JP2000087248A - Method for depositing noble metal - Google Patents

Method for depositing noble metal

Info

Publication number
JP2000087248A
JP2000087248A JP10250774A JP25077498A JP2000087248A JP 2000087248 A JP2000087248 A JP 2000087248A JP 10250774 A JP10250774 A JP 10250774A JP 25077498 A JP25077498 A JP 25077498A JP 2000087248 A JP2000087248 A JP 2000087248A
Authority
JP
Japan
Prior art keywords
noble metal
thin film
colloid
oxide thin
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10250774A
Other languages
Japanese (ja)
Inventor
Kiyohiro Suzuki
清宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP10250774A priority Critical patent/JP2000087248A/en
Publication of JP2000087248A publication Critical patent/JP2000087248A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the amt. of a noble metal deposited on a metal oxide thin film by adding an aq. polyethylene glycol monooleyl ether soln. to an aq. noble metal chloride soln. and dipping the metal oxide thin film on an insulating substrate in the obtained noble metal colloid. SOLUTION: The thin film of such a metal oxide as SnO2 is deposited on an insulating substrate of Al2O3, AlN, SiO2, etc., by vacuum deposition, sputtering, etc. Meanwhile, an aq. 0.01-20% soln. of polyethylene glycol monooleyl ether as a nonionic surfactant is added to an aq. 0.01-10% soln. of a noble metal chloride such as (NH4)2PdCl4 to prepare a noble metal colloid. In this case, the molar ratio of both solns. is preferably controlled to 0.1-20. The metal oxide thin film on the substrate is dipped in the colloid at room temp. to 50 deg.C for 0.5-5 hr, then taken out, cleaned with pure water, heated and kept at 400-800 deg.C to sufficiently deposit a noble metal such as Pd on the metal oxide thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貴金属の担持方法
に関する。更に詳しくは、担持量を増加し得る貴金属の
担持方法に関する。
[0001] The present invention relates to a method for supporting a noble metal. More specifically, the present invention relates to a method of supporting a noble metal, which can increase the amount of supported noble metal.

【0002】[0002]

【従来の技術】従来から、触媒やガスセンサ等の分野に
おいて触媒活性やガス感度を向上させるために、金属酸
化物等の担体に貴金属を担持させることが多く行われて
いる。
2. Description of the Related Art Conventionally, in the fields of catalysts and gas sensors, noble metals are often carried on carriers such as metal oxides in order to improve catalytic activity and gas sensitivity.

【0003】貴金属の担持法には、溶媒蒸発法、沈殿担
持法、平衡吸着法などがある。溶媒蒸発法は、担体を貴
金属塩水溶液中に浸漬し、加熱して溶媒を蒸発除去する
方法であるが、基板上に形成させた薄膜を担体に用いた
場合には、薄膜上に析出する貴金属塩はわずかであっ
て、貴金属塩の大部分は担持に利用されないという欠点
がある。
[0003] As a method of supporting a noble metal, there are a solvent evaporation method, a precipitation supporting method, an equilibrium adsorption method and the like. The solvent evaporation method is a method in which a carrier is immersed in an aqueous solution of a noble metal salt and heated to evaporate and remove the solvent.When a thin film formed on a substrate is used as a carrier, the noble metal deposited on the thin film is used. The disadvantage is that the salts are small and most of the noble metal salts are not available for loading.

【0004】沈殿担持法では、溶媒蒸発法の加熱による
溶媒除去の代りに、貴金属塩水溶液中に沈殿剤を加えて
担体上に沈殿を析出させているが、この場合にも溶媒蒸
発法と同じ欠点がみられる。
In the precipitation supporting method, a precipitation agent is added to an aqueous solution of a noble metal salt to precipitate a precipitate on a carrier, instead of removing the solvent by heating in the solvent evaporation method. There are drawbacks.

【0005】また、平衡吸着法は、担体を貴金属塩水溶
液中に浸漬し、担体上に貴金属塩を吸着させる方法であ
り、基板上に形成させた薄膜を担体として用いる場合に
も利用できるが、やはり担持量を多くすることはできな
い。
The equilibrium adsorption method is a method in which a carrier is immersed in an aqueous solution of a noble metal salt and the noble metal salt is adsorbed on the carrier. The method can also be used when a thin film formed on a substrate is used as the carrier. After all, it is not possible to increase the carrying amount.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、絶縁
性基板上に堆積させた金属酸化物薄膜上に貴金属を担持
させるに際し、その担持量を増加せしめる方法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for increasing the amount of a noble metal carried on a metal oxide thin film deposited on an insulating substrate.

【0007】[0007]

【課題を解決するための手段】かかる本発明の目的は、
絶縁性基板上に堆積させた金属酸化物薄膜を、貴金属塩
化物水溶液中にポリエチレングリコールモノオレイルエ
ーテル水溶液を添加することによって得られた貴金属コ
ロイド中に浸漬し、金属酸化物薄膜上に貴金属を担持さ
せる貴金属の担持方法によって達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
A metal oxide thin film deposited on an insulating substrate is immersed in a noble metal colloid obtained by adding a polyethylene glycol monooleyl ether aqueous solution to a noble metal chloride aqueous solution, and the noble metal is supported on the metal oxide thin film This is achieved by a method of supporting a noble metal.

【0008】[0008]

【発明の実施の形態】絶縁性基板としては、アルミナ、
窒化アルミニウム、石英等が用いられ、これらの絶縁性
基板上に堆積される金属酸化物薄膜、好ましくは酸化錫
薄膜は、真空蒸着法、イオンプレーティング法、スパッ
タリング法などにより直接SnO2薄膜を形成させる方法、
金属Sn薄膜を形成させた後熱処理して酸化する方法、Sn
を含む有機金属モノマーのプラズマ重合膜を熱処理する
方法などによって形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an insulating substrate, alumina,
Aluminum oxide, quartz, etc. are used, and a metal oxide thin film, preferably a tin oxide thin film, which is deposited on these insulating substrates, forms a SnO 2 thin film directly by a vacuum deposition method, an ion plating method, a sputtering method, or the like. How to make
A method of forming a metal Sn thin film and then oxidizing by heat treatment, Sn
It is formed by a method of heat-treating a plasma polymerized film of an organometallic monomer containing, for example.

【0009】金属酸化物薄膜、好ましくは酸化錫薄膜上
への貴金属、好ましくはパラジウムまたは金の担持は、
貴金属コロイド、好ましくはパラジウムコロイドまたは
金コロイド中へ酸化錫薄膜部分を浸漬することによって
行われる。浸漬は、室温乃至約50℃の温度条件下で約0.
5〜5時間程度行われ、その後純水による洗浄が行われ
る。
The loading of a noble metal, preferably palladium or gold, on a metal oxide thin film, preferably a tin oxide thin film, comprises:
This is performed by immersing the tin oxide thin film portion in a noble metal colloid, preferably a palladium colloid or a gold colloid. The immersion is performed at about 0.
The cleaning is performed for about 5 to 5 hours, and then cleaning with pure water is performed.

【0010】貴金属コロイドは、貴金属塩化物水溶液中
にポリエチレングリコールモノオレイルエーテルを添加
することによって調製される。貴金属塩化物としては、
三塩化金またはその水和物などの他に、塩化パラジウム
アンモニウムの如く三塩化パラジウムの塩化アンモニウ
ム付加塩なども用いることができる。
The noble metal colloid is prepared by adding polyethylene glycol monooleyl ether to a noble metal chloride aqueous solution. As precious metal chlorides,
In addition to gold trichloride or its hydrate, an ammonium chloride addition salt of palladium trichloride such as ammonium palladium chloride can also be used.

【0011】パラジウムコロイドは、塩化パラジウムア
ンモニウム(NH4)2PdCl4水溶液中に非イオン系界面活性
剤であるポリエチレングリコールモノオレイルエーテル
C18H 35(OCH2CH2)nOH(n:2〜50)水溶液を添加することに
よって調製される。塩化パラジウムアンモニウムは約0.
01〜10重量%、好ましくは約0.1〜3重量%の水溶液とし
て、またポリエチレングリコールモノオレイルエーテル
は約0.01〜20重量%、好ましくは約0.1〜20重量%の水
溶液として用いられ、またこれら両者は塩化パラジウム
アンモニウムに対してポリエチレングリコールモノオレ
イルエーテルが約0.1〜20、好ましくは約1〜10のモル比
となる添加割合で用いられる。これ以下の添加割合では
コロイドが凝集して沈殿が生じ易くなり、一方これ以上
の添加割合ではポリエチレングリコールモノオレイルエ
ーテルが溶解し難くなる。
The palladium colloid is palladium chloride
Nmonium (NHFour)TwoPdClFourNonionic surfactant in aqueous solution
Polyethylene glycol monooleyl ether
C18H 35(OCHTwoCHTwo) Adding an aqueous solution of nOH (n: 2-50)
It is thus prepared. Palladium ammonium chloride is approx.
01 to 10% by weight, preferably about 0.1 to 3% by weight aqueous solution
And also polyethylene glycol monooleyl ether
Is about 0.01-20% by weight, preferably about 0.1-20% by weight of water
Used as solutions, both of which are palladium chloride
Polyethylene glycol monoole for ammonium
Ilether is in a molar ratio of about 0.1-20, preferably about 1-10
It is used at an addition ratio as follows. With the addition ratio below this,
Colloids aggregate and precipitate easily, while
Polyethylene glycol monooleyl ester
-It becomes difficult to dissolve

【0012】従来から知られている貴金属コロイドの調
製法としては、大きく分けると水溶液中で貴金属塩を還
元してコロイド粒子を析出させる凝縮法と金属蒸気から
得られる金属微粒子を液体中に捕集する分散法とがあ
る。
Conventionally known methods for preparing noble metal colloids are roughly classified into a condensation method in which a noble metal salt is reduced in an aqueous solution to precipitate colloidal particles, and a method in which metal fine particles obtained from metal vapor are collected in a liquid. There is a dispersion method.

【0013】前者の方法には、(1)貴金属塩および保護
コロイドを溶解させた水溶液に、水素、水素化ホウ素ナ
トリウム、アルコール(還元される物質との酸化還元電
位のバランスにより還元剤として作用する)等の還元剤
を添加し、コロイド粒子を析出させる方法や(2)貴金属
塩および保護コロイドを溶解させた水溶液に光照射して
貴金属イオンを還元し、コロイド粒子を析出させる方法
などが知られている。ここで、保護コロイドはコロイド
粒子間の凝集を防ぐ役割を果しており、ゼラチン、ポリ
ビニルアルコール、ポリビニルピロリドン等の水溶性高
分子あるいは界面活性剤が用いられている。
In the former method, (1) hydrogen, sodium borohydride, alcohol (which acts as a reducing agent in an aqueous solution in which a noble metal salt and a protective colloid are dissolved by balancing the redox potential with the substance to be reduced) ), Etc. to precipitate colloid particles, and (2) a method in which an aqueous solution in which a noble metal salt and a protective colloid are dissolved is irradiated with light to reduce noble metal ions to precipitate colloid particles. ing. Here, the protective colloid has a role of preventing aggregation between colloid particles, and a water-soluble polymer such as gelatin, polyvinyl alcohol, or polyvinylpyrrolidone or a surfactant is used.

【0014】しかしながら、(1)の方法において水素化
ホウ素ナトリウム等の還元剤を用いた場合には、生成し
たコロイド粒子中への還元剤の混入が懸念され、またア
ルコールを還元剤として用いた場合には加熱還流しなけ
れば反応せず、更に(2)の方法では光照射源が必要とな
るなどの問題点を有するが、本発明で用いられるパラジ
ウムコロイドの調製方法にはそのような問題がみられな
い。
However, when a reducing agent such as sodium borohydride is used in the method (1), there is a concern that the reducing agent may be mixed into the formed colloid particles, and when alcohol is used as the reducing agent. Does not react unless heated and refluxed, and the method (2) has a problem that a light irradiation source is required.However, such a method is not suitable for the method of preparing the palladium colloid used in the present invention. I can't see it.

【0015】また、金コロイドも、パラジウムコロイド
調製に用いられた塩化パラジウムアンモニウムの代りに
三塩化金(その水和物を含む)を用いることにより、同
様の条件下で調製することができ、それを用いての酸化
錫薄膜上への浸漬法による担持も、パラジウムコロイド
の場合と同様に行われる。なお、三塩化金水溶液にメタ
ノールを添加するだけでも金コロイドは形成されるが、
それには数日を要するのに対し、本発明方法ではわずか
1時間程度の短時間で金コロイドを形成させることがで
きる。
The gold colloid can also be prepared under similar conditions by using gold trichloride (including its hydrate) instead of palladium ammonium chloride used in the preparation of the palladium colloid. Is carried on the tin oxide thin film by dipping in the same manner as in the case of palladium colloid. In addition, colloidal gold is formed only by adding methanol to the aqueous solution of gold trichloride,
While it takes several days, the method of the present invention can form a gold colloid in a short time of only about one hour.

【0016】酸化錫薄膜上に担持されたパラジウムまた
は金は、それらを純水で洗浄した後乾燥し、次いで約40
0〜800℃の空気中に約0.5〜10時間程度保持する加熱処
理が適用される。このようにして絶縁性基板上に堆積さ
せた金属酸化物薄膜上に貴金属を担持させたものを、例
えばガスセンサとして用いる場合には、ガス感応性膜と
しての金属酸化物薄膜は、絶縁性基板上に形成させた作
用極および対極よりなる一対の電極間にまたがる状態で
形成され、更に絶縁性基板には、白金、Al2O3含有白
金、金等よりなるヒーターも設けられている。
The palladium or gold supported on the tin oxide thin film is washed with pure water, dried, and then dried for about 40 minutes.
A heat treatment of maintaining the air in the air at 0 to 800 ° C. for about 0.5 to 10 hours is applied. In the case where the metal oxide thin film deposited on the insulating substrate and the noble metal is supported on the insulating substrate, for example, used as a gas sensor, the metal oxide thin film as the gas-sensitive film is placed on the insulating substrate. And a heater made of platinum, Al 2 O 3 -containing platinum, gold or the like is provided on the insulating substrate.

【0017】[0017]

【発明の効果】金属酸化物薄膜を貴金属コロイド中に浸
漬させて担持せしめることにより、貴金属塩の水溶液中
に浸漬して担持させる場合と比較して、貴金属の担持量
の増加が図られる。
By immersing the metal oxide thin film in the noble metal colloid and supporting it, the amount of noble metal supported can be increased as compared with the case where the metal oxide thin film is immersed and supported in an aqueous solution of a noble metal salt.

【0018】[0018]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described with reference to examples.

【0019】実施例1 (1)塩化パラジウムアンモニウム140mgを水2.5gに溶解さ
せた水溶液中に、ポリエチレングリコールモノオレイル
エーテル(n=10)1gを溶解させた水溶液11gを滴下した。
滴下、混合と共に、塩化パラジウムアンモニウム水溶液
の色は褐色から黒色に変化し、そこにパラジウムコロイ
ドを形成させた。このような操作を暗室下においても行
ったが、同様にパラジウムコロイドが得られた。
Example 1 (1) 11 g of an aqueous solution of 1 g of polyethylene glycol monooleyl ether (n = 10) was added dropwise to an aqueous solution of 140 mg of palladium ammonium chloride dissolved in 2.5 g of water.
With dropping and mixing, the color of the aqueous solution of palladium ammonium chloride changed from brown to black, and a palladium colloid was formed there. Although such an operation was performed in a dark room, a palladium colloid was similarly obtained.

【0020】(2)石英基板上に、真空蒸着法を用いて、
それぞれAl2O3含有Ptよりなる一対の電極およびヒータ
ーを形成させた。更に、原料としてテトラメチル錫およ
び酸素を用いたプラズマCVD法により、これら電極間
にまたがる酸化錫薄膜を300nmの膜厚で製膜し、空気
中、973K、24時間の条件下で加熱処理した。次いで、こ
れを上記パラジウムコロイド中に室温下で3時間浸漬
し、500mlの純水で洗浄、乾燥した後、空気中、973K、
5時間の加熱処理を行ない、パラジウムを担持させた酸
化錫薄膜をガス感応性膜とするガスセンサ素子を得た。
(2) On a quartz substrate, using a vacuum evaporation method,
A pair of electrodes and a heater each made of Pt containing Al 2 O 3 were formed. Further, a thin film of tin oxide over the electrodes was formed to a thickness of 300 nm by a plasma CVD method using tetramethyltin and oxygen as raw materials, and was heat-treated in air at 973K for 24 hours. Then, this was immersed in the above-mentioned palladium colloid at room temperature for 3 hours, washed with 500 ml of pure water and dried, and then in air at 973K.
Heat treatment was performed for 5 hours to obtain a gas sensor element using a tin oxide thin film carrying palladium as a gas-sensitive film.

【0021】酸化錫薄膜上に担持されたパラジウム量は
3.0原子%(X線光電子分光法により測定)であり、こ
のガスセンサ素子を用いて、623KでのCO 550ppmに対す
るガス感度を、空気中とガス中での素子抵抗の比として
測定すると2.0であった。
The amount of palladium supported on the tin oxide thin film is
3.0 atomic% (measured by X-ray photoelectron spectroscopy). Using this gas sensor element, the gas sensitivity to 550 ppm of CO at 623K was 2.0 as the ratio of the element resistance in air to that in gas. .

【0022】比較例1 実施例1における酸化錫薄膜上へのパラジウムの担持
を、塩化パラジウムアンモニウムの1重量%水溶液中へ
の室温下での3時間浸漬によって行ない、以下同様に処
理すると、その担持量は1.0原子%であり、また623Kで
のCO 550ppmに対するガス感度は1.6であった。
Comparative Example 1 Palladium was carried on the tin oxide thin film in Example 1 by immersion in a 1% by weight aqueous solution of ammonium palladium chloride at room temperature for 3 hours. The amount was 1.0 at.% And the gas sensitivity at 623K to 550 ppm CO was 1.6.

【0023】実施例2 (1)三塩化金・水和物AuCl3・nH2O 30mgを水20gに溶解さ
せた水溶液中に、ポリエチレングリコールモノオレイル
エーテル(n=10)70mgを溶解させた水溶液5gを滴下、混
合すると、三塩化金水溶液の色は黄色から赤紫色に徐々
に変化し、いずれも1時間程度で金コロイドが形成され
た。このような操作を暗色下においても行ったが、いず
れも同様に金コロイドが得られた。
Example 2 (1) An aqueous solution in which 70 mg of polyethylene glycol monooleyl ether (n = 10) was dissolved in an aqueous solution in which 30 mg of AuCl 3 .nH 2 O was dissolved in 20 g of water. When 5 g was dropped and mixed, the color of the aqueous solution of gold trichloride gradually changed from yellow to reddish purple, and a gold colloid was formed in about 1 hour in each case. Although such an operation was performed under a dark color, gold colloid was obtained in each case.

【0024】(2)実施例1(2)において、パラジウムコロ
イドの代りに上記金コロイドを用い、金を担持させた酸
化錫薄膜をガス感応性膜とするガスセンサ素子を得た。
(2) In Example 1 (2), the above gold colloid was used in place of the palladium colloid to obtain a gas sensor element using a tin oxide thin film carrying gold as a gas-sensitive film.

【0025】酸化錫薄膜上に担持された金量は3.0原子
%(X線光電子分光法)であり、このガスセンサ素子を用
いて、623KでのC0 550ppmに対するガス感度を、空気中
とガス中での素子抵抗の比として測定すると4.8であっ
た。
The amount of gold supported on the tin oxide thin film was 3.0 atomic% (X-ray photoelectron spectroscopy). Using this gas sensor element, the gas sensitivity to 550 ppm of C0 at 623 K was measured in air and gas. It was 4.8 when measured as the ratio of the element resistances.

【0026】比較例2 実施例2における酸化錫薄膜上への金の担持を、三塩化
金・水和物の0.1重量%水溶液中への室温下での3時間
浸漬によって行ない、以下同様に処理すると、その担持
量は1.0原子%であり、また623KでのCO 550ppmに対する
ガス感度は3.0であった。
Comparative Example 2 Gold was supported on the tin oxide thin film in Example 2 by immersion in a 0.1% by weight aqueous solution of gold trichloride hydrate at room temperature for 3 hours, and the same treatment was carried out. As a result, the carried amount was 1.0 atomic%, and the gas sensitivity to 550 ppm of CO at 623 K was 3.0.

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA01B BA02B BC22B BC33B BC69A BC72B BC75B BD12A BD12B BE07A BE07B BE33A BE33B CA01 EA08 EB15X FA02 FA04 FA06 FB03 FB14 FB30 4K022 AA04 AA46 BA03 BA18 BA36 CA28 DA06 DA08 DB01 DB03 DB04 Continued on the front page F-term (reference) 4G069 AA03 AA08 BA01B BA02B BC22B BC33B BC69A BC72B BC75B BD12A BD12B BE07A BE07B BE33A BE33B CA01 EA08 EB15X FA02 FA04 FA06 FB03 FB14 FB30 4K022 AA04 DB03 DA06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に堆積させた金属酸化物薄
膜を、貴金属塩化物水溶液中にポリエチレングリコール
モノオレイルエーテル水溶液を添加することによって得
られた貴金属コロイド中に浸漬し、金属酸化物薄膜上に
貴金属を担持させることを特徴とする貴金属の担持方
法。
1. A metal oxide thin film deposited on an insulating substrate is immersed in a noble metal colloid obtained by adding a polyethylene glycol monooleyl ether aqueous solution to a noble metal chloride aqueous solution, and A method for supporting a noble metal, comprising supporting a noble metal thereon.
JP10250774A 1998-09-04 1998-09-04 Method for depositing noble metal Pending JP2000087248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10250774A JP2000087248A (en) 1998-09-04 1998-09-04 Method for depositing noble metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10250774A JP2000087248A (en) 1998-09-04 1998-09-04 Method for depositing noble metal

Publications (1)

Publication Number Publication Date
JP2000087248A true JP2000087248A (en) 2000-03-28

Family

ID=17212853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250774A Pending JP2000087248A (en) 1998-09-04 1998-09-04 Method for depositing noble metal

Country Status (1)

Country Link
JP (1) JP2000087248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118860A1 (en) 2012-02-09 2013-08-15 田中貴金属工業株式会社 Metal colloidal solution and method for producing same
WO2014051061A1 (en) 2012-09-28 2014-04-03 田中貴金属工業株式会社 Substrate processing method for supporting a catalyst particle for plating process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118860A1 (en) 2012-02-09 2013-08-15 田中貴金属工業株式会社 Metal colloidal solution and method for producing same
US10220377B2 (en) 2012-02-09 2019-03-05 Tanaka Kikinzoku Kogoy K.K. Metal colloidal solution and method for producing the same
WO2014051061A1 (en) 2012-09-28 2014-04-03 田中貴金属工業株式会社 Substrate processing method for supporting a catalyst particle for plating process
JP2014070245A (en) * 2012-09-28 2014-04-21 Tanaka Kikinzoku Kogyo Kk Method for treating substrate carrying catalyst particles for plating treatment
CN104685098A (en) * 2012-09-28 2015-06-03 田中贵金属工业株式会社 Substrate processing method for supporting a catalyst particle for plating process
KR20150060888A (en) 2012-09-28 2015-06-03 다나카 기킨조쿠 고교 가부시키가이샤 Substrate processing method for supporting a catalyst particle for plating process
KR101641031B1 (en) 2012-09-28 2016-07-19 다나카 기킨조쿠 고교 가부시키가이샤 Method for treating substrate that supports catalyst particles for plating processing
US9565776B2 (en) 2012-09-28 2017-02-07 Tanaka Kikinzoku Kogyo K.K. Method for treating substrate that support catalyst particles for plating processing

Similar Documents

Publication Publication Date Title
JP2829416B2 (en) Gas sensing element
KR870001258B1 (en) Gas sensor
RU2294534C2 (en) Thin-film ethanol sensor and method for making the same
JP2003511867A (en) Semiconductor component, electronic component, sensor system, and method of manufacturing semiconductor component
JP2000087248A (en) Method for depositing noble metal
Garje et al. LPG sensing properties of platinum doped nanocrystalline SnO2 based thick films with effect of dipping time and sintering temperature
JP3473322B2 (en) Manufacturing method of gas sensor element
NL8500156A (en) METHOD FOR PREPARING AN ELECTRODE SUBSTANCE AND FOR MAKING ELECTRODES
JP3030328B2 (en) Ultrafine noble metal dispersed titanium oxide thin film and its manufacturing method
Baylis et al. Tin (IV) Chloride Solution as a Sensitizer in Photoselective Metal Deposition
KR890000390B1 (en) Gas detecting apparatus
JP2001262357A (en) Composition for deposition of rare earth oxide film
JPH09278437A (en) Composition for forming zinc oxide film
JP3417061B2 (en) Manufacturing method of precious metal laminated insulating substrate
JP3651200B2 (en) Production method of noble metal fine particle supported photocatalyst thin film
US5372847A (en) Ammonia release method for depositing metal oxides
JP3961728B2 (en) Method for producing ultrafine particle support
Sharma et al. Influence of bath temperature on microstructure and NH3 sensing properties of chemically synthesized CdO thin films
JPS63262548A (en) Manufacture of gas sensor element
KR102457589B1 (en) Method for manufacturing a metal nanoparticle-oxide support complex structure based gas sensor using spontaneous phase transition
JP3910322B2 (en) Method for producing ultrafine particle support
JPH05240820A (en) Carbon monoxide gas sensor
JPH0421787A (en) Coating method with platinum and coating solution therefor
JPH07198651A (en) Thin film type gas sensor
JPS607352A (en) Gas sensitive element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824