けられている。また、冷凍室1
8の後方には、冷凍室用蒸発器(以下、Fエバという)
24が配され、Fエバ24の上方には、Fエバ24で発
生した冷気を冷凍室18に送風する冷凍室用ファン(以
下、Fファンという)26が設けられている。Fエバ2
4の下方には、Fエバ24の除霜を行う場合の除霜ヒー
タ(以下、F除霜ヒータという)28が設けられてい
る。Fエバ24の上部近傍には、Fエバ24の温度を検
知するためのFエバセンサ30が設けられている。
A machine room 22 in which a compressor 20 is arranged is provided at the bottom of the rear surface of the freezing room 18. In addition, freezer 1
At the back of 8, there is a freezer evaporator (hereinafter referred to as F-eva)
A freezing room fan (hereinafter, referred to as an F fan) 26 that blows cool air generated by the F eva 24 to the freezing room 18 is provided above the F eva 24. Feva 2
A defrost heater (hereinafter, referred to as an F defrost heater) 28 for performing defrosting of the fuel cell 24 is provided below the nozzle 4. An F-eva sensor 30 for detecting the temperature of the F-eva 24 is provided near the upper portion of the F-eva 24.

【0037】冷凍室18内部には、庫内温度を測定する
ための冷凍室用温度センサ(以下、Fセンサという)3
2が設けられている。
Inside the freezer compartment 18, a freezer compartment temperature sensor (hereinafter referred to as an F sensor) 3 for measuring the temperature inside the refrigerator is provided.
2 are provided.

【0038】野菜室16の背面には、冷蔵室用蒸発器
(以下、Rエバという)が設けられ、このRエバ34の
上方には冷蔵室用ファン(以下、Rファンという)36
が設けられ、Rエバ34の温度を検知するRエバセンサ
38が設けられている。、Rエバ34の下方には、Rエ
バ34の除霜を行うための除霜ヒータ(以下、R除霜ヒ
ータという)40が設けられている。
A refrigerator evaporator (hereinafter referred to as R-eva) is provided on the back of the vegetable compartment 16, and a refrigerator-fan (hereinafter referred to as R-fan) 36 above the R evaporator 34.
Are provided, and an R-eva sensor 38 for detecting the temperature of the R-eva 34 is provided. A defrost heater (hereinafter, referred to as an R defrost heater) 40 for defrosting the R evaporator 34 is provided below the R evaporator 34.

【0039】冷蔵室14の内部には、庫内温度を測定す
るための冷蔵室用温度センサ(以下、Rセンサという)
42が設けられている。
Inside the refrigerating compartment 14, a refrigerating compartment temperature sensor (hereinafter referred to as an R sensor) for measuring the temperature in the refrigerator.
42 are provided.

【0040】そして、これらFファン26、F除霜ヒー
タ28、Fエバセンサ30、Fセンサ32、Rファン3
6、Rエバセンサ38、R除霜ヒータ40及びRセンサ
42は、マイクロコンピュータよりなる制御装置44に
接続されている。この制御装置40は1枚の基板よりな
り、キャビネット12の背面上部に設けられている。ま
た、制御装置44には、圧縮機20のモータも接続され
ている。
The F fan 26, the F defrost heater 28, the F evaluation sensor 30, the F sensor 32, and the R fan 3
6. The R evaluation sensor 38, the R defrost heater 40, and the R sensor 42 are connected to a control device 44 including a microcomputer. The control device 40 is formed of a single board and is provided on the upper rear surface of the cabinet 12. Further, the motor of the compressor 20 is also connected to the control device 44.

【0041】次に、図1に基づいて冷気の流れを説明す
る。
Next, the flow of cool air will be described with reference to FIG.

【0042】Fエバ24によって冷却された冷気は、F
ファン26によって送風され冷凍室18を循環する。ま
た、Rエバ34によって冷却された冷気は、Rファン3
6によって野菜室16と冷蔵室14に送風され循環す
る。
The cool air cooled by the Feva 24 is
The air is blown by the fan 26 and circulates through the freezer 18. The cool air cooled by the R evaporator 34 is supplied to the R fan 3.
The air is sent to the vegetable compartment 16 and the refrigeration compartment 14 and circulated.

【0043】次に、図2に基づいて、これら冷凍サイク
ルの構造について説明する。
Next, the structure of these refrigeration cycles will be described with reference to FIG.

【0044】圧縮機20には凝縮器46が接続され、凝
縮器46には三方弁68が接続されている。三方弁68
から二股に分かれた冷媒流路の一方は、冷蔵室用キャピ
ラリチューブ(以下、Rキャピラリチューブという)5
0に接続され、Rエバ34に接続されている。また、三
方弁68から分かれた他方の冷媒流路は冷凍室用キャピ
ラリチューブ(以下、Fキャピラリチューブという)5
2を経てFエバ24に接続されている。そして、Fエバ
24とRエバ34の冷媒流路は、一つになって圧縮機2
0に循環する。
A condenser 46 is connected to the compressor 20, and a three-way valve 68 is connected to the condenser 46. Three-way valve 68
One of the refrigerant passages branched into two branches is a capillary tube for a refrigerator (hereinafter referred to as an R capillary tube) 5.
0 and connected to the R-Eva 34. The other refrigerant flow path divided from the three-way valve 68 is a capillary tube for a freezing room (hereinafter, referred to as an F capillary tube) 5.
2 and connected to the Fever 24. The refrigerant passages of the F-eva 24 and the R-eva 34 become one, and the compressor 2
Cycle to zero.

【0045】次に、図3に基づいて三方弁68について
説明する。
Next, the three-way valve 68 will be described with reference to FIG.

【0046】図3は、三方弁68の断面図を示し、コイ
ル102、磁石104、プランジャー106等からなる
いわゆるソレノイド構造となっている。プランジャー1
06の下部にピン108が設けられており、コイル10
2が例示されることでピン108が下方に駆動され、弁
体110をバネ112に反して下方に駆動するようにな
っている。この状態で凝縮器46から冷媒がRエバ34
に流れるようになっている。また、プランジャー106
が復帰した場合には、弁体110が上方に復帰して、凝
縮器46から冷媒がFエバ24に流れる。なお、図中に
おいて符号116は冷蔵用弁座であり、符号118は冷
凍用弁座である。
FIG. 3 shows a cross-sectional view of the three-way valve 68, which has a so-called solenoid structure including a coil 102, a magnet 104, a plunger 106 and the like. Plunger 1
06, a pin 108 is provided below the coil 10.
By exemplifying 2, the pin 108 is driven downward, and the valve body 110 is driven downward against the spring 112. In this state, the refrigerant flows from the condenser 46 into the R-eva 34
It is flowing to. Also, the plunger 106
Is returned, the valve body 110 returns upward, and the refrigerant flows from the condenser 46 to the F-eva 24. In the drawing, reference numeral 116 is a refrigeration valve seat, and reference numeral 118 is a refrigeration valve seat.

【0047】A.弁漏れ検知方法 上記構造の冷蔵庫10において、三方弁68の弁漏れが
発生した場合の検知方法について説明する。
A. Valve Leakage Detection Method A method of detecting a valve leak of the three-way valve 68 in the refrigerator 10 having the above structure will be described.

【0048】すなわち、三方弁68にはその構造上、冷
凍サイクル中の微少なゴミが弁体110と便座116,
118の間に挟まる場合があるため、若干の弁漏れが発
生する場合がある。そのため、この弁漏れが発生した場
合の検知方法を5種類説明する。
That is, because of the structure of the three-way valve 68, minute dust in the refrigeration cycle is contaminated with the valve element 110 and the toilet seat 116,
Since there is a case in which the valve is caught between the valves 118, slight valve leakage may occur. Therefore, five detection methods when this valve leakage occurs will be described.

【0049】1.第1の弁漏れ検知方法 第1の弁漏れ検知方法について図4に基づいて説明す
る。
1. First Valve Leak Detection Method A first valve leak detection method will be described with reference to FIG.

【0050】(正常時)三方弁68に弁漏れの発生がな
く正常な場合には、冷凍室18の冷却時(以下、冷凍モ
ードという)では、Rエバ除霜センサは、冷蔵室温度
(0℃〜3℃)に上昇する。すなわち、正常な冷凍モー
ドでは、冷媒は全てFエバ24に流れ、Rエバ34には
流れないため、Rエバ34は冷却されず、冷蔵室14と
同じ温度になる。
(Normal case) When the three-way valve 68 is normal without any valve leakage, when the freezing room 18 is cooled (hereinafter, referred to as a freezing mode), the R-eva defrost sensor detects the refrigerator room temperature (0). C. to 3 C.). That is, in the normal refrigeration mode, all the refrigerant flows to the F eva 24 and does not flow to the R eva 34, so that the R eva 34 is not cooled and has the same temperature as the refrigerator compartment 14.

【0051】(異常時)しかし、冷凍モードにおいて、
弁漏れによって冷媒がRエバ34に漏れ始めると、この
漏れた冷媒によってRエバ34が冷却され、Rエバセン
サ38の検知温度は低下し、冷蔵室温度まで上昇しな
い。
(Abnormal condition) However, in the freezing mode,
When the refrigerant starts leaking to the R-eva 34 due to the valve leakage, the R-eva 34 is cooled by the leaked refrigerant, and the detection temperature of the R-eva sensor 38 decreases and does not increase to the refrigerator compartment temperature.

【0052】したがって、図4に示すように、設定値を
冷凍室温度よりやや低い温度に設定しておき、これを閾
値として、Rエバセンサ38が、この設定値を超えない
場合には弁漏れが発生したと判断する。
Therefore, as shown in FIG. 4, the set value is set to a temperature slightly lower than the freezing room temperature, and the value is set as a threshold value. Judge that it has occurred.

【0053】(変更例)なお、この判断において、冷凍
モードの終了直前のFエバセンサ38の温度が前記設定
値に到達していないときに、直ちに弁漏れであると判断
すると誤動作が発生する場合がある。
(Modification) In this judgment, if the temperature of the F-eva sensor 38 immediately before the end of the refrigerating mode has not reached the set value, a malfunction may occur if it is immediately judged that there is a valve leak. is there.

【0054】そのために、この誤動作を防止するため
に、次の冷凍モード終了直前のRエバセンサ38の温度
が設定値以下であり、さらに3回目の冷凍モード終了直
前のRエバセンサ38の温度が設定値以下の時に、三方
弁68に弁漏れが発生したと判断してもよい。
Therefore, in order to prevent this malfunction, the temperature of the R-eva sensor 38 immediately before the end of the next refrigerating mode is equal to or lower than the set value, and the temperature of the R-eva sensor 38 immediately before the end of the third refrigerating mode is set to the set value. At the following time, it may be determined that the three-way valve 68 has leaked.

【0055】なお、この回数は、3回に限らず、2回、
4回でもよい。 2.第2の弁漏れ検知方法 第2の弁漏れ検知方法について図5に基づいて説明す
る。
Note that the number of times is not limited to three, but two,
It may be four times. 2. Second Valve Leak Detection Method A second valve leak detection method will be described with reference to FIG.

【0056】(正常時)三方弁68に弁漏れの発生がな
く正常な場合には、Fエバセンサ30は、冷凍モードと
冷蔵室14の冷却時(以下、冷蔵モードという)では、
温度差が約10〜15℃存在する。すなわち、Fエバ2
4に冷媒が流れるとFエバ24が冷却されその温度が下
がる。一方、Fエバ24に冷媒が流れないと温度が上昇
するため、その温度差が約10℃〜15℃となるもので
ある。
(Normal) When the three-way valve 68 is normal without any valve leakage, the F-evaporation sensor 30 operates in the refrigerating mode and when the refrigerating compartment 14 is cooled (hereinafter referred to as the refrigerating mode).
There is a temperature difference of about 10-15 ° C. That is, Fever 2
When the refrigerant flows into 4, the F-eva 24 is cooled and its temperature is lowered. On the other hand, if the refrigerant does not flow through the F-eva 24, the temperature rises, and the temperature difference is about 10 ° C to 15 ° C.

【0057】(異常時)しかし、冷蔵モードにFエバ2
4側へ冷媒が漏れ始めると、Fエバ24の温度が下が
り、Fエバセンサ30の検知温度は低下し、冷凍モード
と冷蔵モードの温度差が小さくなってくる。そこで、こ
の温度差が設定温度差以下となった場合には、Fエバ2
4に冷媒が漏れていると判断する。
(At the time of abnormality)
When the refrigerant starts to leak to the fourth side, the temperature of the F eva 24 decreases, the detection temperature of the F eva sensor 30 decreases, and the temperature difference between the freezing mode and the refrigeration mode decreases. Therefore, when this temperature difference becomes equal to or less than the set temperature difference, the F
It is determined that the refrigerant is leaking to No. 4.

【0058】(変更例)なお、この弁漏れ検知も第1の
検知方法と同様に、上記現象が3回生じた場合に初めて
弁漏れであると判断してもよい。
(Modification) In this valve leak detection, similarly to the first detection method, the valve leak may be determined only when the above phenomenon occurs three times.

【0059】3.第3の弁漏れ検知方法 次に、第3の弁漏れ検知方法について図6に基づいて説
明する。
3. Third Valve Leak Detection Method Next, a third valve leak detection method will be described with reference to FIG.

【0060】(正常時)三方弁68に弁漏れの発生がな
く正常な場合には、冷凍モードにおいてはRエバセンサ
38は、冷蔵室温度(0℃〜3℃)に上昇する。すなわ
ち、冷凍モードにおいてはRエバ34に冷媒が全く流れ
ないため冷却されず、冷蔵室14の庫内温度と同じにな
る。
(Normal) When the three-way valve 68 is normal without any leakage, the R-eva sensor 38 rises to the refrigerator compartment temperature (0 ° C. to 3 ° C.) in the freezing mode. That is, in the refrigerating mode, the refrigerant does not flow through the R-eva 34 at all, so that the refrigerant is not cooled and becomes equal to the temperature in the refrigerator compartment 14.

【0061】(異常時)しかし、冷凍モードにおいて、
Rエバ34へ冷気が漏れ始めると、この冷気によりRエ
バ34の温度が下がり、Rエバセンサ38の温度が低下
し、冷蔵室14の温度まで上昇しない。そして、この冷
蔵室温度よりやや低い温度で設定値を定めた場合には、
Rエバセンサ38の温度は設定値以下となる。
(At the time of abnormality) However, in the freezing mode,
When the cool air starts to leak to the R-eva 34, the cool air lowers the temperature of the R-eva 34, lowers the temperature of the R-eva sensor 38, and does not increase the temperature of the refrigerator compartment 14. And, when the set value is determined at a temperature slightly lower than the refrigerator compartment temperature,
The temperature of the R evaluation sensor 38 becomes lower than the set value.

【0062】また、圧縮機20の運転周波数は、Rエバ
34に弁漏れが生じているため、能力不足となり、その
能力不足を補うために運転周波数を上昇させる。そこ
で、Rエバセンサ38の検知温度が設定値以下で、か
つ、圧縮機20の運転周波数が設定周波数よりも上昇し
たときには、Rエバ34へ冷気が漏れていると判断す
る。これにより、第1の弁漏れ検知方法よりも確実に弁
漏れを判定することができる。
Further, the operating frequency of the compressor 20 becomes insufficient due to valve leakage of the R-eva 34, and the operating frequency is increased to compensate for the insufficient performance. Therefore, when the temperature detected by the R-eva sensor 38 is equal to or lower than the set value and the operating frequency of the compressor 20 is higher than the set frequency, it is determined that the cool air is leaking to the R-eva 34. Thus, valve leakage can be determined more reliably than in the first valve leakage detection method.

【0063】(変更例)なお、この弁漏れ検知において
も、第1の弁漏れ検知方法と同様に3回連続して起こっ
たときのみ弁漏れと判断してもよい。
(Modification) In this valve leak detection, it is also possible to determine that a valve leak has occurred only when three consecutive occurrences have occurred, as in the first valve leak detection method.

【0064】4.第4の弁漏れ検知方法 第4の弁漏れ検知方法について図7に基づいて説明す
る。
4. Fourth Valve Leak Detection Method A fourth valve leak detection method will be described with reference to FIG.

【0065】(正常時)三方弁68に弁漏れの発生がな
く正常な場合には、冷凍モードにおいてRエバセンサ3
8の検知温度は冷蔵室温度(0℃〜3℃)に上昇する。
これは、Rエバ34に冷媒が全く流れず、Rエバ34の
温度が上昇するからである。
(Normal) If the three-way valve 68 is normal without any valve leakage, the R
The detected temperature of 8 rises to the refrigerator room temperature (0 ° C. to 3 ° C.).
This is because no refrigerant flows into the R-eva 34 and the temperature of the R-eva 34 rises.

【0066】(異常時)冷凍モードにおいて、Rエバ3
4に冷気が漏れ始めると、Rエバ34の温度が下がるた
め、Rエバセンサ38の検知温度は低下し、冷蔵室温度
まで上昇しない。そのため、冷蔵モードのRエバセンサ
38の検知温度と、今の状態である冷凍モードの検知温
度との温度差が小さくなる。そこで、この温度差が設定
温度差以下となった場合には、冷凍モードにおいてRエ
バ34に冷媒漏れが発生したと判断する。
(At the time of abnormality) In the refrigeration mode, the R
When the cool air starts to leak into the chamber 4, the temperature of the R-eva 34 decreases, so that the detection temperature of the R-eva sensor 38 decreases and does not increase to the refrigerator compartment temperature. Therefore, the temperature difference between the temperature detected by the R-eva sensor 38 in the refrigeration mode and the temperature detected in the refrigeration mode, which is the current state, is reduced. Therefore, when the temperature difference becomes equal to or less than the set temperature difference, it is determined that refrigerant leakage has occurred in the R-eva 34 in the freezing mode.

【0067】(変更例)なお、この弁漏れ検知方法にお
いても、上記検知方法と同様に3回連続発生した場合に
のみ弁漏れが発生したと判断してもよい。
(Modification) In this valve leakage detecting method, it may be determined that valve leakage has occurred only when three consecutive occurrences have occurred, similarly to the above-described detection method.

【0068】5.第5の弁漏れ検知方法 第5の弁漏れ検知方法について図4に基づいて説明す
る。
5. Fifth Valve Leak Detection Method A fifth valve leak detection method will be described with reference to FIG.

【0069】(正常時)三方弁68に弁漏れの発生がな
く正常な場合には、冷凍モードにおいてFエバセンサ3
0の検知温度は約−30℃まで低下する。すなわち、R
エバ34に全く冷媒が流れず、Fエバ24にのみ冷媒が
流れるため温度が低下する。
(Normal state) When the three-way valve 68 is normal without any valve leakage, the F-
The detected temperature of 0 drops to about -30 ° C. That is, R
No refrigerant flows at all in the evaporator 34, and only refrigerant flows in the F evaporator 24, so that the temperature drops.

【0070】(異常時)冷凍モードにおいてRエバ34
に冷媒が漏れ始めると、Fエバ24が完全に冷却され
ず、Fエバセンサ30の検知温度は上昇し、冷蔵モード
のFエバセンサ30の検知温度と冷凍モードの検知温度
との温度差が小さくなる。そこで、この温度差が設定温
度差以下となった場合には、冷凍モードのRエバ34へ
冷媒が漏れていると検知する。
(At the time of abnormality) In the refrigeration mode, the R
When the refrigerant starts leaking, the F-eva 24 is not completely cooled, the detection temperature of the F-eva sensor 30 increases, and the temperature difference between the detection temperature of the F-eva sensor 30 in the refrigeration mode and the detection temperature in the freezing mode decreases. Therefore, when the temperature difference becomes equal to or smaller than the set temperature difference, it is detected that the refrigerant is leaking to the R-eva 34 in the freezing mode.

【0071】(変更例)なお、この検知方法においても
上記の検知方法と同様に、3回連続発生した場合にのみ
弁漏れが発生したと判断してもよい。
(Modification) In this detection method, similarly to the above detection method, it may be determined that valve leakage has occurred only when three consecutive occurrences have occurred.

【0072】以上の弁漏れ検知方法を用いると、三方弁
68に弁漏れが発生したかを確実に検知することができ
る。
By using the above-described valve leak detection method, it is possible to reliably detect whether or not the three-way valve 68 has leaked.

【0073】B.ゴミを取除く方法 次に、三方弁68に弁漏れが発生したと判断された場合
に、この弁漏れの原因であるゴミを取除く制御方法につ
いて説明する。
B. Next, a description will be given of a control method for removing dust which is a cause of the valve leakage when it is determined that valve leakage has occurred in the three-way valve 68.

【0074】1.第1の取除き方法 三方弁68に弁漏れが発生した場合に、ゴミを取除く第
1の方法は、ソレノイドによってプランジャー106を
強制的に動作させることにより、弁体110を強制的に
動作させて、その周囲に付いたゴミを取除くものであ
る。
1. First Removal Method In the event that valve leakage occurs in the three-way valve 68, a first method for removing dust is to forcibly operate the valve body 110 by forcibly operating the plunger 106 with a solenoid. Then, the garbage around it is removed.

【0075】2.第2の取除き方法 第2の取除き方法としては、第1の取除き方法に加え
て、圧縮機20の運転周波数を上昇させ、三方弁68の
内部を流れる冷媒の圧力を上昇させ循環量を増加させる
ことにより、弁体110のゴミ付着部付近の冷媒の流速
を上げ、ゴミを吹き飛ばすものである。これにより、単
に弁体110を強制的に動作させることに加えて、冷媒
によってゴミが吹き飛ばされるため、確実にゴミを取除
くことができる。
2. Second Removal Method As a second removal method, in addition to the first removal method, the operating frequency of the compressor 20 is increased, the pressure of the refrigerant flowing inside the three-way valve 68 is increased, and the circulation amount is increased. Is increased to increase the flow velocity of the refrigerant in the vicinity of the dust adhering portion of the valve element 110, thereby blowing off dust. Thus, in addition to simply forcibly operating the valve body 110, dust is blown away by the refrigerant, so that dust can be reliably removed.

【0076】3.第3のゴミ取除き方法 第3の取除き方法としては、弁漏れが発生したと検知し
た場合には、弁体110を中間地点で停止させて冷媒が
両方に流れるようにする。この状態で圧縮機20の運転
周波数を上昇させて圧力を上昇させ、そして、循環量を
増加させることにより弁体110のゴミ付着部付近の冷
媒の流速を上げ、ゴミを吹き飛ばすものである。
3. Third Dust Removal Method As a third removal method, when it is detected that a valve leak has occurred, the valve element 110 is stopped at an intermediate point so that the refrigerant flows through both. In this state, the operating frequency of the compressor 20 is increased to increase the pressure, and the amount of circulation is increased to increase the flow velocity of the refrigerant near the dust-attached portion of the valve body 110, thereby blowing off dust.

【0077】4.第4のゴミ取除き方法 第1及び第2のゴミ取除き方法においては、弁体110
(プランジャー106)の動作を約4秒かけて行ってい
たが、これを早くするために電圧を上げて約1秒で動作
させるようにする。これによって、弁体110が急激に
動作し、弁動作衝撃を強めることによりゴミの除去をし
やすくするものである。
4. Fourth Dust Removal Method In the first and second dust removal methods, the valve element 110
The operation of the (plunger 106) was performed in about 4 seconds, but in order to speed up the operation, the voltage is increased to operate in about 1 second. As a result, the valve element 110 operates rapidly, and the valve operation impact is strengthened to facilitate the removal of dust.

【0078】C.弁漏れ除霜の制御法 次に、弁漏れ検知が行われ、上記のようなゴミ取除き制
御を行ったにもかかわらず、その取除きができない場合
の弁漏れ除霜の制御法について、図8のフローチャート
に基づいて説明する。
C. Control method of valve leak defrost Next, valve leak detection is performed, and although the dust removal control as described above is performed, the valve leak defrost control method in a case where the removal cannot be performed is described in FIG. 8 will be described.

【0079】ステップ1において、上記で説明したよう
に、弁漏れが発生しているかどうかを検知する。そし
て、弁漏れが発生していた場合にはステップ2に進む。
弁漏れが発生していない場合には通常の運転に復帰す
る。
In step 1, it is detected whether or not valve leakage has occurred, as described above. Then, if valve leakage has occurred, the process proceeds to step 2.
If no valve leakage has occurred, the operation returns to normal operation.

【0080】ステップ2において、上記で説明したゴミ
取除き制御方法を行い、ゴミを取除き、ステップ3に進
む。
In step 2, the above-described dust removal control method is performed, dust is removed, and the process proceeds to step 3.

【0081】ステップ3において、再び弁漏れが検知さ
れたか否かを判断し、弁漏れが検知されていなければ通
常の運転に復帰し、弁漏れが検知されれば(すなわち、
合計2回の弁漏れの検知)、ステップ4に進む。
In step 3, it is determined whether or not valve leakage is detected again. If valve leakage is not detected, normal operation is resumed. If valve leakage is detected (ie,
The detection of valve leakage is performed twice in total), and the process proceeds to step 4.

【0082】ステップ4において、弁漏れが2度検知さ
れているために、Fエバ24とRエバ34が必要以上に
冷却され、着霜が発生している可能性があるので、Fエ
バ24とRエバ34の除霜を行いステップ5に進む。
In step 4, since the valve leak is detected twice, the F-eva 24 and the R-eva 34 are cooled more than necessary, and frost may be generated. The defrosting of the R-eva 34 is performed, and the process proceeds to step 5.

【0083】ステップ5において、除霜終了後、再び弁
漏れが検知された場合には(すなわち、合計3回の弁漏
れの検知)、ステップ6に進み、検知されなかった場合
には通常の運転に復帰する。
In step 5, if the valve leak is detected again after the completion of the defrosting (that is, the valve leak is detected three times in total), the process proceeds to step 6, and if not detected, the normal operation is performed. Return to.

【0084】ステップ6において、弁漏れが3回検知さ
れたため、Rエバ34の除霜制御間隔をFエバ24の除
霜間隔に切り替える。これは、通常の運転においてはR
エバ34の除霜の運転の間隔は、Fエバ24の除霜運転
の間隔よりも大きいため、Rエバ34の除霜運転の間隔
で行っていると着霜が発生する可能性があるからであ
る。
In step 6, since the valve leak is detected three times, the defrosting control interval of the R-eva 34 is switched to the defrost interval of the F-eva 24. This is because in normal operation R
Since the interval of the defrosting operation of the evaporator 34 is larger than the interval of the defrosting operation of the F evaporator 24, frost formation may occur if the operation is performed at the interval of the defrosting operation of the R evaporator 34. is there.

【0085】一方、この除霜制御法を異なる視点から見
ると、Rエバ34が弁漏れにより必要以上に着霜が発生
する。この弁漏れによる着霜を、通常の運転中の着霜と
判断して通常運転と同様の除霜制御を行うと、必要以上
に除霜運転が行われることとなる。そのため、このよう
な弁漏れを3回検知した場合には、Rエバ34の除霜運
転の間隔を除霜運転間隔にして、弁漏れ検知と着霜検知
を区別し、無駄な除霜制御を防止するという効果もあ
る。
On the other hand, when the defrost control method is viewed from a different viewpoint, the R-eva 34 is frosted more than necessary due to valve leakage. If the frost due to the valve leakage is determined to be frost during normal operation and the same defrost control is performed as in normal operation, the defrost operation will be performed more than necessary. Therefore, when such a valve leak is detected three times, the interval between the defrosting operations of the R-eva 34 is set as the defrosting operation interval, and the valve leak detection and the frost formation detection are distinguished, and the useless defrost control is performed. It also has the effect of preventing it.

【0086】なお、上記実施例の冷蔵庫10において
は、図2に示す冷凍サイクルに基づいて説明したが、こ
れに代えて、図9に示すように、Fエバ24の位置が異
なる冷凍サイクルにおいても同様に実施することができ
る。
Although the refrigerator 10 according to the above embodiment has been described based on the refrigeration cycle shown in FIG. 2, the refrigerator 10 may be replaced with a refrigeration cycle having a different position of the Feva 24 as shown in FIG. It can be implemented similarly.

【0087】[0087]

【発明の効果】以上により本発明の冷蔵庫であると、弁
漏れを確実に検知することができるとともに、弁漏れが
発生した場合にはその原因となっているゴミを容易に取
除くことができる。
As described above, according to the refrigerator of the present invention, valve leakage can be reliably detected, and when valve leakage occurs, dust causing the leakage can be easily removed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の冷蔵庫の説明図である。FIG. 1 is an explanatory diagram of a refrigerator according to the present embodiment.

【図2】冷凍サイクルの説明図である。FIG. 2 is an explanatory diagram of a refrigeration cycle.

【図3】三方弁の縦断面図である。FIG. 3 is a vertical sectional view of a three-way valve.

【図4】第1,5の弁漏れ検知方法の説明図である。FIG. 4 is an explanatory diagram of the first and fifth valve leak detection methods.

【図5】第2の弁漏れ検知方法の説明図である。FIG. 5 is an explanatory diagram of a second valve leak detection method.

【図6】第3の弁漏れ検知方法の説明図である。FIG. 6 is an explanatory diagram of a third valve leak detection method.

【図7】第4の弁漏れ検知方法の説明図である。FIG. 7 is an explanatory diagram of a fourth valve leak detection method.

【図8】弁漏れを検知した場合の除霜運転の制御状態を
示すフローチャートである。
FIG. 8 is a flowchart showing a control state of a defrosting operation when a valve leak is detected.

【図9】冷凍サイクルの変更例の説明図である。FIG. 9 is an explanatory diagram of a modified example of the refrigeration cycle.

【符号の説明】[Explanation of symbols]

10 冷蔵庫 20 圧縮機 24 Fエバ 30 Fエバセンサ 34 Rエバ 38 Rエバセンサ 44 制御装置 68 三方弁 DESCRIPTION OF SYMBOLS 10 Refrigerator 20 Compressor 24 Feva 30 Fevasensor 34 Reva 38 Revasensor 44 Control device 68 Three-way valve

フロントページの続き (72)発明者 飯村 典史 大阪府茨木市太田東芝町1番6号 東芝エ ー・ブイ・イー株式会社大阪事業所内 Fターム(参考) 3L045 AA02 AA03 AA04 BA01 CA02 DA02 EA01 HA02 HA07 JA15 LA07 LA14 LA17 MA04 MA12 NA01 NA16 PA01 PA02 PA03 PA04 PA05 Continuation of front page (72) Inventor Norifumi Iimura 1-6 Ota Toshiba-cho, Ibaraki-shi, Osaka Toshiba Abu E Co., Ltd. Osaka office F term (reference) 3L045 AA02 AA03 AA04 BA01 CA02 DA02 EA01 HA02 HA07 JA15 LA07 LA14 LA17 MA04 MA12 NA01 NA16 PA01 PA02 PA03 PA04 PA05

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、凝縮器と、冷蔵用絞り機構と、
冷蔵室に対応した冷蔵用蒸発器と、 冷凍用絞り機構と、冷凍室に対応した冷凍用蒸発器とを
接続して冷媒流路を構成し、 弁機構により冷媒流路を切替えて、冷蔵用絞り機構を介
して冷蔵用蒸発器側へ冷媒を流す冷蔵モードと、冷凍用
絞り機構を介して冷凍用蒸発器のみに冷媒を流す冷凍モ
ードとが実現できる冷蔵庫において、 弁機構の冷蔵用蒸発器への冷媒の弁漏れ、または、冷凍
用蒸発器への冷媒の弁漏れを判断する弁漏れ判断手段と
を有することを特徴とする冷蔵庫。
1. A compressor, a condenser, a refrigeration throttle mechanism,
A refrigerant flow path is formed by connecting a refrigerating evaporator corresponding to a refrigerating room, a refrigerating throttle mechanism, and a refrigerating evaporator corresponding to a refrigerating room to form a refrigerant flow path. In a refrigerator capable of realizing a refrigeration mode in which the refrigerant flows through the expansion mechanism to the refrigeration evaporator side and a refrigeration mode in which the refrigerant flows only through the refrigeration evaporator through the refrigeration expansion mechanism, the refrigeration evaporator of the valve mechanism A valve leak determining means for determining a valve leak of the refrigerant to the refrigerator or a valve leak of the refrigerant to the refrigerating evaporator.
【請求項2】前記冷蔵庫は、冷蔵用蒸発器の温度を検知
する冷蔵用蒸発器温度検知手段を有し、 弁漏れ判断手段は、冷凍モードにおいて、冷蔵用蒸発器
温度検知手段で検知した温度が設定温度以下になると、
弁機構の冷蔵用蒸発器への冷媒の弁漏れと判断すること
を特徴とする請求項1記載の冷蔵庫。
2. The refrigerator according to claim 1, further comprising: a refrigerator evaporator temperature detecting means for detecting a temperature of the refrigerator evaporator; and a valve leak judging means in the freezing mode, the temperature detected by the refrigerator evaporator temperature detecting means. Is below the set temperature,
2. The refrigerator according to claim 1, wherein it is determined that the valve leaks from the refrigerant to the evaporator for refrigeration of the valve mechanism.
【請求項3】前記冷蔵庫は、冷蔵用蒸発器の温度を検知
する冷蔵用蒸発器温度検知手段を有し、 弁漏れ判断手段は、冷凍モードにおいて、冷蔵用蒸発器
温度検知手段で検知した温度が設定温度以下になり、か
つ、圧縮機の運転周波数が設定周波数より高い時に、弁
機構の冷蔵用蒸発器への冷媒の弁漏れと判断することを
特徴とする請求項1記載の冷蔵庫。
3. The refrigerator has a refrigerator evaporator temperature detecting means for detecting a temperature of the refrigerator evaporator, and the valve leak determining means has a temperature detected by the refrigerator evaporator temperature detecting means in the freezing mode. 2. The refrigerator according to claim 1, wherein when the temperature is equal to or lower than the set temperature and the operating frequency of the compressor is higher than the set frequency, it is determined that the refrigerant is leaking to the refrigeration evaporator of the valve mechanism.
【請求項4】前記冷蔵庫は、冷蔵用蒸発器の温度を検知
する冷蔵用蒸発器温度検知手段を有し、 弁漏れ判断手段は、冷凍モードにおいて、冷蔵用蒸発器
温度検知手段で検知した温度と、この冷蔵用蒸発器温度
検知手段の冷蔵モード時の温度との差が設定温度範囲内
になると、弁機構の冷蔵用蒸発器への冷媒の弁漏れと判
断することを特徴とする請求項1記載の冷蔵庫。
4. The refrigerator has a refrigerator evaporator temperature detecting means for detecting a temperature of the refrigerator evaporator, and the valve leak determining means has a temperature detected by the refrigerator evaporator temperature detecting means in the freezing mode. When the difference between the temperature in the refrigeration mode of the refrigeration evaporator temperature detecting means and the temperature in the refrigeration mode falls within a set temperature range, it is determined that the valve mechanism leaks refrigerant to the refrigeration evaporator. The refrigerator according to 1.
【請求項5】前記冷蔵庫は、冷凍用蒸発器の温度を検知
する冷凍用蒸発器温度検知手段を有し、 弁漏れ判断手段は、冷凍モードにおいて、冷凍用蒸発器
温度検知手段で検知した温度と、この冷凍用蒸発器温度
検知手段の冷蔵モード時の温度との差が設定温度範囲内
になると、弁機構の冷蔵用蒸発器への冷媒の弁漏れと判
断することを特徴とする請求項1記載の冷蔵庫。
5. The refrigerator according to claim 1, further comprising a refrigerating evaporator temperature detecting means for detecting a temperature of the refrigerating evaporator, wherein the valve leak determining means detects a temperature detected by the refrigerating evaporator temperature detecting means in the refrigerating mode. When the difference between the temperature of the refrigerating evaporator and the temperature of the refrigerating evaporator in the refrigerating mode falls within a set temperature range, it is determined that the refrigerant leaks into the refrigerating evaporator of the valve mechanism. The refrigerator according to 1.
【請求項6】前記冷蔵庫は、冷凍用蒸発器の温度を検知
する冷凍用蒸発器温度検知手段を有し、 弁漏れ判断手段は、冷凍モードにおいて、冷凍用蒸発器
温度検知手段で検知した温度が、この冷凍用蒸発器温度
検知手段の冷蔵モード時の温度との差が設定温度範囲内
になると、弁機構の冷凍用蒸発器への冷媒の弁漏れと判
断することを特徴とする請求項1記載の冷蔵庫。
6. The refrigerator has a refrigerating evaporator temperature detecting means for detecting a temperature of the refrigerating evaporator, and the valve leak judging means detects a temperature detected by the refrigerating evaporator temperature detecting means in a refrigerating mode. When the difference between the temperature of the refrigerating evaporator temperature detecting means and the temperature in the refrigerating mode is within a set temperature range, it is determined that the refrigerant leaks to the refrigerating evaporator of the valve mechanism. The refrigerator according to 1.
【請求項7】弁漏れ判断手段が弁漏れと判断したとき
に、弁機構を強制的に動作させて弁機構のゴミを取除く
ゴミ取除き手段を有することを特徴とする請求項1記載
の冷蔵庫。
7. The apparatus according to claim 1, further comprising dust removing means for forcibly operating the valve mechanism to remove dust from the valve mechanism when the valve leak determining means determines that the valve is leaking. refrigerator.
【請求項8】ゴミ取除き手段は、 弁漏れ判断手段が弁漏れと判断したときに、圧縮機の運
転周波数を上昇させつつ、弁機構を強制的に動作させる
ことを特徴とする請求項7記載の冷蔵庫。
8. The system according to claim 7, wherein the dust removing means forcibly operates the valve mechanism while increasing the operating frequency of the compressor when the valve leak determining means determines that the valve is leaking. The refrigerator as described.
【請求項9】ゴミ取除き手段は、 弁漏れ判断手段が弁漏れと判断したときに、圧縮機の運
転周波数を上昇させつつ、弁機構を冷媒流路を切替えの
途中で停止させることを特徴とする請求項7記載の冷蔵
庫。
9. The dust removing means, when the valve leak determining means determines that the valve is leaking, stops the valve mechanism while switching the refrigerant flow path while increasing the operating frequency of the compressor. The refrigerator according to claim 7, wherein
【請求項10】ゴミ取除き手段は、 弁漏れ判断手段が弁漏れと判断したときに、弁機構を通
常の動作時間より短縮させて強制的に動作させることを
特徴とする請求項7記載の冷蔵庫。
10. The method according to claim 7, wherein the dust removing means forcibly operates the valve mechanism by shortening the normal operation time when the valve leak determining means determines that the valve is leaking. refrigerator.
【請求項11】ゴミ取除き手段がゴミを取除いた後に、
弁漏れ判断手段が弁漏れと再び判断したときに、冷凍用
蒸発器と冷蔵用蒸発器との弁漏れ用除霜運転を行なう除
霜制御手段を有することを特徴とする請求項7から請求
項10記載の冷蔵庫。
11. After the dust removing means removes the dust,
8. The apparatus according to claim 7, further comprising defrost control means for performing a valve leak defrosting operation of the refrigerating evaporator and the refrigerating evaporator when the valve leak judging means judges again that the valve is leaking. 10. The refrigerator according to 10.
【請求項12】除霜制御手段は、 通常の状態で冷凍用蒸発器の除霜運転の間隔を冷蔵用蒸
発器の除霜運転の間隔より短く制御するものであり、 弁漏れ用除霜運転を行なった後に、弁漏れ判断手段がさ
らに弁漏れと判断したときに、冷凍用蒸発器と冷蔵用蒸
発器との除霜運転の間隔を、冷凍用蒸発器の除霜間隔と
することを特徴とする請求項11記載の冷蔵庫。
12. The defrosting control means for controlling the defrosting operation interval of the refrigerating evaporator to be shorter than the defrosting operation interval of the refrigerating evaporator in a normal state. After performing the above, when the valve leak determining means further determines that the valve is leaking, the interval between the defrosting operations of the refrigerating evaporator and the refrigerating evaporator is set to the defrosting interval of the refrigerating evaporator. The refrigerator according to claim 11, wherein
JP25419098A 1998-09-08 1998-09-08 refrigerator Expired - Fee Related JP3456902B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25419098A JP3456902B2 (en) 1998-09-08 1998-09-08 refrigerator
TW088103850A TW558625B (en) 1998-09-08 1999-03-12 Refrigerator
KR1019990015841A KR100332290B1 (en) 1998-09-08 1999-05-03 Refrigerator
CNB991086910A CN1332165C (en) 1998-09-08 1999-06-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25419098A JP3456902B2 (en) 1998-09-08 1998-09-08 refrigerator

Publications (2)

Publication Number Publication Date
JP2000088427A true JP2000088427A (en) 2000-03-31
JP3456902B2 JP3456902B2 (en) 2003-10-14

Family

ID=17261501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25419098A Expired - Fee Related JP3456902B2 (en) 1998-09-08 1998-09-08 refrigerator

Country Status (4)

Country Link
JP (1) JP3456902B2 (en)
KR (1) KR100332290B1 (en)
CN (1) CN1332165C (en)
TW (1) TW558625B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431918B1 (en) * 2001-03-21 2004-05-17 가부시끼가이샤 도시바 Refrigerator
US8104301B2 (en) * 2006-05-22 2012-01-31 Lg Electronics Inc. Refrigerant valve control device and control method thereof
JP2012082984A (en) * 2010-10-07 2012-04-26 Toshiba Corp Refrigerator
JP2013217618A (en) * 2012-04-12 2013-10-24 Hoshizaki Electric Co Ltd Auger type ice making machine and control method therefor
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine
CN105042985A (en) * 2015-07-10 2015-11-11 合肥美菱股份有限公司 Parallel connection type dual-system refrigerator and method for distributing flow of refrigerator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060400A1 (en) * 2002-01-15 2003-07-24 Kabushiki Kaisha Toshiba Refrigerator having alarm device for alarming leakage of refrigerant
KR100470479B1 (en) * 2002-08-12 2005-02-07 위니아만도 주식회사 Method for detecting refrigerant leakage of a kimchi storage
JP4028779B2 (en) * 2002-08-19 2007-12-26 株式会社東芝 Compressor refrigerant leak detection device
KR100808180B1 (en) * 2006-11-09 2008-02-29 엘지전자 주식회사 Apparatus for refrigeration cycle and refrigerator
KR100826180B1 (en) * 2006-12-26 2008-04-30 엘지전자 주식회사 Refrigerator and control method for the same
KR20110072441A (en) * 2009-12-22 2011-06-29 삼성전자주식회사 Refrigerator and method for controlling operation thereof
KR20140056965A (en) * 2012-11-02 2014-05-12 엘지전자 주식회사 An air conditioner and a control method thereof
CN105371557B (en) * 2015-12-02 2018-05-01 四川长虹电器股份有限公司 A kind of refrigerator and controlling method for refrigerator
CN109781363A (en) * 2018-12-28 2019-05-21 青岛海尔股份有限公司 The detection method and detection device of refrigerator leakproofness
CN111503948A (en) * 2020-04-29 2020-08-07 广东美的暖通设备有限公司 Multi-split air conditioning system, method and device for detecting leakage of refrigeration valve of multi-split air conditioning system and storage medium
CN111486612A (en) * 2020-04-29 2020-08-04 广东美的暖通设备有限公司 Multi-split air conditioning system, heating valve leakage detection method and device thereof, and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269154A (en) * 1996-03-29 1997-10-14 Sanyo Electric Co Ltd Condenser
JP3828957B2 (en) * 1996-07-24 2006-10-04 ヤマハ発動機株式会社 Refrigerant circulation type heat transfer device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431918B1 (en) * 2001-03-21 2004-05-17 가부시끼가이샤 도시바 Refrigerator
US8104301B2 (en) * 2006-05-22 2012-01-31 Lg Electronics Inc. Refrigerant valve control device and control method thereof
JP2012082984A (en) * 2010-10-07 2012-04-26 Toshiba Corp Refrigerator
JP2013217618A (en) * 2012-04-12 2013-10-24 Hoshizaki Electric Co Ltd Auger type ice making machine and control method therefor
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine
CN105042985A (en) * 2015-07-10 2015-11-11 合肥美菱股份有限公司 Parallel connection type dual-system refrigerator and method for distributing flow of refrigerator

Also Published As

Publication number Publication date
JP3456902B2 (en) 2003-10-14
CN1247302A (en) 2000-03-15
KR20000022624A (en) 2000-04-25
CN1332165C (en) 2007-08-15
TW558625B (en) 2003-10-21
KR100332290B1 (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP2000088427A (en) Refrigerator
KR100341234B1 (en) Refrigerator
KR870001533B1 (en) Refrigerator
KR20180052284A (en) Refrigerator and Controlling method for the same
CN109631388A (en) A kind of air-conditioning heating four-way valve commutation exception control method, apparatus and air conditioner
KR20180052285A (en) Refrigerator and Controlling method for the same
KR100639716B1 (en) Refrigerator
JPH0894234A (en) Defrosting device for refrigerator
JP2005331239A (en) Refrigerator
KR100708622B1 (en) Defrosting method for refrigerator
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
CN100412485C (en) Refrigerator and method for controlling the same
JP3530041B2 (en) Refrigerator control device
KR102572457B1 (en) Refrigerator and Controlling method for the same
JP3874941B2 (en) refrigerator
JP2001004259A (en) Controller coping with leakage from valve of refrigerator
KR100364991B1 (en) Apparatus and method for preventing freezing of damper of refrigerator
KR100595431B1 (en) Refrigerator and controlling method thereof
KR19990053004A (en) Low noise operation method of refrigerator
JPH1183212A (en) Operation controller for refrigerator
KR100438952B1 (en) Method for cooling air supply of cooling device
KR100805673B1 (en) Defrost method for cooling room directly or indirectly refrigerator
JP2002048463A (en) Refrigerator and its controlling method
KR100194353B1 (en) How to control quick pocket function of air curtain refrigerator
KR100360853B1 (en) Method for preventing cool-air leakage of refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees