JP2000087367A - Joint method of pile - Google Patents

Joint method of pile

Info

Publication number
JP2000087367A
JP2000087367A JP10258688A JP25868898A JP2000087367A JP 2000087367 A JP2000087367 A JP 2000087367A JP 10258688 A JP10258688 A JP 10258688A JP 25868898 A JP25868898 A JP 25868898A JP 2000087367 A JP2000087367 A JP 2000087367A
Authority
JP
Japan
Prior art keywords
pile
head
base
steel wires
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10258688A
Other languages
Japanese (ja)
Inventor
Hirotoshi Sei
広歳 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP10258688A priority Critical patent/JP2000087367A/en
Publication of JP2000087367A publication Critical patent/JP2000087367A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To rationally design a cross section of a pile by accurately grasping stress efficiency around the pile head in the case of an earthquake. SOLUTION: Joint structure of a pile is so constituted that PC steel wires 3 projected from the head of a PC pile 1 are made to pass through a footing slab 2 to anchor the ends of the PC steel wires 3 on the upper surface of the footing slab. Anchorage structure in the ends of the PC steel wires 3 is constituted of anchor members 7 and energy absorption members 4 provided between the anchor members and footing slab 2. The energy absorption members 4 are crushed ahead of the PC steel wires at yield strength or less than fracture strength of the PC steel wires 3. While, tensile force is introduced to the PC steel wires 3 in the case anchorage work is carried out by the anchor members 7, and its strength is properly set so that the head of the PC pile 1 can be rotationally deformed for the footing slab 2 in the case bending moment acting on the head of the PC pile 1 exceeds M1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基礎スラブに代表
されるような上部構造物の基部と杭頭との接合構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure between a base of an upper structure such as a foundation slab and a pile head.

【0002】[0002]

【従来の技術】杭基礎には支持杭形式と摩擦杭形式とが
あり、前者は、良質な支持層が地下深くにある場合に該
支持層まで打ち込んだ杭の上に上部構造物を構築するこ
とによって、構造物重量を支持層で安定支持する形式で
あり、後者は、良質な支持層がない場合に周辺地盤との
摩擦力によって上部構造物を支持する形式の基礎形式で
ある。
2. Description of the Related Art There are two types of pile foundations: a support pile type and a friction pile type. In the former, when a good quality support layer is deep underground, an upper structure is constructed on a pile driven into the support layer. Accordingly, the structure is a type in which the weight of the structure is stably supported by the support layer, and the latter is a basic type in which the upper structure is supported by the frictional force with the surrounding ground when there is no high-quality support layer.

【0003】これらの杭は、その杭頭にて上部構造物の
基礎スラブに接合されるが、かかる接合部においては、
長期荷重として圧縮力が作用するほか、地震時には、上
部構造物の転倒モーメントに起因する引抜き力、水平力
に起因するせん断力あるいは曲げモーメントが作用す
る。
[0003] These piles are joined to the foundation slab of the superstructure at the pile head.
In addition to a compressive force acting as a long-term load, during an earthquake, a pulling force caused by the overturning moment of the upper structure, a shear force or a bending moment caused by a horizontal force acts.

【0004】そのため、杭頭と基礎スラブとを接合する
にあたっては、まず、接合箇所における設計上の取扱い
を剛接とするのか非剛接とするのかを、上部構造物の構
造形式、規模、重要度、杭径、杭本数などを考慮して定
め、次いで、そのような接合条件を満足する接合方法を
選択した上で、上述した荷重に対して接合箇所の健全性
が維持されるよう設計する必要がある。
[0004] Therefore, when joining the pile head and the foundation slab, first, whether to handle rigidly or non-rigidly in the design at the joint is determined by the structural type, scale, and importance of the upper structure. Determining in consideration of the degree, pile diameter, number of piles, etc., then select a joining method that satisfies such joining conditions and design so that the soundness of the joint is maintained against the above-mentioned load There is a need.

【0005】ちなみに、剛接とみなすことができる接合
方法としては、場所打ちコンクリート杭であれば、杭頭
を基礎スラブに10cm程度埋め込み、予め出しておい
た杭の主筋を基礎スラブに定着させる方法や、既製杭で
あれば、該杭を杭径長さ程度基礎スラブに埋め込む方法
がある。
[0005] Incidentally, as a joining method that can be regarded as a rigid connection, in the case of a cast-in-place concrete pile, a pile head is buried about 10 cm in a foundation slab, and a main bar of the pile previously set is fixed to the foundation slab. Alternatively, in the case of a ready-made stake, there is a method of embedding the stake in a foundation slab about a pile diameter length.

【0006】一方、剛接でない接合方法としては、PC
杭やPHC杭の場合であれば基礎スラブへの埋込みを1
0cm程度行うとともに、杭切断のときに残しておいた
PC鋼線や鋼棒を基礎スラブに定着させる方法や、鋼管
杭や外殻鋼管付き既製コンクリート杭の場合には、杭頭
に接合鉄筋を予め溶接で取り付け、しかる後に接合鉄筋
を基礎スラブに定着させる方法がある。
On the other hand, non-rigid joining methods include PC
In the case of piles or PHC piles, embedding in the foundation slab is 1
In addition to performing about 0 cm, the method of fixing the PC steel wire or steel rod left at the time of cutting the pile to the foundation slab, or in the case of a steel pipe pile or a ready-made concrete pile with an outer shell steel pipe, attach a reinforcing bar to the pile head. There is a method of attaching by welding in advance, and then fixing the joining rebar to the base slab.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、剛接の
場合はもちろん剛接でない場合でも、上述したような接
合方法では、杭頭の固定度がかなり高くなり、地震時に
おいては、水平力に起因する大きな曲げモーメントが杭
頭に作用する。
However, the rigidity of the pile head is considerably increased by the above-mentioned joining method even in the case of rigid joining and not rigid joining. A large bending moment acts on the pile head.

【0008】一方、地震時においては、かかる曲げモー
メントに加えて、上述したようなせん断力や引抜き力が
杭頭に複雑に作用するため、実験やシミュレーションを
数多く行ったとしても、地震時における杭頭近傍の応力
性状を正確に把握するには限界がある。
On the other hand, in the event of an earthquake, in addition to the bending moment, the above-described shearing force and pulling-out force act on the pile head in a complicated manner. There is a limit to accurately grasp the stress properties near the head.

【0009】したがって、上述した曲げモーメントによ
って杭頭が破損するといった事態を防止するには、杭を
過大に設計せざるを得ないという問題を生じていた。
Therefore, in order to prevent the pile head from being damaged by the bending moment described above, there has been a problem that the pile must be excessively designed.

【0010】本発明は、上述した事情を考慮してなされ
たもので、地震時における杭頭近傍の応力性状を正確に
把握することによって杭の断面設計を合理的に行うこと
が可能な杭頭の接合構造を提供することを目的とする。
The present invention has been made in consideration of the above-described circumstances, and a pile head capable of rationally designing a cross section of a pile by accurately grasping stress properties near the pile head during an earthquake. It is an object of the present invention to provide a joint structure.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る杭の接合構造は請求項1に記載したよ
うに、杭の頭部と上部構造物の基部とを緊張材を介して
接合するとともに、所定の曲げモーメントが前記杭の頭
部に作用したときに該杭の頭部が前記基部に対して回転
変形するように前記緊張材に所定の緊張力を導入したも
のである。
In order to achieve the above object, a joint structure for a pile according to the present invention, as described in claim 1, connects the head of the pile and the base of the upper structure via a tension member. And a predetermined tension is introduced into the tendon so that the head of the pile is rotationally deformed with respect to the base when a predetermined bending moment acts on the head of the pile. .

【0012】また、本発明に係る杭の接合構造は、前記
緊張材の基部側端部に設けられた定着構造に該緊張材の
降伏強度若しくは破断強度以下で先行破損するエネルギ
ー吸収部材を設けるとともに、該エネルギー吸収部材を
交換自在としたものである。
In the joint structure for a pile according to the present invention, an anchoring structure provided at an end of the tendon at the base side side is provided with an energy absorbing member that breaks down at a yield strength or breaking strength or less of the tendon. And the energy absorbing member can be replaced freely.

【0013】本発明に係る杭の接合構造においては、杭
の頭部と上部構造物の基部とを所定の緊張力が導入され
た状態で接合してあるので、杭頭と基部との間には、該
緊張力の反力として圧縮力が相互に作用する。そして、
この圧縮力が存在する限り、杭の頭部が回転変形して
(回転角を生じて)上部構造物の基部から離れることは
ない。言い換えれば、杭の頭部は、上部構造物の基部に
対して剛接された状態が維持される。
In the joint structure for a pile according to the present invention, the head of the pile and the base of the upper structure are joined in a state where a predetermined tension is introduced, so that there is a space between the pile head and the base. , A compressive force interacts as a reaction force of the tension. And
As long as this compressive force is present, the head of the pile will not rotate and deform (creating an angle of rotation) and will not leave the base of the superstructure. In other words, the head of the pile is kept in rigid contact with the base of the superstructure.

【0014】一方、地震の規模が大きくなるにつれて、
すなわち地震時水平力に起因する曲げモーメントが大き
くなるに従って、上述した圧縮力は小さくなり、やがて
該圧縮力が消失して杭頭が上部構造物の基部に対して回
転変形を始める。
On the other hand, as the magnitude of the earthquake increases,
That is, as the bending moment caused by the horizontal force during an earthquake increases, the above-described compressive force decreases, and the compressive force eventually disappears, and the pile head starts rotating and deforming with respect to the base of the superstructure.

【0015】すなわち、曲げモーメントが小さい場合、
杭の頭部と上部構造物の基部との接合状態は剛接が維持
されるが、一定の曲げモーメントに達した時点を境とし
て、言い換えれば一定規模以上の地震に対しては、両者
の接合状態が剛接から非剛接へと移行し、杭の頭部に作
用する曲げモーメントは、剛接状態のときよりも大幅に
抑制される。
That is, when the bending moment is small,
The connection between the head of the pile and the base of the superstructure maintains a rigid connection, but when a certain bending moment is reached, in other words, when the earthquake exceeds a certain scale, the two parts are connected. The state shifts from rigid to non-rigid, and the bending moment acting on the head of the pile is suppressed much more than in the rigid state.

【0016】そして、杭の頭部と上部構造物の基部との
接合状態が剛接から非剛接に移行する転換点は、緊張力
の大きさを調整することによって自在に設定できるの
で、各物件ごとに最適な設計を行うことが可能となる。
The turning point at which the joint between the head of the pile and the base of the upper structure shifts from rigid to non-rigid can be freely set by adjusting the magnitude of the tension. It is possible to perform an optimal design for each property.

【0017】ここで、上部構造物の基部とは、杭の頭部
が接合される上部構造物の部位という意味であり、上部
構造物が例えば通常の建物であれば、その基礎スラブが
該当し、橋脚であればその基部が該当する。なお、基部
は、主として鉄筋コンクリートを対象とするが、その材
質については任意であり、RC以外のコンクリート構造
(例えばPC構造)はもちろん、鋼構造についても基部
に含まれる。
Here, the base of the upper structure means a portion of the upper structure to which the head of the pile is joined. If the upper structure is, for example, a normal building, the foundation slab corresponds to the upper structure. If it is a pier, the base of the pier corresponds. The base is mainly made of reinforced concrete, but its material is arbitrary. The base includes not only concrete structures other than RC (for example, PC structures) but also steel structures.

【0018】杭の種類については任意であり、現場打ち
コンクリート杭をはじめ、鋼管杭、コンクリート杭、P
C杭、PHC杭などの既製杭に適用することができる。
また、緊張材としては、例えばPC鋼線やPC鋼棒など
を用いることができる。
The types of piles are arbitrary, and include cast-in-place concrete piles, steel pipe piles, concrete piles,
It can be applied to ready-made piles such as C pile and PHC pile.
Further, as the tension member, for example, a PC steel wire or a PC steel rod can be used.

【0019】緊張材と杭との接合の仕方は任意であり、
PC杭を使用する場合には、該杭から出ているPC鋼線
を用いるようにしてもよいし、鋼管杭を使用する場合に
は、PC鋼棒を該鋼管杭の杭頭に直接あるいは所定の取
付け金具を介して溶接等で取り付けるようにすればよ
い。
The joining method between the tendon and the pile is arbitrary,
When using a PC pile, a PC steel wire protruding from the pile may be used, and when using a steel pipe pile, a PC steel rod may be directly or pre-determined on the pile head of the steel pipe pile. It may be mounted by welding or the like via the mounting bracket.

【0020】緊張材の基部側端部に設けられた定着構造
をどのように構成するかは任意であるが、かかる定着構
造に緊張材の降伏強度若しくは破断強度以下で先行破損
するエネルギー吸収部材を設けるとともに、該エネルギ
ー吸収部材を交換自在とした場合には、大地震時に緊張
材から受けた圧縮力でエネルギー吸収部材が破損して
も、地震後にこれを取り外して新しいものに交換し所定
の緊張力を導入するようにすれば、元通り修復すること
が可能となる。
The fixing structure provided at the base-side end of the tendon material may be arbitrarily configured. However, the fixing structure may include an energy absorbing member that breaks at a yield strength or breaking strength equal to or lower than the yield strength of the tendon material. In addition, if the energy absorbing member is freely replaceable, even if the energy absorbing member is damaged by the compressive force received from the tension member during a large earthquake, the energy absorbing member is removed after the earthquake and replaced with a new one, and a predetermined tension is applied. With the introduction of force, it can be restored.

【0021】定着構造の具体例としては、例えばPC鋼
線を定着するための公知の定着部材を先行破損が生じる
ように改良してエネルギー吸収部材兼用とする、あるい
は公知の定着部材と上部構造物の基部との間にエネルギ
ー吸収部材を別途介在させるなどの方法が考えられる。
As a specific example of the fixing structure, for example, a known fixing member for fixing a PC steel wire is modified so as to cause premature breakage so as to serve also as an energy absorbing member, or a known fixing member and an upper structure are used. For example, a method of separately interposing an energy absorbing member between the base and the base may be considered.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る杭の接合構造
の実施の形態について、添付図面を参照して説明する。
なお、従来技術と実質的に同一の部品等については同一
の符号を付してその説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a joint structure for piles according to the present invention will be described with reference to the accompanying drawings.
It is to be noted that the same reference numerals are given to components and the like that are substantially the same as those in the conventional technology, and description thereof will be omitted.

【0023】図1乃至図3は、本実施形態に係る杭の接
合構造を示したものである。これらの図でわかるよう
に、本実施形態に係る杭の接合構造は、PC杭1の頭部
から出ている緊張材としてのPC鋼線3を上部構造物の
基部である基礎スラブ2に貫通させた上、該基礎スラブ
の上面にてPC鋼線3の端部を定着することで、PC杭
1の頭部と基礎スラブ2とをPC鋼線3を介して相互に
接合してある。
FIGS. 1 to 3 show a joint structure of a pile according to this embodiment. As can be seen from these figures, the joint structure of the pile according to the present embodiment penetrates a PC steel wire 3 as a tendon from the head of the PC pile 1 into the base slab 2 which is the base of the upper structure. Then, by fixing the end of the PC steel wire 3 on the upper surface of the base slab, the head of the PC pile 1 and the base slab 2 are joined to each other via the PC steel wire 3.

【0024】ここで、PC鋼線3の端部における定着構
造は、図3の分解斜視図でよくわかるように、雌コーン
5及び該雌コーンに嵌め込まれる三分割された雄コーン
6からなる定着部材7と、該定着部材と基礎スラブ2と
の間に介在されるエネルギー吸収部材4とから構成して
ある。
Here, the fixing structure at the end of the PC steel wire 3 includes a female cone 5 and a three-divided male cone 6 fitted into the female cone, as can be clearly seen from the exploded perspective view of FIG. It comprises a member 7 and an energy absorbing member 4 interposed between the fixing member and the base slab 2.

【0025】エネルギー吸収部材4は、中央にPC鋼線
3が挿通される挿通孔8が形成されたコンクリート円筒
体として形成してあり、PC鋼線3の降伏強度若しくは
破断強度以下で該PC鋼線に先行して圧壊するようにな
っている。なお、エネルギー吸収部材4は、同図からわ
かるように、圧壊後、定着部材7を取り外した状態で新
しいものに交換できるようになっている。
The energy absorbing member 4 is formed as a concrete cylinder having an insertion hole 8 formed in the center thereof, through which the PC steel wire 3 is inserted. It collapses ahead of the line. As can be seen from the figure, the energy absorbing member 4 can be replaced with a new one after the crushing, with the fixing member 7 removed.

【0026】一方、PC鋼線3には、定着部材7による
定着作業のときに緊張力を導入してあり、その大きさ
は、PC杭1の頭部に作用する曲げモーメントがM1
達するまでは、PC杭1の頭部に回転変形(回転角)が
発生せず、M1を上回ったときに、PC杭1の頭部が基
礎スラブ2に対して回転変形するよう適宜定めてある。
On the other hand, tension is introduced into the PC steel wire 3 during the fixing operation by the fixing member 7, and the bending moment acting on the head of the PC pile 1 reaches M 1 . Previously, not rotational deformation (angle of rotation) occurs in the head of the PC pile 1, when exceeded M 1, there are appropriately determined so that the head of the PC pile 1 is rotated deformed relative to the base slab 2 .

【0027】M1は、後述するように剛接状態から非剛
接状態への転換点を意味し、これをどのように定めるか
は設計的な観点で適宜検討すればよい。
M 1 means a turning point from a rigid state to a non-rigid state as described later, and how to determine this may be appropriately examined from a design point of view.

【0028】本実施形態に係る杭の接合構造において
は、PC杭1の頭部と基礎スラブ2とを上述した緊張力
が導入された状態で接合してあるので、PC杭1の杭頭
には、該緊張力の反力として図4に示すように基礎スラ
ブ2から圧縮力Pが作用する。そして、地震時水平力H
に起因して杭頭に作用する曲げモーメントMと組み合わ
せた応力状態として、同図(c)に示すように応力σ2の値
が圧縮である限り、PC杭1の頭部が回転変形して(回
転角を生じて)基礎スラブ2から離れることはない。言
い換えれば、PC杭1の頭部は、基礎スラブ2に対して
剛接された状態が維持される。なお、かかる剛接状態
は、杭頭に作用する曲げモーメントMが上述したM1
下回っている限り、そのまま維持される。
In the pile joining structure according to the present embodiment, the head of the PC pile 1 and the foundation slab 2 are joined in a state where the above-described tension is introduced. As shown in FIG. 4, a compressive force P acts from the base slab 2 as a reaction force of the tension. And the horizontal force H during an earthquake
As a stress state combined with the bending moment M acting on the pile head due to the above, the head of the PC pile 1 is rotationally deformed as long as the value of the stress σ 2 is compression as shown in FIG. It does not leave the base slab 2 (causing a rotation angle). In other words, the head of the PC pile 1 is kept in rigid contact with the base slab 2. Incidentally, such a rigid connection state as long as the bending moment M acting on the pile head is below the M 1 as described above, is maintained.

【0029】図5は、PC杭1の杭頭における回転角θ
と該杭頭に作用する曲げモーメントMとの関係を示した
グラフであり、上述した剛接状態は、かかるグラフ上の
原点からA点に至るまでの経路に対応する。
FIG. 5 shows the rotation angle θ at the pile head of the PC pile 1.
5 is a graph showing the relationship between the bending moment M acting on the pile head and the rigid contact state described above corresponds to a path from the origin to point A on the graph.

【0030】一方、地震の規模が大きくなるにつれて、
すなわち地震時水平力Hに起因する曲げモーメントMが
大きくなるに従って上述した応力σ2の値は小さくな
り、上述したM1を上回ると、応力σ2は、同図(d)乃至
(f)に示すように引張状態となり、PC杭1の頭部は、
基礎スラブ2に対して回転変形を始める。言い換えれ
ば、PC杭1の頭部は、基礎スラブ2に対してピン接合
に近い状態に移行する(図5のA点)。
On the other hand, as the magnitude of the earthquake increases,
That is, as the bending moment M caused by the horizontal force H during an earthquake increases, the value of the above-described stress σ 2 decreases. When the value of the stress σ 2 exceeds the above-described M 1 , the stress σ 2 changes from FIG.
As shown in (f), it is in a tension state, and the head of the PC pile 1 is
Rotational deformation of the base slab 2 is started. In other words, the head of the PC pile 1 shifts to a state close to the pin connection with the base slab 2 (point A in FIG. 5).

【0031】次に、かかる状態からさらに地震時水平力
Hが大きくなった場合、杭頭に作用する曲げモーメント
は増え続けるが、接合箇所がピン接合に近い状態に移行
しているため、その増加の程度は小さい(図5のA点〜
B点)。そして、PC鋼線3に生じている引張力の反力
としてエネルギー吸収部材4に作用している圧縮力が所
定の大きさに達すると、エネルギー吸収部材4が圧壊す
る(図5のB点)。
Next, when the horizontal force H at the time of the earthquake further increases from this state, the bending moment acting on the pile head continues to increase. Is small (from point A in FIG. 5).
B point). When the compressive force acting on the energy absorbing member 4 as a reaction force of the tensile force generated in the PC steel wire 3 reaches a predetermined magnitude, the energy absorbing member 4 is crushed (point B in FIG. 5). .

【0032】以上説明したように、本実施形態に係る杭
の接合構造によれば、PC杭1の杭頭に作用する曲げモ
ーメントMが小さい場合、言い換えれば中小地震に対し
ては、PC杭1の頭部と基礎スラブ2との接合状態は剛
接が維持されるが、一定の曲げモーメントM1に達した
時点を境として、言い換えれば一定規模以上の地震に対
しては、両者の接合状態が剛接から非剛接へと移行する
ので、PC杭1の頭部に作用する曲げモーメントMを大
幅に抑制することが可能となり、かくして、過大な断面
の杭を使用せずとも、大地震時における杭頭の破損ひい
ては上部構造物の損壊を未然に防止することが可能とな
る。
As described above, according to the joint structure of a pile according to the present embodiment, when the bending moment M acting on the pile head of the PC pile 1 is small, in other words, when the small-to-medium-sized earthquake occurs, the PC pile 1 the head and the bonding state of the base slab 2 is rigid connection is maintained as a boundary when it reaches a certain bending moment M 1, for a certain size or more seismic other words, both the bonding state of Shifts from rigid to non-rigid, it is possible to greatly suppress the bending moment M acting on the head of the PC pile 1, and thus to use a large earthquake without using a pile having an excessive cross section. In this case, it is possible to prevent the pile head from being damaged at the time and the upper structure from being damaged.

【0033】また、本実施形態に係る杭の接合構造によ
れば、PC杭1の頭部と基礎スラブ2との接合状態が剛
接から非剛接に移行する転換点(図5のA点)を、PC
鋼線3に導入する緊張力の大きさを調整することによっ
て自在に設定できるので、各物件ごとに最適な設計を行
うことが可能となる。
Further, according to the joint structure of the pile according to the present embodiment, the transition point at which the joint state between the head of the PC pile 1 and the foundation slab 2 shifts from rigid to non-rigid (point A in FIG. 5). ), PC
Since the tension can be set freely by adjusting the magnitude of the tension introduced into the steel wire 3, it is possible to perform an optimal design for each property.

【0034】また、本実施形態に係る杭の接合構造によ
れば、PC鋼線3の定着構造を定着部材7及びエネルギ
ー吸収部材4で構成し、大地震時においてはエネルギー
吸収部材4を破損させて大地震下における破損箇所を積
極的に設けるようにしたので、上部構造物や杭の大地震
時挙動が明快になり、その結果として弾塑性設計がやり
やすくなる。
Further, according to the pile joining structure according to the present embodiment, the fixing structure of the PC steel wire 3 is constituted by the fixing member 7 and the energy absorbing member 4, and the energy absorbing member 4 is damaged in the event of a large earthquake. As a result, the location of the damage in the event of a large earthquake is actively provided, so that the behavior of the superstructure and the pile during the large earthquake becomes clear, and as a result, the elasto-plastic design becomes easier.

【0035】また、本実施形態に係る杭の接合構造によ
れば、PC鋼線3の降伏強度若しくは破断強度以下で先
行破損するエネルギー吸収部材4を定着部材7と基礎ス
ラブ2との間に交換自在に介在させたので、大地震後に
おいてPC鋼線3から受ける圧縮力により破損しても、
これを取り外して新しいものに交換し所定の緊張力を導
入するようにすれば、元通り修復することが可能とな
る。
Further, according to the pile joint structure according to the present embodiment, the energy absorbing member 4 which is prematurely damaged at a yield strength or breaking strength of the PC steel wire 3 or less is replaced between the fixing member 7 and the foundation slab 2. Because it was freely interposed, even if it was damaged by the compressive force received from PC steel wire 3 after a large earthquake,
If this is removed and replaced with a new one to introduce a predetermined tension, it becomes possible to restore the original condition.

【0036】本実施形態では、杭としてPC杭1を使用
し、該PC杭から出ているPC鋼線3を緊張材として使
用したが、PC杭に代えて鋼管杭を使用する場合には、
図6に示すように、取付け金具である環状鋼板12に緊
張材であるPC鋼棒13を予め溶接等で固定しておき、
該環状鋼板12を鋼管杭11に溶接等で固定するか、同
図(b)に示すように、鋼管杭11にPC鋼棒13を直接
溶接等で固定するようにすればよい。また、図7に示す
ように、鋼管杭11の杭頭に切り欠き16が形成された
鍔14を設けておき、係止板15を端部に設けたPC鋼
棒13を切り欠き16に嵌め込んで取り付けるようにし
てもよい。
In the present embodiment, the PC pile 1 is used as a pile, and the PC steel wire 3 protruding from the PC pile is used as a tension member. However, when a steel pipe pile is used instead of the PC pile,
As shown in FIG. 6, a PC steel rod 13 as a tendon is fixed to an annular steel plate 12 as a mounting bracket in advance by welding or the like.
The annular steel plate 12 may be fixed to the steel pipe pile 11 by welding or the like, or the PC steel rod 13 may be fixed to the steel pipe pile 11 directly by welding or the like as shown in FIG. As shown in FIG. 7, a flange 14 having a notch 16 is provided at the pile head of the steel pipe pile 11, and a PC steel bar 13 having an engaging plate 15 provided at an end thereof is fitted into the notch 16. It is also possible to mount it in such a way.

【0037】また、本実施形態では、エネルギー吸収部
材としてコンクリートの円筒体を採用したが、これに代
えてエネルギー吸収部材を例えば中空鋼管で形成し、該
中空鋼管の局部座屈によって破損させるようにしてもよ
い。また、エネルギー吸収部材を省略し、定着部材7自
体を破損させるように構成してもよい。
In this embodiment, a concrete cylinder is used as the energy absorbing member. Instead of this, the energy absorbing member is formed of, for example, a hollow steel pipe, and is broken by local buckling of the hollow steel pipe. You may. Further, the energy absorbing member may be omitted, and the fixing member 7 itself may be damaged.

【0038】また、本実施形態では、緊張材であるPC
鋼線3の定着構造を定着部材7とエネルギー吸収部材4
とで構成するとともに該エネルギー吸収部材を交換自在
としたが、場合によってはエネルギー吸収部材を交換で
きなくてもよい。かかる構成では、大地震後における修
復が不可能となるが、その他の点については、上述した
と同様の作用効果を得ることができる。
Further, in the present embodiment, the tension member PC
The fixing structure of the steel wire 3 includes the fixing member 7 and the energy absorbing member 4.
And the energy absorbing member is freely replaceable. However, in some cases, the energy absorbing member may not be replaceable. With such a configuration, restoration after a large earthquake is impossible, but in other respects, the same operational effects as described above can be obtained.

【0039】また、本実施形態では、緊張材であるPC
鋼線3の定着構造を破損させるようにしたが、場合によ
ってはこれを破損させないようにしてもよい。かかる構
成においては、大地震時における弾塑性設計の明快さに
関しては上述したような作用効果を得ることはできない
が、その他の点については、上述したと同様の作用効果
を得ることができる。
Further, in the present embodiment, the PC which is a tendon material is used.
Although the fixing structure of the steel wire 3 is damaged, the fixing structure may not be damaged in some cases. In such a configuration, the above-described operation and effect cannot be obtained with respect to the clarity of the elasto-plastic design at the time of a large earthquake, but in other respects, the same operation and effect as described above can be obtained.

【0040】[0040]

【発明の効果】以上述べたように、請求項1に係る本発
明の杭の接合構造によれば、杭頭に作用する曲げモーメ
ントが小さい場合、言い換えれば中小地震に対しては、
杭頭と基部との接合状態は剛接が維持されるが、一定の
曲げモーメントに達した時点を境として、言い換えれば
一定規模以上の地震に対しては、両者の接合状態が剛接
から非剛接へと移行するので、杭頭に作用する曲げモー
メントを大幅に抑制することが可能となり、過大な断面
の杭を使用せずとも、大地震時における杭頭の破損ひい
ては上部構造物の損壊を未然に防止することが可能とな
る。また、杭頭と基部との接合状態が剛接から非剛接に
移行する転換点を、緊張材に導入する緊張力の大きさを
調整することによって自在に設定できるので、各物件ご
とに最適な設計を行うことが可能となる。
As described above, according to the pile joint structure of the present invention according to the first aspect, when the bending moment acting on the pile head is small, in other words, when a small-to-medium-sized earthquake occurs,
Although the connection between the pile head and the base remains rigid, the connection between the two ends when the bending moment reaches a certain value, in other words, for an earthquake of a certain scale or more. Since the transition to rigid connection, the bending moment acting on the pile head can be greatly reduced, and even if a pile with an excessive cross section is not used, damage to the pile head and damage to the superstructure during a large earthquake can be achieved. Can be prevented beforehand. In addition, the turning point at which the connection between the pile head and the base transitions from rigid to non-rigid can be set freely by adjusting the magnitude of the tension introduced into the tendon, making it ideal for each property It is possible to perform a simple design.

【0041】また、請求項2に係る本発明の杭の接合構
造によれば、大地震時に緊張材から受けた圧縮力でエネ
ルギー吸収部材が破損しても、これを取り外して新しい
ものに交換し所定の緊張力を導入するようにすれば、元
通り修復することが可能となるという効果も奏する。
According to the joint structure of a pile according to the second aspect of the present invention, even if the energy absorbing member is damaged by the compressive force received from the tendon during a large earthquake, it is removed and replaced with a new one. If a predetermined tension is introduced, it is possible to restore the original condition.

【0042】[0042]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る杭の接合構造を一部を断面で
表示した側面図。
FIG. 1 is a side view showing a part of a joint structure of a pile according to an embodiment in a cross section.

【図2】図1のA―A線方向から見た平面図。FIG. 2 is a plan view seen from the direction of the line AA in FIG. 1;

【図3】本実施形態に係る杭の接合構造を示した分解斜
視図。
FIG. 3 is an exploded perspective view showing a joint structure of the pile according to the embodiment.

【図4】本実施形態に係る杭の接合構造の作用を示した
図。
FIG. 4 is a diagram showing an operation of the pile joint structure according to the embodiment.

【図5】同じく本実施形態に係る杭の接合構造の作用を
示した図。
FIG. 5 is a view showing the operation of the pile joint structure according to the embodiment.

【図6】杭頭と緊張材との固定構造の変形例を示した斜
視図。
FIG. 6 is a perspective view showing a modification of the fixing structure between the pile head and the tension member.

【図7】杭頭と緊張材との固定構造の変形例を示した斜
視図。
FIG. 7 is a perspective view showing a modification of the fixing structure between the pile head and the tension member.

【符号の説明】 1 杭 2 基礎スラブ(基部) 3 PC鋼線(緊張材) 4 エネルギー吸収部材(定
着構造) 7 定着部材(定着構造)
[Description of Signs] 1 Pile 2 Foundation slab (base) 3 PC steel wire (tensile material) 4 Energy absorbing member (fixing structure) 7 Fixing member (fixing structure)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 杭の頭部と上部構造物の基部とを緊張材
を介して接合するとともに、所定の曲げモーメントが前
記杭の頭部に作用したときに該杭の頭部が前記基部に対
して回転変形するように前記緊張材に所定の緊張力を導
入したことを特徴とする杭の接合構造。
1. A head of a pile and a base of an upper structure are joined to each other via a tension member, and the head of the pile is connected to the base when a predetermined bending moment acts on the head of the pile. A pile joining structure, wherein a predetermined tension is applied to the tension member so as to be rotationally deformed.
【請求項2】 前記緊張材の基部側端部に設けられた定
着構造に該緊張材の降伏強度若しくは破断強度以下で先
行破損するエネルギー吸収部材を設けるとともに、該エ
ネルギー吸収部材を交換自在とした請求項1記載の杭の
接合構造。
2. An anchoring structure provided at an end portion of the tendon member on the base side side is provided with an energy absorbing member which breaks down earlier than the yield strength or breaking strength of the tendon material, and the energy absorbing member is replaceable. The joint structure for a pile according to claim 1.
JP10258688A 1998-09-11 1998-09-11 Joint method of pile Withdrawn JP2000087367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10258688A JP2000087367A (en) 1998-09-11 1998-09-11 Joint method of pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10258688A JP2000087367A (en) 1998-09-11 1998-09-11 Joint method of pile

Publications (1)

Publication Number Publication Date
JP2000087367A true JP2000087367A (en) 2000-03-28

Family

ID=17323726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10258688A Withdrawn JP2000087367A (en) 1998-09-11 1998-09-11 Joint method of pile

Country Status (1)

Country Link
JP (1) JP2000087367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303585A (en) * 2000-04-25 2001-10-31 Okabe Co Ltd Aseismatic construction method for anchor bolt
KR100444555B1 (en) * 2001-05-22 2004-08-18 주식회사 한가람 Reinforced Method of Head in a Prestressed Spun High Strength Concrete Pile
JP2007262836A (en) * 2006-03-29 2007-10-11 Fujita Corp Design method for pile head joint part and unbonded anchor to be used therein
CN114182725A (en) * 2022-01-20 2022-03-15 连云港市建筑设计研究院有限责任公司 Recoverable partial prestressed concrete support pile with prestress adjustable steel bars

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303585A (en) * 2000-04-25 2001-10-31 Okabe Co Ltd Aseismatic construction method for anchor bolt
KR100444555B1 (en) * 2001-05-22 2004-08-18 주식회사 한가람 Reinforced Method of Head in a Prestressed Spun High Strength Concrete Pile
JP2007262836A (en) * 2006-03-29 2007-10-11 Fujita Corp Design method for pile head joint part and unbonded anchor to be used therein
CN114182725A (en) * 2022-01-20 2022-03-15 连云港市建筑设计研究院有限责任公司 Recoverable partial prestressed concrete support pile with prestress adjustable steel bars
CN114182725B (en) * 2022-01-20 2022-06-14 连云港市建筑设计研究院有限责任公司 Recoverable partial prestressed concrete support pile with prestress adjustable steel bars

Similar Documents

Publication Publication Date Title
JP2006057289A (en) Shear reinforcement structure
JP2000087367A (en) Joint method of pile
JP2994365B1 (en) Concrete member reinforcement structure
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP3800535B2 (en) Pile-column connection structure and method
JP4181192B2 (en) Ground anchor and ground anchor method
JP3859218B2 (en) Seismic reinforcement structure for steel column bases in buildings, and seismic reinforcement method for steel column bases in buildings
JP2019218795A (en) Joint structure of foundation pile and foundation slab
JP3297413B2 (en) Damping frame with friction damping mechanism
JP2000248560A (en) Base isolation construction of pile
JP2002061201A (en) Foundation structure and its construction method
JP4229776B2 (en) Reinforced concrete structure laterally restrained reinforcing steel
JP3290636B2 (en) Joint structure between steel column base and foundation concrete
JP2004044303A (en) Connection structure for foundation pile and superstructure, pile head joint member, and connecting method for foundation pile and superstructure
JP2002317454A (en) Pile-to-footing junction structure
JP3578210B2 (en) Underground wall structure
JP2002097650A (en) Joining structure of pile head, and aseismatic pile
JP2008196255A (en) Pile foundation reinforcing structure and pile foundation reinforcing method
JP3661753B2 (en) Seismic isolation structure of piles and ready-made piles used therefor
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP3002740B2 (en) Seismic reinforcement structure of columnar structure
JP3444720B2 (en) Connection method between pile head and foundation
JP3693629B2 (en) Anchor fixing part
JP2000096579A (en) Method and structure for connecting pile head
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110