JP2000084620A - Method for comparing shape of curved surface - Google Patents

Method for comparing shape of curved surface

Info

Publication number
JP2000084620A
JP2000084620A JP10257889A JP25788998A JP2000084620A JP 2000084620 A JP2000084620 A JP 2000084620A JP 10257889 A JP10257889 A JP 10257889A JP 25788998 A JP25788998 A JP 25788998A JP 2000084620 A JP2000084620 A JP 2000084620A
Authority
JP
Japan
Prior art keywords
shape
curved surface
mode
deformation
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257889A
Other languages
Japanese (ja)
Inventor
Masayuki Nakai
雅之 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10257889A priority Critical patent/JP2000084620A/en
Publication of JP2000084620A publication Critical patent/JP2000084620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain information adapted to an actual work by digitizing the shape of two or more curved surfaces to be compared, calculating the characteristic values of the shape about the numerical values of each curved surface or the difference between the numerical values of each curved surface and executing the comparison and judgement of the shape of the curved surface using the obtained characteristic values of the shape. SOLUTION: The positions of representative points on the curved surface are beforehand decided as the numerical values by which the shape of the curved surface is expressed and the distance (height) from the reference surface at those points is used. As the representative points on the curved surface, a total of nine points of four vertexes of a rectangle, midpoints of four sides and center are adopted. Even these nine points are enough to digitize the shape of the curved surface in the case of a simple shape. As the representative shapes (deformation mode), five deformation modes are used. The mode 1 respectively expresses bending deformation in the X-axis direction, mode 2 bending deformation in the Y-axis direction, mode 3 bending deformation (twist) in the diagona direction, mode 4 inclination in the X-axis direction and mode 5 inclination in the Y-axis direction. The shape used practically can be approximately expressed by these characteristic values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属板の曲げ加
工等における加工前後の曲面の形状を比較するための曲
面の形状比較方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface shape comparison method for comparing curved surface shapes before and after a metal plate is bent or the like.

【0002】[0002]

【従来の技術】造船分野等では、鋼板にプレスあるいは
加熱等の熱変形を施して、曲面に成形する曲面成形加工
が行われている。特に、鋼板の一部の領域を加熱し、熱
変形を利用して曲面成形を行う加熱方式は、プレス加工
に比べて曲率等の自由度が大きいので、広くもちいられ
ている。この方式は、以前は人手により行われていた
が、作業に熟練を要することや作業効率等の観点から自
動化が図られている。
2. Description of the Related Art In the field of shipbuilding and the like, a curved surface forming process is performed in which a steel plate is subjected to thermal deformation such as pressing or heating to form a curved surface. In particular, a heating method in which a part of a steel sheet is heated and a curved surface is formed using thermal deformation is widely used because it has a greater degree of freedom in curvature and the like than in press working. This method was previously performed manually, but has been automated in view of the need for skill and work efficiency.

【0003】曲面成形加工においては、1回の加工では
最終形状が得られない場合、まず、ある形状に加工して
から、その次の形状に加工することがある。その場合、
2つの曲面の形状を比較して、加工方法を検討すること
になる。
In the case of a curved surface forming process, when a final shape cannot be obtained by a single process, the shape may be first processed into a certain shape and then processed into the next shape. In that case,
The machining method will be examined by comparing the shapes of the two curved surfaces.

【0004】曲面の形状の比較方法としては、一般的に
は2つの曲面の高さの差の2乗和が用いられる。ここ
で、曲面の高さの差は、代表点あるいはメッシュの交点
上で測定される。あるいは、2つの曲面を2次元フーリ
エ級数に展開して、その係数(フーリエ係数)の差の2
乗和が用いられることもある。
As a method for comparing the shapes of curved surfaces, a sum of squares of the difference between the heights of two curved surfaces is generally used. Here, the difference between the heights of the curved surfaces is measured at a representative point or an intersection of meshes. Alternatively, two surfaces are developed into a two-dimensional Fourier series, and the difference between the coefficients (Fourier coefficients)
Sum of squares may be used.

【0005】また、特開平10−58052号公報に
は、線状加熱による板の曲げ加工方法が提案されてい
る。この技術は、代表点の高さを特性値に変換して、線
状加熱の条件を決定する。具体的には、代表点の高さを
ベクトルajで表し、これに変換行列Pijを掛けて特性
値bjを求める。次いで、線状加熱する直線の位置、傾
き等を、この特性値bjの式を用いて決定し、線状加熱
を行う。
Japanese Patent Application Laid-Open No. 10-58052 proposes a method for bending a plate by linear heating. This technique converts the height of a representative point into a characteristic value to determine the condition of linear heating. Specifically, the height of the representative point is represented by a vector a j , and this is multiplied by a transformation matrix P ij to obtain a characteristic value b j . Then, the position of the line heating linear, the slope or the like, determined using the equation of the characteristic values b j, performs linear heating.

【0006】[0006]

【発明が解決しようとする課題】従来技術の曲面の形状
の比較方法は、2つの曲面の数学的な意味での類似性あ
るいは差異を数値化するものである。従って、曲面を成
形するための観点から、即ち成形方法による分類等の観
点から、曲面の比較を行っている訳ではない。従って、
従来技術で類似の曲面と判定されても、必ずしもそれら
の曲面が同じ加工様式で加工可能とは言えない。
A conventional method for comparing the shapes of curved surfaces is to numerically express the similarity or difference between two curved surfaces in a mathematical sense. Therefore, the curved surfaces are not compared from the viewpoint of forming the curved surfaces, that is, from the viewpoint of the classification by the forming method. Therefore,
Even if similar curved surfaces are determined in the related art, it cannot be said that those curved surfaces can always be machined in the same machining mode.

【0007】例えば、ロール曲げやプレス曲げでは、円
筒面やU字形状等の直線群からなる曲面しか実現できな
いので、仮に差異の小さい曲面であっても、直線群をも
たない曲面は加工できない。結局従来技術では、2つの
曲面について、一方から他方へ変形するための加工方法
や条件については、経験によるところが大きかったと言
える。
For example, in roll bending or press bending, only a curved surface consisting of a group of straight lines such as a cylindrical surface or a U-shape can be realized, so that a curved surface having no straight line group cannot be machined even if the curved surface has a small difference. . After all, in the prior art, it can be said that the processing method and conditions for deforming one of the two curved surfaces from one to the other largely depend on experience.

【0008】この発明は、加工方法や条件に即して曲面
の形状の判断を行うことにより、実際の作業に即した情
報を提示できる曲面の形状の比較方法を提供する。
The present invention provides a curved surface shape comparison method capable of presenting information according to actual work by determining a curved surface shape in accordance with a processing method and conditions.

【0009】[0009]

【課題を解決するための手段】この発明は、比較する2
つ以上の曲面の形状を数値化し、各曲面の数値あるいは
各曲面の数値の差について、成形可能な複数の形状の成
分に分離することにより形状の特性値を算出し、得られ
た形状の特性値を用いて曲面の形状の比較を行う曲面の
形状比較方法である。
SUMMARY OF THE INVENTION The present invention provides a method for comparing 2
Digitize the shape of one or more curved surfaces and calculate the characteristic value of the shape by separating the numerical value of each curved surface or the difference between the numerical values of each curved surface into a plurality of formable shape components. This is a curved surface shape comparison method for comparing curved surface shapes using values.

【0010】この発明では、曲面の形状を表す数値とし
ては、曲面上に代表的な点の位置を複数点決めておき、
それらの点における基準面からの距離(高さ)を用いる
ことができる。これらの複数点の数値の組を以下、形状
ベクトルと呼ぶ。比較する2つ以上の曲面について、形
状ベクトルを測定し、それぞれ、あるいはベクトルの差
について、複数の形状の成分に分離する。
In the present invention, as numerical values representing the shape of a curved surface, a plurality of representative point positions on the curved surface are determined.
The distance (height) from the reference plane at those points can be used. Hereinafter, a set of numerical values of these plural points will be referred to as a shape vector. Shape vectors are measured for two or more curved surfaces to be compared, and each or a difference between the vectors is separated into a plurality of shape components.

【0011】成形可能な複数の形状というのは、成形す
る方法や道具・手段により変形可能な代表的形状のこと
であり、例えば、曲げ、捩り等の基本的な変形モードと
言うこともできる。変形モードの数は、使用する変形様
式により適宜決定する。ここで、複数の形状の成分に分
離すると言うのは、形状ベクトルをこれらの変形モード
成分に分離することである。これは、変形モード成分を
ベクトルで表示しておくことにより、形状ベクトルとの
内積を求めることで、変形モード成分を抽出できる。
The plurality of shapes that can be formed are representative shapes that can be deformed by a forming method or a tool or means. For example, they can be said to be basic deformation modes such as bending and torsion. The number of deformation modes is appropriately determined depending on the deformation mode used. Here, separating into a plurality of shape components means separating a shape vector into these deformation mode components. This is because, by displaying the deformation mode component as a vector, the inner product with the shape vector is obtained, whereby the deformation mode component can be extracted.

【0012】形状ベクトルが変形モード成分のベクトル
と直交すれば内積は0となり、全く別の形状と判断でき
る。両者が平行であれば内積は最大となり、同一の形状
と判断できる。このようにして、ある曲面の形状が、そ
の形状ベクトルについての内積の値により、どのような
変形モード成分から構成されているか判断できる。
If the shape vector is orthogonal to the vector of the deformation mode component, the inner product becomes 0, and it can be determined that the shape is completely different. If both are parallel, the inner product will be the maximum and it can be determined that they have the same shape. In this way, it is possible to determine what deformation mode component the shape of a certain curved surface is composed of based on the value of the inner product of the shape vector.

【0013】このように、変形モード成分ごとの内積の
値を、その形状の特性値と考えれば、成形方法の観点か
ら曲面の形状について分類し評価することができる。例
えば、2つの曲面の形状の特性値が近い曲面は、それら
の形状が類似であり、一方から他方へ互いに変形し易い
と言える。また、2つの曲面の形状の特性値の差が、1
つの変形モード成分に収まれば、その変形モードで相互
に変形可能と判断できる。
As described above, if the value of the inner product for each deformation mode component is considered as a characteristic value of the shape, the shape of the curved surface can be classified and evaluated from the viewpoint of the forming method. For example, it can be said that two curved surfaces having similar shape characteristic values have similar shapes and are easily deformed from one to the other. Further, the difference between the characteristic values of the shapes of the two curved surfaces is 1
If it falls within one of the deformation mode components, it can be determined that the deformation modes are mutually deformable.

【0014】なお、代表的形状(変形モード)として
は、互いに独立であることが望ましい。これは、変形モ
ード成分をベクトルで表示した際、これらのベクトルが
直交するように選ぶことができるからである。
It is desirable that the representative shapes (deformation modes) are independent of each other. This is because, when the deformation mode components are displayed as vectors, the vectors can be selected so as to be orthogonal.

【0015】[0015]

【発明の実施の形態】曲面の形状の数値化は、代表的な
点における曲面の基準面からの距離をajとし、曲面の形
状を数値ajで表すことによる。この数値ajを、適当な1
次変換により簡単な数値に変換し、njと表す。さらに、
代表的形状(変形モード)iにおける曲面の形状をnij
と表し、このnijをi行j列の成分とする行列Nを作
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Numerical representation of the shape of a curved surface is based on the fact that the distance of a curved surface from a reference surface at a representative point is a j and the shape of the curved surface is represented by a numerical value a j . This numerical value a j
It is converted to a simple numerical value by the following conversion, and expressed as n j . further,
The shape of the curved surface in the representative shape (deformation mode) i is represented by n ij
And a matrix N is created in which this n ij is the component of the i-th row and the j-th column.

【0016】任意の曲面Xについて測定された形状xj
に、この行列Nijを左側から掛ける。得られた結果をX
iと表す。 (Xi)=(nij)(xj) (1)
The shape x j measured for an arbitrary curved surface X
Is multiplied by the matrix N ij from the left. X
Expressed as i . (X i ) = (n ij ) (x j ) (1)

【0017】得られた結果Xi(形状特性ベクトル)
は、形状xjが加工モードiに近い場合、Xiの値が大き
くなり、直交する場合0となる。ここで直交するという
のは、曲面Xを表す形状ベクトル(xj)と加工モードi
による形状ベクトル(nj)が直交すると言うことである。
Obtained result X i (shape characteristic vector)
Is that when the shape x j is close to the machining mode i, the value of X i becomes large, and when it is orthogonal, it becomes 0. Here, “to be orthogonal” means that the shape vector (x j ) representing the curved surface X and the machining mode i
Is that the shape vector (n j ) is orthogonal.

【0018】特に、各加工モードによる形状ベクトル(n
j)自体を互いに直交するように選んでおけば、形状特性
ベクトルXiの値が曲面Xの基底ベクトルによる展開係
数を表すことになる。
In particular, the shape vector (n
j ) If the elements themselves are selected so as to be orthogonal to each other, the value of the shape characteristic vector X i represents the expansion coefficient of the curved surface X based on the base vector.

【0019】この形状特性ベクトルを、2つの曲面形状
X,Yについて算出して比較する。曲面形状X,Yの形
状ベクトル(xj),(yj)とすると、 (Xi)=(nij)(xj) (Yi)=(nij)(yj) (2) となる。
The shape characteristic vectors are calculated for two curved surface shapes X and Y and compared. Assuming that the shape vectors of the curved surface shapes X and Y are (x j ) and (y j ), (X i ) = (n ij ) (x j ) (Y i ) = (n ij ) (y j ) (2) Become.

【0020】次に、評価量σ(X,Y)を次のように定義
する。 σ(X,Y)=Σi(Xi−Yi)2 (3) ここで、Σiは加工モードiについての総和を表す。例
えば、2つの曲面形状X,X’について、いずれが曲面
形状Yに近いかを判断するには、評価量σ(X,Y)とσ
(X’,Y)を算出し、 σ(X’,Y)<σ(X,Y) (4) であれば、X’の方がXよりYに近いと判断できる。
Next, the evaluation amount σ (X, Y) is defined as follows. σ (X, Y) = Σ i (X i −Y i ) 2 (3) Here, Σ i represents the sum of machining mode i. For example, to determine which of the two curved surface shapes X and X ′ is closer to the curved surface shape Y, the evaluation amounts σ (X, Y) and σ
(X ′, Y) is calculated. If σ (X ′, Y) <σ (X, Y) (4), it can be determined that X ′ is closer to Y than X.

【0021】なお、以上の議論において、変換行列
(nij)の各行は無次元化あるいは正規化のため、それぞ
れ定数倍してもよい。また、評価量σ(X,Y)の定義式
においては、差の2乗和の代りに、差の絶対値の和でも
よく、数学でノルムと呼ばれるものであればよい。
In the above discussion, the conversion matrix
Each row of (n ij ) may be multiplied by a constant for dimensionless or normalization. In the definition formula of the evaluation amount σ (X, Y), the sum of the absolute values of the differences may be used instead of the sum of the squares of the differences, and any value that is called a norm in mathematics may be used.

【0022】また、2つの曲面形状X,Yそれぞれにつ
いて形状特性ベクトルを算出する代りに、双方の曲面形
状の差を先に算出してから変換行列(nij)で変換しても
よい。その場合、形状ベクトルの差をzjと表すと、曲
面形状X,Yの形状ベクトル(xj),(yj)により次のよ
うに表される。 zj=xj−yj (5)
Instead of calculating the shape characteristic vector for each of the two curved surface shapes X and Y, the difference between the two curved surface shapes may be calculated first and then converted using the conversion matrix (n ij ). In this case, if the difference between the shape vectors is represented by z j , the shape vectors (x j ) and (y j ) of the curved surface shapes X and Y are expressed as follows. z j = x j −y j (5)

【0023】この形状ベクトルの差について、形状特性
ベクトルを考えると次のようになる。 (Zi)=(nij)(zj) σ=Σii 2 (6)
The difference between the shape vectors is as follows, considering the shape characteristic vector. (Z i ) = (n ij ) (z j ) σ = Σ i Z i 2 (6)

【0024】同様に、曲面形状X’についても、曲面形
状Yとの差(z'j)から形状特性ベクトルを考える。 (Z'i)=(nij)(z'j) σ’=Σii 2 (7) ここで、σ’<σであれば、X’の方がXよりYに近い
と判断できる。
Similarly, regarding the curved surface shape X ′, a shape characteristic vector is considered from the difference (z ′ j ) from the curved surface shape Y. (Z ′ i ) = (n ij ) (z ′ j ) σ ′ = Σ i Z i 2 (7) Here, if σ ′ <σ, it can be determined that X ′ is closer to Y than X. .

【0025】なお、このように曲面形状の差の変換結果
(Zi)について、各モード成分Ziを見ることにより、ど
の変形モードを用いるのがよいかがわかる。
It should be noted that the conversion result of the difference between the curved surface shapes is as described above.
By looking at each mode component Z i for (Z i ), it is possible to know which deformation mode is better to use.

【0026】[0026]

【実施例】次に、曲面上の代表的な点として、長方形の
4つの頂点、4辺の中点、中央の計9点をとった場合の
1例を説明する。ここで、数値化する点の数を増やせ
ば、複雑な形状を数値化することが可能であるが、その
後の計算処理も複雑となる。これら9点でも、2次曲面
等の単純な形状であれば、曲面の形状を数値化するには
十分である。
A description will now be given of an example in which four vertices of a rectangle, four midpoints, and a total of nine points at the center are taken as representative points on a curved surface. Here, if the number of points to be digitized is increased, it is possible to digitize a complicated shape, but the subsequent calculation processing is also complicated. Even at these nine points, a simple shape such as a quadratic surface is sufficient for numerically expressing the shape of the curved surface.

【0027】上記の曲面の形状を数値化する点(測定
点)を、図1に示す。図中の数字はこれらの点の番号j
を示す。曲面の形状としては、定盤等の基準面からの距
離を用いる。これらの点における曲面の基準面からの距
離を、aj:a1〜a9とする。代表的形状(変形モード)の
例としては、図2に示すような5つの変形モードを用い
て説明する。
FIG. 1 shows points (measurement points) for digitizing the shape of the curved surface. The numbers in the figure are the numbers j of these points
Is shown. As the shape of the curved surface, a distance from a reference surface such as a surface plate is used. The distances of the curved surface from the reference surface at these points are defined as a j : a 1 to a 9 . As an example of a representative shape (deformation mode), five deformation modes as shown in FIG. 2 will be described.

【0028】ここで、各変形モードについて説明する
と、モード1はX軸方向の曲げ変形、モード2はY軸方
向の曲げ変形、モード3は対角線方向の曲げ変形(ねじ
れ)、モード4はX軸方向の傾き、モード5はY軸方向
の傾きをそれぞれ表している。実用上用いられる形状
は、これらの特性値でほぼ表現できるので、曲面の形状
を数値化することが可能である。
Here, each deformation mode will be described. Mode 1 is bending deformation in the X-axis direction, mode 2 is bending deformation in the Y-axis direction, mode 3 is bending deformation in the diagonal direction (torsion), and mode 4 is the X-axis bending deformation. The inclination in the direction and the mode 5 represent the inclination in the Y-axis direction, respectively. Since the shape used for practical use can be almost expressed by these characteristic values, it is possible to digitize the shape of the curved surface.

【0029】まず、これらの変形モードによる曲面の形
状の数値a1〜a9を、適当な1次変換により簡単な数値に
変換し、n1〜n9と表す。例えば、変形モード1〜5(i=
1〜5)に対して、 (nj)=(1, -2, 1, 1, -2, 1, 1, -2, 1),i=1 (nj)=(1, 1, 1, -2, -2, -2, 1, 1, 1),i=2 (nj)=(1, 0, -1, 0, 0, 0, -1, 0, 1),i=3 (nj)=(-1, 0, 1, -1, 0, 1, -1, 0, 1),i=4 (nj)=(-1, -1, -1, 0, 0, 0, 1, 1, 1),i=5 (8) とする。なお、この例では、(nj)は互いに直交してい
る。
First, the numerical values a 1 to a 9 of the shape of the curved surface in these deformation modes are converted into simple numerical values by an appropriate linear transformation, and are expressed as n 1 to n 9 . For example, deformation modes 1 to 5 (i =
1-5), (n j ) = (1, -2, 1, 1, -2, 1, 1, -2, 1), i = 1 (n j ) = (1, 1, 1 , -2, -2, -2, 1, 1, 1), i = 2 (n j ) = (1, 0, -1, 0, 0, 0, -1, 0, 1), i = 3 (n j ) = (-1, 0, 1, -1, 0, 1, -1, 0, 1), i = 4 (n j ) = (-1, -1, -1, 0, 0, 0, 1, 1, 1), i = 5 (8). In this example, (n j ) are orthogonal to each other.

【0030】これらの(nj)を行とする行列(nij)が、変
換行列となり、行列を書き下すと、次のようになる。
A matrix (n ij ) having these (n j ) as rows becomes a transformation matrix. When the matrix is newly written, the following is obtained.

【0031】[0031]

【数1】 (Equation 1)

【0032】形状比較の例として、次の3つの形状X,
X’,Yを考える。これらは、それぞれ、中央部が凸の
形状、モード1に属する形状、平板であり、代表点での
高さは次のようになる。 X: (0, 0, 0, 0,√6, 0, 0, 0, 0) 中央部が凸 X’: (1, 0, 1, 1, 0, 1, 1, 0, 1) モード1 Y: (0, 0, 0, 0, 0, 0, 0, 0, 0) 平板
As examples of the shape comparison, the following three shapes X,
Consider X ', Y. These are a convex shape at the center, a shape belonging to mode 1, and a flat plate, respectively, and the height at the representative point is as follows. X: (0, 0, 0, 0, √6, 0, 0, 0, 0) Center is convex X ': (1, 0, 1, 1, 0, 1, 1, 0, 1) Mode 1 Y: (0, 0, 0, 0, 0, 0, 0, 0, 0) flat plate

【0033】これらに数1の変換行列(nij)を掛けて、
式(2)を用いて形状特性ベクトルを求めると、 (Xi)=(-2√6, -2√6, 0, 0, 0) (X’i)=(6, 0, 0, 0, 0) (Yi)=(0, 0, 0, 0, 0) となる。
By multiplying these by the transformation matrix (n ij ) of Equation 1,
When the shape characteristic vector is obtained using Expression (2), (X i ) = (− 2√6, −2√6, 0, 0, 0) (X ′ i ) = (6, 0, 0, 0) , 0) (Y i ) = (0, 0, 0, 0, 0).

【0034】これらの形状特性ベクトルを用いて、式
(3)を用いて評価量σ(X,Y)を算出すると、 σ(X,Y)=48, σ(X’,Y)=36 となり、X’の方がXよりYに近いと判断できる。従来
の方法である高さの差の2乗和を比較すると、XとY、
X’とYではいずれも6となり、差が無いことになる。
Using these shape characteristic vectors to calculate the evaluation amount σ (X, Y) using equation (3), σ (X, Y) = 48 and σ (X ′, Y) = 36 , X ′ are closer to Y than X. Comparing the sum of squares of the height difference according to the conventional method, X and Y,
Both X 'and Y are 6, and there is no difference.

【0035】また、形状特性ベクトルの成分(変形モー
ドの成分i)を見ると、形状Xは第1および第2成分が
0でないので、形状Y(平板)から成形するには、モー
ド1およびモード2の2つの変形モードが必要であるこ
とがわかる。同様に、形状X’は第1成分のみが0でな
いので、成形するにはモード1のみでよいことがわか
る。
Looking at the components of the shape characteristic vector (component i of the deformation mode), since the first and second components of the shape X are not 0, the first and second components can be formed from the shape Y (flat plate). It can be seen that two deformation modes are required. Similarly, since only the first component of the shape X ′ is not 0, it can be seen that only mode 1 is required for molding.

【0036】[0036]

【発明の効果】この発明では、曲面の形状を数値化しそ
れを複数の特性値に変換することにより、曲面形状の比
較を容易に行うことが可能となる。従って、この発明
は、加工方法や条件に即して曲面の形状の判断ができる
ので、実際の作業に即した情報を提示できる。
According to the present invention, by comparing the shape of a curved surface with a numerical value and converting it into a plurality of characteristic values, it is possible to easily compare the curved surface shapes. Therefore, according to the present invention, the shape of the curved surface can be determined in accordance with the processing method and conditions, so that information suitable for actual work can be presented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】曲面の形状を数値化する点(測定点)の位置を
示す図である。
FIG. 1 is a diagram showing the positions of points (measurement points) for digitizing the shape of a curved surface.

【図2】変形モードによる曲面の形状を示す図である。FIG. 2 is a diagram illustrating a shape of a curved surface according to a deformation mode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比較する2つ以上の曲面の形状を数値化
し、各曲面の数値あるいは各曲面の数値の差について、
成形可能な複数の形状の成分に分離することにより形状
の特性値を算出し、得られた形状の特性値を用いて曲面
の形状の比較を行う曲面の形状比較方法。
1. The shape of two or more surfaces to be compared is quantified, and the numerical value of each surface or the difference between the numerical values of each surface is calculated.
A curved surface shape comparison method in which a characteristic value of a shape is calculated by separating components of a plurality of shapes that can be formed, and the shape of the curved surface is compared using the characteristic values of the obtained shape.
JP10257889A 1998-09-11 1998-09-11 Method for comparing shape of curved surface Pending JP2000084620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257889A JP2000084620A (en) 1998-09-11 1998-09-11 Method for comparing shape of curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257889A JP2000084620A (en) 1998-09-11 1998-09-11 Method for comparing shape of curved surface

Publications (1)

Publication Number Publication Date
JP2000084620A true JP2000084620A (en) 2000-03-28

Family

ID=17312603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257889A Pending JP2000084620A (en) 1998-09-11 1998-09-11 Method for comparing shape of curved surface

Country Status (1)

Country Link
JP (1) JP2000084620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301647B2 (en) 2002-01-31 2007-11-27 Fujitsu Limited Method for regulating shape of floatation surface of slider floating above record carrier
KR101036660B1 (en) 2008-12-09 2011-05-25 삼성중공업 주식회사 Line heating system for initial imposed deformation condition and method thereof
KR101043426B1 (en) 2008-11-28 2011-06-22 삼성중공업 주식회사 A determination method of turnover for thermal forming process of curved steel sheet and an apparatus thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301647B2 (en) 2002-01-31 2007-11-27 Fujitsu Limited Method for regulating shape of floatation surface of slider floating above record carrier
KR101043426B1 (en) 2008-11-28 2011-06-22 삼성중공업 주식회사 A determination method of turnover for thermal forming process of curved steel sheet and an apparatus thereof
KR101036660B1 (en) 2008-12-09 2011-05-25 삼성중공업 주식회사 Line heating system for initial imposed deformation condition and method thereof

Similar Documents

Publication Publication Date Title
US6683985B1 (en) Method of discriminating shape of free-form curved surface
EP2333684B1 (en) Press forming simulation method, press forming simulation device, program, recording medium, and press forming method based on simulation result
US7194388B2 (en) Method for determining a die profile for forming a metal part having a desired shape and associated methods
US8938378B2 (en) Forming simulation method, forming simulation apparatus, forming simulation program, and recording medium
US20110218778A1 (en) Method for Determining the Deformability of a Body
US20100114350A1 (en) Method of determining mesh data and method of correcting model data
Son et al. Optimal blank shape design using the initial velocity of boundary nodes
US6980937B2 (en) Method and system for quantifying the step profile characteristics semiconductor features using surface analysis data
JP2009133843A (en) Apparatus, method and program for analyzing distribution pattern of surface defect
JP2000084620A (en) Method for comparing shape of curved surface
JP2008087035A (en) Method for specifying springback occurrence cause portion, its device and its program
JP4516740B2 (en) Shape estimation device
Sklad Aspects of automated measurement of proportional and non-proportional deformation in sheet metal forming
Bahloul et al. Comparison between three optimization methods for the minimization of maximum bending load and springback in wiping die bending obtained by an experimental approach
JPH08339396A (en) Processor for numerical simulation result in deformation process of metal plate
Rolfe et al. A shape error metric for sheet metal forming and its application to springback
Kim et al. Analysis tool for roll forming of sheet metal strips by the finite element method
Rolfe et al. Geometric shape errors in forging: developing a metric and an inverse model
Sivam et al. Hybrid optimisation of input process parameters of deep-drawn cylindrical cups from directional rolled copper strips
JP4308239B2 (en) Springback influence display method, apparatus thereof, and program thereof
Jung Static-explicit finite element method and its application to drawbead process with spring-back
JP2001099640A (en) Simple shape measurement method for linear heating plate
Padmanabhan et al. Stochastic analysis of a deep drawing process using finite element simulations
Kim et al. Development of a system for progressive working of an electric product by using fuzzy set theory
US20220189153A1 (en) Apparatus for estimating contact distribution and method thereof