JP2000087761A - Gas turbine output enhancement unit - Google Patents

Gas turbine output enhancement unit

Info

Publication number
JP2000087761A
JP2000087761A JP10260760A JP26076098A JP2000087761A JP 2000087761 A JP2000087761 A JP 2000087761A JP 10260760 A JP10260760 A JP 10260760A JP 26076098 A JP26076098 A JP 26076098A JP 2000087761 A JP2000087761 A JP 2000087761A
Authority
JP
Japan
Prior art keywords
compressor
air
gas turbine
turbine
design point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260760A
Other languages
Japanese (ja)
Inventor
En Nishiyama
圜 西山
Katsuhiko Sugiyama
勝彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10260760A priority Critical patent/JP2000087761A/en
Publication of JP2000087761A publication Critical patent/JP2000087761A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase thermal efficiency within the partial load operating range where the design point is not exceeded, and, in the operating range where the design point is exceeded, increase thermal efficiency in the design point side operating range. SOLUTION: This gas turbine is provided with a compressor 1, a turbine 2, and a combuster 3. In this gas turbine, the compressor 1 is connected to a shaft 4 of the turbine 2, an air outlet of the compressor 1 is connected to the air outlet of the combuster 3, and the gas outlet of the combuster 3 is connected to the gas inlet of the turbine 2. This gas turbine is also provided with a pre-pressurizing air compressor 21 that puts the design point of the gas turbine in the partial load operating range and pressurizes the air taken into the air inlet of the compressor 1 where the design point is exceeded, and a rotary drive unit 22 to drive the pre-pressurizing air compressor 21. This gas turbine further comprises a control unit 28 which obtains the desired output by controlling the pressure ratio of the pre-pressurizing compressor 21 by adjusting the rotational speed of the pre-pressuring compressor 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの出
力を増強する装置に関する。
The present invention relates to an apparatus for enhancing the output of a gas turbine.

【0002】[0002]

【従来の技術】本発明者は、運転領域が広い自動車や、
発電量を需要に応じて変動させる小型発電機のような運
転領域の大部分が部分負荷運転である動力源に適してい
るガスタービンの出力増強装置を発明した。
2. Description of the Related Art The inventor of the present invention has proposed a vehicle having a wide driving range,
The present invention has invented a gas turbine output augmenting device suitable for a power source in which most of the operation area is a partial load operation, such as a small generator that varies the amount of power generation according to demand.

【0003】この発明は、特願平10−249894号
に開示したように、圧縮機とタービン及び燃焼器を備
え、圧縮機とタービンの軸を連結し、圧縮機の空気出口
を燃焼器の空気入口に接続し、燃焼器のガス出口をター
ビンのガス入口に接続したガスタービンにおいて、ガス
タービンの設計点を使用頻度の高い部分負荷運転領域に
し、設計点を超える運転領域で、圧縮機の空気入口に吸
入される空気を圧縮する予圧装置を設けた出力増強装置
である。
As disclosed in Japanese Patent Application No. 10-249894, the present invention includes a compressor, a turbine, and a combustor, connects a compressor and a turbine shaft, and connects an air outlet of the compressor to air of a combustor. In a gas turbine in which the gas outlet is connected to the inlet and the gas outlet of the combustor is connected to the gas inlet of the turbine, the design point of the gas turbine is set to the frequently used partial load operation area. This is an output booster provided with a preload device that compresses the air sucked into the inlet.

【0004】この出力増強装置は、設計点を超えない部
分負荷運転領域で、熱効率が高くなる。設計点を超える
運転領域では、圧縮機に吸入される空気が圧縮されて予
圧されるので、出力が増強され、熱効率が著しく低くな
らない。全負荷運転が可能である。また、ガスタービン
は、小型軽量になる。
[0004] This power booster has high thermal efficiency in a partial load operation region not exceeding a design point. In an operation region exceeding the design point, the air taken into the compressor is compressed and pre-pressed, so that the output is increased and the thermal efficiency is not significantly reduced. Full load operation is possible. Further, the gas turbine becomes smaller and lighter.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のガス
タービンの出力増強装置は、予圧装置の駆動装置や制御
方法に各種のものが考えられ、それに応じて、設計点を
超える運転領域での性能が異なる。
However, in the above-described gas turbine power booster, various types of drive devices and control methods for the preload device are conceivable, and accordingly, the performance in the operating region exceeding the design point is correspondingly considered. Is different.

【0006】一方、運転領域が広い自動車や、発電量を
需要に応じて変動させる小型発電機において、設計点を
超える運転領域での使用頻度を調査すると、全負荷運転
側の運転領域よりも設計点側の運転領域で使用頻度が高
い場合が多い。
On the other hand, when the frequency of use in an operation region exceeding a design point is examined in an automobile having a wide operation region or a small generator in which the amount of power generation is varied according to demand, it is found that the operation region is smaller than the operation region on the full load operation side. It is often used frequently in the operating area on the point side.

【0007】従って、ガスタービンの出力増強装置は、
設計点を超える運転領域では、設計点側の運転領域で高
性能であるものが望まれる。
[0007] Therefore, the power increase device of the gas turbine is
In an operation region exceeding the design point, a high-performance one in the operation region on the design point side is desired.

【0008】[0008]

【課題を解決するための着眼】上記のガスタービンの出
力増強装置において、設計点を超える運転領域で予圧装
置の空気圧縮機を回転駆動するに当たり、運転領域が設
計点を超えるときに、予圧用空気圧縮機の軸をクラッチ
でタービン軸に連結することが考えられる。しかし、ク
ラッチは、連結時に大きな滑り損失があるので、運転領
域が設計点を超えるときに、性能がステップ状に悪化
し、設計点を少し超えた運転領域で高性能にならない。
In the above-described gas turbine power booster, when the air compressor of the precompression device is rotationally driven in an operation region exceeding the design point, the preloading device is used when the operation region exceeds the design point. It is conceivable to connect the shaft of the air compressor to the turbine shaft with a clutch. However, since the clutch has a large slip loss at the time of connection, the performance deteriorates stepwise when the operating range exceeds the design point, and the performance does not become high in the operating range slightly beyond the design point.

【0009】そこで、運転領域が設計点を超えるとき
に、予圧用空気圧縮機を、タービン軸ではなく、電動
機、油圧モータや空圧モータのような回転駆動装置で駆
動することが考えられる。
Therefore, when the operating range exceeds the design point, it is conceivable to drive the preload air compressor not by the turbine shaft but by a rotary drive device such as an electric motor, a hydraulic motor or a pneumatic motor.

【0010】そのような回転駆動装置の動力損失は、ク
ラッチの連結時の滑り損失に比較して、非常に小さい。
[0010] The power loss of such a rotary drive is very small compared to the slip loss when the clutch is engaged.

【0011】また、予圧用空気圧縮機は、その回転速度
を変えて、入口圧力に対する出口圧力の比即ち圧力比を
変化させると、図1に例示するように、ガスタービンの
出力が増減し、全負荷運転側の運転領域よりも設計点側
の運転領域で熱効率が高くなる。
When the rotation speed of the precompression air compressor is changed to change the ratio of the outlet pressure to the inlet pressure, ie, the pressure ratio, the output of the gas turbine increases and decreases as illustrated in FIG. The thermal efficiency is higher in the operation area on the design point side than in the operation area on the full load operation side.

【0012】従って、予圧用空気圧縮機を回転駆動装置
で駆動し、予圧用空気圧縮機の回転速度で予圧用空気圧
縮機の圧力比を制御してガスタービンの出力を所望の値
にする構成にすると、設計点を超える運転領域では、設
計点側の運転領域で高性能になる。
Accordingly, the precompression air compressor is driven by the rotary drive device, and the pressure ratio of the precompression air compressor is controlled by the rotation speed of the precompression air compressor to set the output of the gas turbine to a desired value. Then, in the operation region exceeding the design point, the performance becomes high in the operation region on the design point side.

【0013】[0013]

【課題を解決するための手段】本発明は、圧縮機とター
ビン及び燃焼器を備え、圧縮機とタービンの軸を連結
し、圧縮機の空気出口を燃焼器の空気入口に接続し、燃
焼器のガス出口をタービンのガス入口に接続したガスタ
ービンにおいて、ガスタービンの設計点を部分負荷運転
領域にし、設計点を超える運転領域で、圧縮機の空気入
口に吸入される空気を圧縮する予圧用空気圧縮機を設
け、予圧用空気圧縮機を回転駆動する回転駆動装置を設
け、予圧用空気圧縮機の回転速度で予圧用空気圧縮機の
圧力比を制御して所望の出力を得る制御装置を設けたこ
とを特徴とする出力増強装置である。
SUMMARY OF THE INVENTION The present invention comprises a compressor, a turbine, and a combustor, wherein a shaft of the compressor is connected to a shaft of the turbine, and an air outlet of the compressor is connected to an air inlet of the combustor. In a gas turbine with the gas outlet connected to the gas inlet of the turbine, the design point of the gas turbine is set to the partial load operation area, and in the operation area exceeding the design point, the precompression for compressing the air taken into the air inlet of the compressor A control device for providing a desired output by controlling the pressure ratio of the pre-compressed air compressor with the rotational speed of the pre-compressed air compressor by providing an air compressor and providing a rotational drive device for rotating the pre-compressed air compressor. An output intensifying device characterized by being provided.

【0014】[0014]

【発明の効果】本発明においては、設計点を超えない部
分負荷運転領域で、熱効率が高くなる。設計点を超える
運転領域では、設計点側の運転領域で熱効率が高くな
る。
According to the present invention, the thermal efficiency is increased in the partial load operation region not exceeding the design point. In the operation region beyond the design point, the thermal efficiency is high in the operation region on the design point side.

【0015】従って、運転領域の大部分が部分負荷運転
であり、設計点を超える運転領域では全負荷運転側の運
転領域より設計点側の運転領域での使用頻度が高い動力
源に適している。
Therefore, most of the operation range is the partial load operation, and the operation range exceeding the design point is suitable for a power source that is more frequently used in the operation range on the design point side than the operation range on the full load operation side. .

【0016】[0016]

【発明の実施の態様】[第1例(図2と図3参照)]本
例のガスタービンは、図2に示すように、圧縮機1とタ
ービン2及び燃焼器3を備えている。圧縮機1とタービ
ン2は、それらの軸4を連結している。圧縮機1の空気
入口は、空気吸入通路5を経て大気に開放している。圧
縮機1の空気出口は、空気通路6で燃焼器3の空気入口
に接続している。燃焼器3の燃料噴射弁7には、燃料供
給通路8を接続している。燃焼器3のガス出口は、ガス
通路9でタービン2のガス入口に接続している。タービ
ン2のガス出口は、ガス排出通路10を経て大気に開放
している。タービン軸4には、負荷の小型発電機11を
連結している。ガスタービンの設計点は、3分の2負荷
運転時である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment (See FIGS. 2 and 3) The gas turbine of this embodiment includes a compressor 1, a turbine 2, and a combustor 3, as shown in FIG. The compressor 1 and the turbine 2 connect their shafts 4. An air inlet of the compressor 1 is open to the atmosphere via an air suction passage 5. An air outlet of the compressor 1 is connected to an air inlet of the combustor 3 by an air passage 6. A fuel supply passage 8 is connected to the fuel injection valve 7 of the combustor 3. The gas outlet of the combustor 3 is connected to the gas inlet of the turbine 2 by a gas passage 9. The gas outlet of the turbine 2 is open to the atmosphere via a gas discharge passage 10. A small load generator 11 having a load is connected to the turbine shaft 4. The design point of the gas turbine is at 2/3 load operation.

【0017】本例の出力増強装置は、図2に示すよう
に、予圧用のターボ式空気圧縮機21と電動機22、圧
力センサ23と回転速度センサ24、第1方向切換弁2
5と第2方向切換弁26、出力センサ27と制御装置2
8を備えている。
As shown in FIG. 2, the power intensifier of this embodiment comprises a preloading turbo air compressor 21 and an electric motor 22, a pressure sensor 23 and a rotational speed sensor 24, a first directional control valve 2
5, second directional control valve 26, output sensor 27 and control device 2
8 is provided.

【0018】予圧用空気圧縮機21と電動機22は、そ
れらの軸31を連結している。第1方向切換弁25と第
2方向切換弁26は、それぞれ、圧縮機1の空気吸入通
路5の途中に介在している。第1方向切換弁25の出口
は、予圧空気吸入通路32で予圧用空気圧縮機21の空
気入口に接続している。予圧用空気圧縮機21の空気出
口は、予圧空気通路33で第2方向切換弁26の入口に
接続している。
The precompression air compressor 21 and the electric motor 22 have their shafts 31 connected. The first directional switching valve 25 and the second directional switching valve 26 are respectively provided in the middle of the air suction passage 5 of the compressor 1. An outlet of the first directional control valve 25 is connected to an air inlet of the precompression air compressor 21 through a precompression air intake passage 32. The air outlet of the preload air compressor 21 is connected to the inlet of the second directional control valve 26 through a preload air passage 33.

【0019】予圧用空気圧縮機21の出口圧力を検出す
る圧力センサ23、予圧用空気圧縮機21と電動機22
の軸31の回転速度を検出する回転速度センサ24と、
発電機11の出力状態を検出する出力センサ27は、そ
れぞれ、制御装置28の入力端子に接続している。制御
装置28の出力端子は、燃焼器3の燃料噴射弁7、電動
機22、第1方向切換弁25と第2方向切換弁26にそ
れぞれ接続している。
A pressure sensor 23 for detecting an outlet pressure of the precompression air compressor 21, a precompression air compressor 21 and an electric motor 22
A rotation speed sensor 24 for detecting the rotation speed of the shaft 31 of
Output sensors 27 for detecting the output state of the generator 11 are connected to input terminals of a control device 28, respectively. The output terminal of the control device 28 is connected to the fuel injection valve 7, the electric motor 22, the first directional switching valve 25 and the second directional switching valve 26 of the combustor 3, respectively.

【0020】本例の出力増強装置を備えたガスタービン
は、発電機11の出力がガスタービン設計点の3分の2
負荷に達するまでの低負荷運転時には、第1方向切換弁
25と第2方向切換弁26が図2に示す通路接続状態に
ある。予圧用空気圧縮機21の空気入口と空気出口が閉
鎖されると共に、圧縮機1の空気入口が空気吸入通路5
を経て大気に開放している。また、電動機22は、回転
駆動しない。従って、出力増強装置は、作動しない。ガ
スタービンは、出力増強装置のない場合と同様に運転さ
れる。
In the gas turbine provided with the power booster of this embodiment, the output of the generator 11 is two thirds of the gas turbine design point.
During the low-load operation until the load is reached, the first directional control valve 25 and the second directional control valve 26 are in the passage connection state shown in FIG. The air inlet and the air outlet of the precompression air compressor 21 are closed, and the air inlet of the compressor 1 is connected to the air suction passage 5.
And open to the atmosphere. The electric motor 22 does not rotate. Therefore, the power booster does not operate. The gas turbine operates as if there were no power booster.

【0021】発電機11の出力がガスタービン設計点の
3分の2負荷を超える高負荷運転時には、制御装置28
は、第1方向切換弁25と第2方向切換弁26の通路を
それぞれ図2に示す通路接続状態から切り換える。する
と、空気吸入通路5の途中が閉鎖されると共に、予圧用
空気圧縮機21の空気入口が予圧空気吸入通路32、第
1方向切換弁25と空気吸入通路5の上流部分を経て大
気に開放し、予圧用空気圧縮機21の空気出口が予圧空
気通路33、第2方向切換弁26と空気吸入通路5の下
流部分を経て圧縮機1の空気入口に接続する。また、制
御装置28は、電動機22を回転駆動し、予圧用空気圧
縮機21を駆動する。
When the output of the generator 11 is higher than 2/3 of the design point of the gas turbine at a high load operation, the control unit 28
Switches the passages of the first directional switching valve 25 and the second directional switching valve 26 from the passage connection state shown in FIG. Then, the middle of the air suction passage 5 is closed, and the air inlet of the precompression air compressor 21 is opened to the atmosphere via the precompression air suction passage 32, the first directional switching valve 25, and the upstream portion of the air suction passage 5. The air outlet of the precompression air compressor 21 is connected to the air inlet of the compressor 1 via the precompression air passage 33, the second directional control valve 26, and the downstream portion of the air suction passage 5. Further, the control device 28 drives the electric motor 22 to rotate, and drives the preload air compressor 21.

【0022】すると、圧縮機1の空気入口に吸入される
空気は、予圧用空気圧縮機21において圧縮された状態
で圧縮機1の空気入口に流入する。圧縮機1に流入する
空気が予圧される、即ち、過給されるので、圧縮機1の
空気流量が増加し、ガスタービンの出力が増強される。
Then, the air sucked into the air inlet of the compressor 1 flows into the air inlet of the compressor 1 while being compressed in the pre-compression air compressor 21. Since the air flowing into the compressor 1 is pre-pressed, that is, supercharged, the air flow rate of the compressor 1 increases, and the output of the gas turbine is increased.

【0023】ガスタービンの出力を制御する場合、電動
機22の回転速度即ち予圧用空気圧縮機21の回転速度
を変えて、予圧用空気圧縮機21の圧力比を変化させ
る。
When controlling the output of the gas turbine, the rotation speed of the electric motor 22, that is, the rotation speed of the precompression air compressor 21 is changed to change the pressure ratio of the precompression air compressor 21.

【0024】本例の出力増強装置を備えたガスタービン
について、熱効率と出力の関係を図3に実線で示す。運
転領域が設計点を超えるときに、予圧用空気圧縮機の軸
をクラッチでタービン軸に連結する比較例について、破
線で示す。
FIG. 3 shows the relationship between the thermal efficiency and the output of the gas turbine provided with the power booster of this embodiment by a solid line. A broken line shows a comparative example in which the shaft of the preload air compressor is connected to the turbine shaft by a clutch when the operating range exceeds the design point.

【0025】図3の線図から明らかなように、本例の場
合、ガスタービン設計点の負荷(100kw)に達する
までの使用頻度の高い低負荷運転時には、熱効率が高
い。
As is apparent from the diagram of FIG. 3, in the case of this embodiment, the thermal efficiency is high during the low-load operation where the frequency of use is high until the load (100 kW) of the gas turbine design point is reached.

【0026】ガスタービン設計点の3分の2負荷を超え
る高負荷運転時には、負荷が増加するに従って熱効率が
徐々に低下するが、全負荷(150kw)運転は、可能
である。設計点を超える運転領域では、熱効率は、全負
荷側の運転領域よりも設計点側の運転領域で高くなる。
At the time of high-load operation exceeding two-thirds load at the gas turbine design point, the thermal efficiency gradually decreases as the load increases, but full-load (150 kW) operation is possible. In the operation region beyond the design point, the thermal efficiency is higher in the operation region on the design point side than in the operation region on the full load side.

【0027】比較例の場合は、運転領域が設計点を超え
るときに、クラッチの連結時の大きな滑り損失によって
熱効率がステップ状に悪化し、設計点を少し超えた運転
領域では、熱効率が本例の場合より非常に低くなる。
In the case of the comparative example, when the operating region exceeds the design point, the thermal efficiency deteriorates stepwise due to a large slip loss when the clutch is engaged, and in the operating region slightly beyond the design point, the thermal efficiency decreases. Is much lower than

【0028】本例のガスタービンは、スタータに代えて
予圧用空気圧縮機21を駆動することにより起動が可能
であり、起動時間の短縮と消費動力の低減が可能にな
る。
The gas turbine of this embodiment can be started by driving the preload air compressor 21 instead of the starter, so that the starting time can be reduced and the power consumption can be reduced.

【0029】本例においては、予圧用空気圧縮機21に
ターボ式を用いるが、ルーツ式やスクリュウ式を用いて
もよい。
In this embodiment, a turbo type is used as the preload air compressor 21, but a roots type or a screw type may be used.

【0030】[第2例(図4参照)]本例の出力増強装
置は、第1例のそれにおいて、図4に示すように、圧縮
機1の空気入口または予圧用空気圧縮機21の空気出口
に空気冷却器41を介在し、予圧用空気圧縮機21で圧
縮されて圧縮機1の空気入口に流入する空気を冷却する
構成にしている。その他の構成は、第1例におけるのと
同様である。
[Second Example (See FIG. 4)] The power intensifier of the present example differs from that of the first example in that the air inlet of the compressor 1 or the air of the precompression air compressor 21 as shown in FIG. An air cooler 41 is interposed at the outlet to cool the air that is compressed by the precompression air compressor 21 and flows into the air inlet of the compressor 1. Other configurations are the same as those in the first example.

【0031】本例の出力増強装置を備えたガスタービン
においては、3分の2負荷を超える高負荷運転時には、
圧縮機1に吸入される空気が空気冷却器41で冷却され
るので、圧縮機1の空気質量流量が増加し、ガスタービ
ンの出力が更に増強される。
In the gas turbine provided with the power booster of the present embodiment, at the time of high load operation exceeding two-thirds load,
Since the air taken into the compressor 1 is cooled by the air cooler 41, the air mass flow rate of the compressor 1 increases, and the output of the gas turbine is further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の出力増強装置を備えたガスタービンの
熱効率、予圧用空気圧縮機の圧力比とガスタービンの出
力の関係を例示する線図。
FIG. 1 is a diagram exemplifying the relationship between the thermal efficiency of a gas turbine provided with an output booster of the present invention, the pressure ratio of a precompression air compressor, and the output of a gas turbine.

【図2】本発明の実施態様の第1例における出力増強装
置を備えたガスタービンの概略図。
FIG. 2 is a schematic diagram of a gas turbine including a power booster according to a first embodiment of the present invention.

【図3】同ガスタービンの熱効率と出力の関係を示す線
図。
FIG. 3 is a diagram showing a relationship between thermal efficiency and output of the gas turbine.

【図4】実施態様の第2例の出力増強装置を備えたガス
タービンの概略図。
FIG. 4 is a schematic diagram of a gas turbine including a power booster according to a second example of the embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 タービン 3 燃焼器 4 タービン軸 21 予圧用ターボ式空気圧縮機 22 電動機、回転駆動装置 28 制御装置 DESCRIPTION OF SYMBOLS 1 Compressor 2 Turbine 3 Combustor 4 Turbine shaft 21 Turbo air compressor for preload 22 Electric motor, rotation drive device 28 Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機とタービン及び燃焼器を備え、圧
縮機とタービンの軸を連結し、圧縮機の空気出口を燃焼
器の空気入口に接続し、燃焼器のガス出口をタービンの
ガス入口に接続したガスタービンにおいて、 ガスタービンの設計点を部分負荷運転領域にし、設計点
を超える運転領域で、圧縮機の空気入口に吸入される空
気を圧縮する予圧用空気圧縮機を設け、 予圧用空気圧縮機を回転駆動する回転駆動装置を設け、
予圧用空気圧縮機の回転速度で予圧用空気圧縮機の圧力
比を制御して所望の出力を得る制御装置を設けたことを
特徴とする出力増強装置。
A compressor, a turbine, and a combustor; a compressor and a turbine shaft connected to each other; an air outlet of the compressor connected to an air inlet of the combustor; and a gas outlet of the combustor connected to a gas inlet of the turbine. In the gas turbine connected to the gas turbine, the design point of the gas turbine is set to the partial load operation area, and in the operation area exceeding the design point, a precompression air compressor that compresses the air taken into the air inlet of the compressor is installed. Providing a rotary drive for rotating the air compressor,
An output intensifier comprising a control device for controlling a pressure ratio of the preload air compressor at a rotation speed of the preload air compressor to obtain a desired output.
JP10260760A 1998-09-16 1998-09-16 Gas turbine output enhancement unit Pending JP2000087761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260760A JP2000087761A (en) 1998-09-16 1998-09-16 Gas turbine output enhancement unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260760A JP2000087761A (en) 1998-09-16 1998-09-16 Gas turbine output enhancement unit

Publications (1)

Publication Number Publication Date
JP2000087761A true JP2000087761A (en) 2000-03-28

Family

ID=17352358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260760A Pending JP2000087761A (en) 1998-09-16 1998-09-16 Gas turbine output enhancement unit

Country Status (1)

Country Link
JP (1) JP2000087761A (en)

Similar Documents

Publication Publication Date Title
US6079211A (en) Two-stage supercharging systems for internal combustion engines
US7246490B2 (en) Internal combustion engine including a compressor and method for operating an internal combustion engine
JP4273340B2 (en) Internal combustion engine having a compressor in the intake pipe
US6922996B2 (en) Method for controlling an electrically driven compressor
US6321538B2 (en) Method of increasing a flow rate of intake air to an engine
US5768884A (en) Gas turbine engine having flat rated horsepower
US4932211A (en) Internal combustion engine charging unit
GB9323340D0 (en) Turbochargers for internal combustion engines
JP2966575B2 (en) Oil-free scroll compressor
US6966183B2 (en) Supercharged internal combustion engine
JPS5982526A (en) Supercharger for internal-combustion engine
US5400597A (en) Turbocharger system with electric blower
CN108691768B (en) Method for controlling a rotary screw compressor
US4718235A (en) Turbo compound internal combustion engine
JPS58187521A (en) Exhaust gas turbo overcharger
JP2000087760A (en) Gas turbine output enhancement unit
JP2000087761A (en) Gas turbine output enhancement unit
JPS60116821A (en) Exhaust gas turbo-supercharger
WO1980000169A1 (en) A vehicle combustion engine of the compound type
JPH08177507A (en) Supercharger of internal combustion engine and its operation method
JPH0261392A (en) Starting of turbocompressor and starting device
JP2000073782A (en) Output reinforcement device for gas turbine
JP2006342801A (en) Internal combustion engine
GB2349427A (en) Multi-stage turbocharger having coaxial shafts
CN111350582A (en) Multi-stage turbocharged engine system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727