JP2000084361A - Prevention of environmental pollution and material having function for preventing environmental pollution - Google Patents

Prevention of environmental pollution and material having function for preventing environmental pollution

Info

Publication number
JP2000084361A
JP2000084361A JP11114226A JP11422699A JP2000084361A JP 2000084361 A JP2000084361 A JP 2000084361A JP 11114226 A JP11114226 A JP 11114226A JP 11422699 A JP11422699 A JP 11422699A JP 2000084361 A JP2000084361 A JP 2000084361A
Authority
JP
Japan
Prior art keywords
photocatalyst
environmental pollution
organic substance
precursor
incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11114226A
Other languages
Japanese (ja)
Inventor
Toshiya Watabe
俊也 渡部
Kazuhito Hashimoto
和仁 橋本
Akira Nakajima
章 中島
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11117698A external-priority patent/JPH11342316A/en
Application filed by Individual filed Critical Individual
Priority to JP11114226A priority Critical patent/JP2000084361A/en
Publication of JP2000084361A publication Critical patent/JP2000084361A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively decompose an org. material having possibility of causing environmental pollution. SOLUTION: The org. material having possibility of causing the environmental pollution is decomposed by a photocatalyst. Especially, the decomposition of the org. material remaining after incineration is possible without using a special equipment by previously adding a photocatalyst precursor in the material. Then titanium oxide is used as the photocatalyst, a hardly decomposable org. material such as dioxins is adsorbed and decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物質による環
境汚染を防止する方法、及び環境汚染を防止する機能を
有する材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing environmental pollution by organic substances and a material having a function for preventing environmental pollution.

【0002】[0002]

【従来の技術】人体に有害な物質の環境汚染が深刻化し
ており、近年は特にごく微量でも生態の様々な作用に影
響を与えるホルモン様化学物質(内分泌撹乱物質)の環
境中への拡散が問題になっている。本来ホルモンは生態
内で分泌される化学物質であるが、一部の化学物質がホ
ルモンと似た作用を持ち、鳥類、哺乳類や貝類などの野
生生物の生殖異常が引き起こされることが疑われてい
る。このような例として調査されているのが、巻き貝の
一種イボニシに見られる生殖器の雄性化や、カモメの雄
が形態的にも行動的にも雌化する現象、またフロリダの
アポプカ湖に生息するワニの生殖器が小さくなったこと
も農薬の汚染が原因と報告されている。ヒトに対する影
響についても、精子数の減少(1938年から1990
年にかけて半減しているという報告がある。)や奇形の
増加が近年顕著に認められており、ホルモン様化学物質
との関係が疑われている。
2. Description of the Related Art Environmental pollution of substances harmful to the human body has become serious, and in recent years, the diffusion of hormone-like chemical substances (endocrine disrupting substances), which affect various functions of ecology even in very small amounts, into the environment has been increasing. Is in question. Hormones are naturally secreted in the ecology, but some chemicals have a similar effect to hormones, and are suspected to cause reproductive abnormalities in birds, mammals, shellfish, and other wildlife. . Examples of such studies are the genitalization of the genitalia found in the snail, Ibonyshi, the morphological and behavioral femaleization of male seagulls, and the inhabitants of Lake Apopka, Florida Crocodiles' reproductive organs have also been reported to be due to pesticide contamination. Regarding the effect on humans, the decrease in sperm count (from 1938 to 1990)
There are reports that it has halved over the years. ) And malformations have been remarkably increased in recent years, suggesting a relationship with hormone-like chemicals.

【0003】現在ホルモン様化学物質として疑われてい
る化合物として、アトラジン、DDT、ジコホル等の農
薬や、樹脂に用いられるフェノール類、更には廃棄物の
処理過程で排出されるダイオキシン類等があげられる。
特に塩化ビニル等の塩素を含む樹脂の焼却の際に発生す
るダイオキシン類は、そのホルモン様活性のみならず、
発癌性や催奇形性等の毒性も高いため、対策が急がれる
汚染物質の一つである。ダイオキシン類とは、ダイオキ
シン(PCDD)に加え、ダイオキシンと毒性や性質が似てい
るポリ塩化ジベンゾフラン(PCDF)やコプラナPCB(Co-PC
B)を含めた化合物の総称で、2,7-ジクロロ−ジベンゾダ
イオキシン(2,7-dichloro-p-dibenzodioxin)等の化合物
が知られている。ダイオキシン類は塩素が混入した焼却
物を燃焼させる際には必ず発生することから、根本的な
対策が困難で近年大きな問題になっている。ダイオキシ
ン類は焼却炉から排出される排気ガスや、焼却後に残る
灰(焼却灰)に残留する。焼却灰は最終処分場に埋め立
てられるが、この処分場の上空では飛散した焼却灰によ
るダイオキシン類汚染が検出されている。
[0003] Compounds currently suspected of being hormone-like chemicals include pesticides such as atrazine, DDT, and dicophor, phenols used in resins, and dioxins discharged in the process of treating waste. .
In particular, dioxins generated during incineration of chlorine-containing resins such as vinyl chloride are not only their hormone-like activity,
Because of its high toxicity such as carcinogenicity and teratogenicity, it is one of the pollutants for which measures are urgently required. Dioxins include dioxin (PCDD), polychlorinated dibenzofuran (PCDF) and coplanar PCB (Co-PC
A compound such as 2,7-dichloro-dibenzodioxin (2,7-dichloro-p-dibenzodioxin) is a general term for compounds including B). Since dioxins are always generated when burning incinerated products containing chlorine, fundamental measures are difficult and have become a serious problem in recent years. Dioxins remain in the exhaust gas discharged from the incinerator and in the ash (incinerated ash) remaining after incineration. Incinerated ash is landfilled at a final disposal site, but dioxin contamination due to scattered incinerated ash has been detected above this disposal site.

【0004】これらの環境汚染物質は、比較的安定で環
境中での微生物分解が期待できないものも多く、いった
ん環境中に排出されると除去は困難である。たとえばダ
イオキシン類は熱や酸、アルカリに対して比較的安定
で、水にも溶けにくい性質があり、残留性が高い。ダイ
オキシン類は廃棄物の焼却過程で生じることが多いの
で、ダイオキシン類の吸着フィルターを焼却炉に付設す
るといったような工夫で環境中への放出を低減できる可
能性がある。しかし現実には、全ての焼却施設にこのよ
うな設備を備えることは、技術的にも、また経済的にも
大きな困難を伴う。また一般廃棄物以外にも、農業資材
のように山間部で野焼きされる製品も多く、焼却にとも
なって発生するダイオキシン類の対策は完全ではなかっ
た。ましてや農薬や殺虫剤などの環境中に散布される製
品については、これらの製品による環境汚染対策を防止
する手だては皆無といってよかった。
[0004] Many of these environmental pollutants are relatively stable and cannot be expected to degrade microorganisms in the environment, and once discharged into the environment, it is difficult to remove them. For example, dioxins are relatively stable to heat, acids, and alkalis, are hardly soluble in water, and have high persistence. Since dioxins are often generated during the incineration process of wastes, there is a possibility that emission to the environment can be reduced by devising, for example, attaching an adsorption filter for dioxins to an incinerator. In practice, however, equipping all incineration facilities with such equipment involves significant technical and economic difficulties. In addition to general waste, many products are burnt in the mountains, such as agricultural materials, and measures for dioxins generated during incineration were not perfect. Even better, products sprayed into the environment, such as pesticides and pesticides, had no means of preventing environmental pollution by these products.

【0005】[0005]

【発明が解決しようとする課題】本発明は、環境中にお
いて環境汚染の原因となる有機物質を分解して汚染を防
止するための方法と、そのための材料の提供を課題とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for decomposing an organic substance causing environmental pollution in an environment to prevent the pollution, and to provide a material therefor.

【0006】[0006]

【課題を解決するための手段】本発明者らは環境中に拡
散し汚染の原因となる有機物質を、光触媒の作用により
分解することができるのではないかと考えた。すなわち
吸着力のある光触媒に有機物質を吸着させ、更に太陽光
等の光を照射することによって分解させるのである。本
発明者らは、分解すべき有機物質が環境中に拡散する前
に光触媒と接触させておくことにより、特に効果的に有
機物質の分解が行えることを見出した。更に本発明者ら
は、分解すべき有機物質の吸着能力を有する光触媒を予
め製品に混入しておくことで、製品が環境に拡散した後
にも光触媒による分解作用を効果的に発揮させることが
できることを見出した。また、この光触媒を製品中では
触媒活性の低い前駆体とし、焼却などの処理を通じて高
度な触媒活性を発現する化合物とすることで、環境中に
放出される段階で有機物質の分解活性を高めることが可
能であることを見出した。本発明は、これらの知見に基
づいて完成された。すなわち本発明は、以下の環境汚染
の防止方法、ならびにそのための材料に関する。 〔1〕環境汚染の原因となる有機物質を光触媒の作用で
分解することによる環境汚染の防止方法。 〔2〕光触媒が酸化チタンである〔1〕の方法。 〔3〕有機物質が焼却灰に含まれるものである〔1〕の
方法。 〔4〕光触媒が、焼却すべき物質に予め添加されたもの
である〔3〕の方法。 〔5〕光触媒が、加熱によって触媒活性を増強される光
触媒前駆体として焼却すべき物質に添加されている
〔4〕の方法。 〔6〕光触媒前駆体が、非晶質の光触媒前駆体である
〔5〕の方法。〔7〕光触媒を、焼却前および/または
焼却後に焼却物に混入する〔3〕の方法。 〔8〕更に付加的に、遷移金属酸化物とともに光触媒を
作用させる〔1〕の方法。
Means for Solving the Problems The present inventors have thought that organic substances which diffuse into the environment and cause pollution can be decomposed by the action of a photocatalyst. That is, an organic substance is adsorbed on a photocatalyst having adsorptive power, and is further decomposed by irradiation with light such as sunlight. The present inventors have found that the organic substance can be particularly effectively decomposed by bringing the organic substance to be decomposed into contact with the photocatalyst before diffusing into the environment. Furthermore, the present inventors have found that by premixing a product with a photocatalyst having the ability to adsorb organic substances to be decomposed, the photocatalyst can be effectively decomposed even after the product has diffused into the environment. Was found. In addition, by using this photocatalyst as a precursor with low catalytic activity in the product and a compound that exhibits high catalytic activity through incineration and other treatments, the decomposition activity of organic substances at the stage of release into the environment is enhanced. Was found to be possible. The present invention has been completed based on these findings. That is, the present invention relates to the following methods for preventing environmental pollution and materials therefor. [1] A method for preventing environmental pollution by decomposing organic substances that cause environmental pollution by the action of a photocatalyst. [2] The method of [1], wherein the photocatalyst is titanium oxide. [3] The method of [1], wherein the organic substance is contained in the incinerated ash. [4] The method of [3], wherein the photocatalyst has been previously added to the substance to be incinerated. [5] The method of [4], wherein the photocatalyst is added to the substance to be incinerated as a photocatalyst precursor whose catalytic activity is enhanced by heating. [6] The method of [5], wherein the photocatalyst precursor is an amorphous photocatalyst precursor. [7] The method of [3], wherein the photocatalyst is mixed into the incinerated material before and / or after incineration. [8] The method of [1], wherein a photocatalyst is additionally acted on together with the transition metal oxide.

〔9〕遷移金属酸化物が酸化バナジウムである〔8〕の
方法。 〔10〕有機物質が環境中に人為的に放出されたもので
ある〔1〕の方法。 〔11〕有機物質が、農薬、界面活性剤、高分子材料、
糞尿、および内分泌かく乱物質からなる群から選択され
る〔10〕の方法。 〔12〕環境汚染の原因となる有機物質を含むか、また
は廃棄の過程において環境汚染の原因となる有機物質を
生じる可能性の有る素材に、光触媒および/または光触
媒前駆体を添加した環境汚染を防止する機能を有する材
料。 〔13〕素材が有機塩素化合物である〔12〕の材料。 〔14〕素材が農薬である〔12〕の材料。 〔15〕遷移金属酸化物に環境汚染の原因となる有機物
質を接触させる工程を含む、環境汚染の原因となる有機
物質の吸着方法。
[9] The method of [8], wherein the transition metal oxide is vanadium oxide. [10] The method of [1], wherein the organic substance is artificially released into the environment. [11] The organic substance is an agricultural chemical, a surfactant, a polymer material,
[10] The method of [10], which is selected from the group consisting of manure and endocrine disruptors. [12] Environmental pollution caused by adding a photocatalyst and / or a photocatalyst precursor to a material that contains an organic substance that causes environmental pollution or that may generate an organic substance that causes environmental pollution in the process of disposal A material that has the function of preventing. [13] The material of [12], wherein the material is an organic chlorine compound. [14] The material of [12], wherein the material is a pesticide. [15] A method for adsorbing an organic substance causing environmental pollution, comprising a step of bringing an organic substance causing environmental pollution into contact with a transition metal oxide.

【0007】[0007]

【発明の実施の形態】本発明で使用可能な光触媒とは、
有機物質をその表面に吸着し、あるいは有機物質表面に
吸着し、光照射を受けることによって吸着した有機物質
の分解を触媒することができる化合物を意味する。有機
物質の分解は、一般には酸化分解であるが、反応の様式
は限定されない。光触媒としては、具体的には、酸化チ
タン、酸化亜鉛、酸化すず、チタン酸ストロンチウム、
酸化タングステン、酸化ビスマス、および酸化鉄等を示
すことができる。中でも酸化チタンは、これらの光触媒
の中でも有機物質に対して最も高い分解能力を有し、ま
た安定で、生物に対して安全なことから望ましい光触媒
である。酸化チタンの分解能力については、ほとんどあ
らゆる有機物質に及び、水と二酸化炭素、塩酸等の無機
物に変化させる無機化が可能である。本発明に用いられ
る光触媒は、有害物質を吸着保持して逃がさない特性が
必要であるので、吸着表面積が大きく吸着力が高い必要
がある。このような光触媒としては、溶剤や水に分散し
たコロイド状の酸化チタン(酸化チタンゾル)や、微細
な粉体が望ましい。吸着性を高めるために、活性炭やゼ
オライト、活性アルミナ等を光触媒と混合したり、ある
いは光触媒粒子にコーティングするのが効果的である。
DETAILED DESCRIPTION OF THE INVENTION The photocatalyst usable in the present invention is:
A compound capable of adsorbing an organic substance on its surface or adsorbing on the surface of the organic substance and catalyzing the decomposition of the adsorbed organic substance by being irradiated with light. Decomposition of organic substances is generally oxidative decomposition, but the mode of reaction is not limited. As the photocatalyst, specifically, titanium oxide, zinc oxide, tin oxide, strontium titanate,
Examples include tungsten oxide, bismuth oxide, and iron oxide. Among them, titanium oxide is a desirable photocatalyst because it has the highest decomposition ability for organic substances among these photocatalysts and is stable and safe for living organisms. Regarding the decomposition ability of titanium oxide, it can be applied to almost all organic substances and can be mineralized by changing it to inorganic substances such as water, carbon dioxide, and hydrochloric acid. The photocatalyst used in the present invention needs to have a property of adsorbing and holding harmful substances so that it does not escape. As such a photocatalyst, colloidal titanium oxide (titanium oxide sol) dispersed in a solvent or water or fine powder is desirable. In order to enhance the adsorptivity, it is effective to mix activated carbon, zeolite, activated alumina and the like with a photocatalyst or to coat photocatalyst particles.

【0008】本発明において、光触媒は分解すべき有機
物質と接触させ、その後太陽光や人工的な光線で照射す
ることにより環境汚染の原因となる有機物質の分解作用
を発揮する。したがって、有機物質との接触をどのよう
に行うかは特に限定されない。しかしながら、より簡便
な操作で、できるだけ確実な分解作用を期待できるよう
に、以下のような方法を採用することができる。まず、
最も簡便で、しかも確実な方法の一つとして、環境汚染
の原因となる有機物質そのもの、あるいは流通や廃棄の
過程で環境汚染の原因となる有機物質を生成する恐れの
ある材料に対して、製造段階で光触媒、あるいは光触媒
の前駆体を混入するのである。たとえば、焼却にともな
うダイオキシン類の発生源の一つである塩化ビニル等の
製造過程で、光触媒の前駆体を混入しておくことができ
る。予め光触媒前駆体を混入した材料は、特別な設備を
持たない焼却施設で焼却されたとしても、焼却後に残留
する有機物質の分解作用を持ち、環境の汚染を効果的に
防止する。しかもその有機物質分解作用は、光触媒活性
物質を混入した材料自身に由来する有機物質のみなら
ず、いっしょに焼却された他の廃棄物に由来するものに
まで効果が及ぶ。光触媒を直接混入したのでは、塩化ビ
ニル製品が光によって劣化してしまうが、前駆体を混入
すれば使用時の劣化を最小限にとどめることができる。
光触媒前駆体として、加熱処理によって光触媒活性を獲
得する化合物を利用すれば、焼却によって光触媒活性を
獲得し、焼却にともなって生成するダイオキシン類をは
じめとする各種有機物質を吸着し排気中への放出を抑制
する。また焼却後は、光の照射を受けて焼却灰に残留す
るダイオキシン類等の各種有機物質の分解を進める。こ
のような光触媒前駆体としては、次のような化合物を示
すことができる。
In the present invention, the photocatalyst is brought into contact with an organic substance to be decomposed, and then illuminated with sunlight or artificial light to exert an action of decomposing an organic substance causing environmental pollution. Therefore, how to make contact with the organic substance is not particularly limited. However, the following method can be adopted so that the decomposing action can be expected as reliably as possible with a simpler operation. First,
One of the simplest and most reliable methods is to manufacture organic substances that cause environmental pollution or materials that can generate organic substances that cause environmental pollution during distribution and disposal. At this stage, the photocatalyst or the precursor of the photocatalyst is mixed. For example, a precursor of a photocatalyst can be mixed in the process of producing vinyl chloride or the like, which is one of the sources of dioxins involved in incineration. Even if the material in which the photocatalyst precursor is mixed in advance is incinerated in an incineration facility having no special facilities, it has a decomposing action on organic substances remaining after incineration, and effectively prevents environmental pollution. In addition, the effect of decomposing organic substances extends not only to organic substances derived from the material itself mixed with the photocatalytically active substance, but also to substances derived from other wastes incinerated together. If the photocatalyst is directly mixed, the vinyl chloride product is deteriorated by light, but if the precursor is mixed, the deterioration at the time of use can be minimized.
If a compound that acquires photocatalytic activity by heat treatment is used as a photocatalyst precursor, it acquires photocatalytic activity by incineration, adsorbs various organic substances such as dioxins generated by incineration, and releases them into exhaust gas Suppress. After incineration, various organic substances such as dioxins remaining in the incinerated ash after being irradiated with light are decomposed. The following compounds can be shown as such a photocatalyst precursor.

【0009】1)非晶質酸化チタン 2)各種チタン塩 硫酸チタニル 塩化チタン(四塩化チタン、三塩化チタン) フッ化チタン(チタン粉末) チタンペロキソクエン酸アンモニウム四水和物 3)有機チタネート チタンイソプロポキシド チタンエトキシド チタンメトキシド チタン2-エチル-1-ヘキサノラート 酸化チタンアセチルアセトナート チタンテトラブトキシド チタンテトライソプロポキシド チタンジクロライドジエトキシド チタンジイソプロポキシド(ビス-2,4-ペンタンジオネ
ート) チタンメトキシプロポキシド チタンメチルフェノキシド 4)結晶性酸化チタン(アナターゼ型、ルチル型)に非
結晶質酸化チタンを表面処理したもの
1) amorphous titanium oxide 2) various titanium salts titanyl sulfate titanium chloride (titanium tetrachloride, titanium trichloride) titanium fluoride (titanium powder) titanium ammonium peroxocitrate tetrahydrate 3) organic titanate titanium Isopropoxide Titanium ethoxide Titanium methoxide Titanium 2-ethyl-1-hexanolate Titanium oxide Acetylacetonate Titanium tetrabutoxide Titanium tetraisopropoxide Titanium dichloride diethoxide Titanium diisopropoxide (bis-2,4-pentanedionate 4) Titanium methoxypropoxide Titanium methylphenoxide 4) Crystalline titanium oxide (anatase type, rutile type) treated with amorphous titanium oxide

【0010】以上のような光触媒前駆体は、それ自身は
低い光触媒活性しか示さないが、加熱処理を経て高度な
光触媒活性を示す酸化チタンを生成する。特に非晶質酸
化チタンは、不完全燃焼による比較的低い温度であって
も、確実に酸化チタンを生成することができる望ましい
前駆体である。不完全燃焼は、ダイオキシン類を生成し
易いとされている燃焼温度100℃〜800℃、特に3
00℃(ダイオキシン類の融点)〜800℃(ダイオキ
シン類の分解が始まる温度)の温度をもたらすので、こ
の条件下で確実な光触媒活性を獲得する前駆体は、本発
明における特に望ましい化合物である。本発明におい
て、光触媒前駆体とは、最終的に生成する光触媒物質と
比較して、小さいものを言う。光触媒前駆体の触媒活性
は、それから生成する光触媒と比較して、1/10以下
のものが望ましい。たとえばここで例示した非晶質酸化
チタンは、望ましい熱処理を経ることによって、10倍
以上の光触媒活性を獲得する。なおここで言う非晶質と
は、X線構造回折において結晶に固有の回折パターンが
見られない状態の固体化合物を意味する。
The above-mentioned photocatalyst precursor itself shows only low photocatalytic activity, but generates titanium oxide having high photocatalytic activity through heat treatment. In particular, amorphous titanium oxide is a desirable precursor that can reliably produce titanium oxide even at relatively low temperatures due to incomplete combustion. Incomplete combustion has a combustion temperature of 100 ° C. to 800 ° C., particularly 3 ° C., which is considered to easily generate dioxins.
Precursors that achieve a reliable photocatalytic activity under these conditions, as they provide a temperature between 00 ° C. (the melting point of the dioxins) and 800 ° C. (the temperature at which the decomposition of the dioxins begins) are particularly desirable compounds in the present invention. In the present invention, the photocatalyst precursor refers to a photocatalyst substance which is smaller than a photocatalyst substance finally produced. The catalytic activity of the photocatalyst precursor is desirably 1/10 or less as compared with the photocatalyst produced therefrom. For example, the amorphous titanium oxide exemplified here obtains a photocatalytic activity of 10 times or more through a desired heat treatment. The term “amorphous” as used herein means a solid compound in a state where a diffraction pattern unique to a crystal is not observed in X-ray structural diffraction.

【0011】本発明に用いる非晶質の光触媒前駆体は、
有機金属化合物(金属有機化合物)の加水分解によって
得ることができる。たとえば光触媒として酸化チタンを
与える前駆体を得るには、チタンのアルコキサイドを加
水分解することによって低温で結晶化可能な均一な非晶
質酸化チタンが得られる。結晶化温度を低下させる要因
としては、極力均一な状態で結晶化させることが重要で
あるが、非晶質酸化チタンをポリマー等に混合する際に
も、極力均一に混合することが肝要となる。なお非晶質
の光触媒前駆体は一般に微細な粉末となり、樹脂材料と
の混合が困難となる場合がある。このような場合には、
結晶性酸化チタンのような大きな結晶に非晶質粉末をコ
ーティングすることにより、混合の容易な素材とするこ
とができる。なおこのとき核となる結晶性酸化チタン
は、コーティングによって不活性化されるので、母材で
ある樹脂材料の劣化の原因とならない。
The amorphous photocatalyst precursor used in the present invention is:
It can be obtained by hydrolysis of an organometallic compound (metal organic compound). For example, to obtain a precursor that provides titanium oxide as a photocatalyst, a homogeneous amorphous titanium oxide that can be crystallized at a low temperature can be obtained by hydrolyzing alkoxide of titanium. As a factor for lowering the crystallization temperature, it is important to crystallize in a uniform state as much as possible.However, even when mixing amorphous titanium oxide with a polymer or the like, it is important to mix as uniformly as possible. . In addition, the amorphous photocatalyst precursor generally becomes fine powder, and it may be difficult to mix the precursor with the resin material. In such a case,
By coating a large crystal such as crystalline titanium oxide with an amorphous powder, a material that can be easily mixed can be obtained. At this time, since the crystalline titanium oxide serving as a nucleus is inactivated by the coating, it does not cause deterioration of the resin material as the base material.

【0012】予め光触媒を混入しておくことによって、
焼却時に生成する有機物質の分解を期待できる材料とし
ては、塩化ビニルの他にも加熱により軟化する多くの熱
可塑性樹脂材料を示すことができる。以下に本発明を適
用することができる樹脂材料と、その代表的な用途を例
示する。 ●軟質塩化ビニル樹脂:フィルム、包装用(繊維、食
品)、粘着テープ、、合板・銅版のラミネート用、カバ
ー類、、建築土木工事の仮設材料、農業用(保温被覆
用)、レザー、ホース、日用品・雑貨、電線用 ●硬質塩化ビニル樹脂:パイプ、フィルム・シート−食
品容器包装用、継手、波板、平板、成型品、異形押出品 ●ポリ塩化ビニリデン:繊維、フィルム、加工肉材料、
鮮肉の包装用、農水産加工品包装用、保存食品用包装フ
ィルム、成型品 ●ポリエチレン:低密度ポリエチレン、フィルム、食品
包装、キャリー袋、重包装用、農業用、土木建築用、ラ
ミネート、射出成型品、電線被覆、中空成形、パイプ ●高密度ポリエチレン:フィルム、食品・雑貨包装、ス
ーパー用レジ袋、中空成型品、射出成形、延伸テープ
(結束用)、パイプ、繊維、肥料、米麦袋、簡易テント
シート ●ポリスチレン:電気・工業用−電気材料、包装用−収
縮包装(食品)、雑貨 ●AS樹脂(スチレン−アクリロニトリル共重合物):電
気・機器部品、自動車部品、文具・雑貨など ●ABS樹脂(スチレン−アクリロニトリル−ブタジエン
樹脂):電子・電気部品、一般機器用、車両用、雑貨
(建材、家具、玩具など) ●発泡スチレン:食品包装用容器、一般建材、冷凍倉庫
用断熱材、農水産物用コンテナ、緩衝包装材 ●ポリプロピレン:射出成形、フィルム、食品包装、繊
維包装、建材のラミネート用、延伸テープ、農業用袋、
サンドバック、結束ロープ、繊維、中空成形、押出成形 ●ポリカーボネート:電子・電気・OA−絶縁用、自動車
・機械、フィルム・シート、食品包装、建材、農業資
材、医療・保安
By mixing the photocatalyst in advance,
As a material that can be expected to decompose organic substances generated during incineration, there can be mentioned many thermoplastic resin materials which are softened by heating, in addition to vinyl chloride. Hereinafter, resin materials to which the present invention can be applied and typical uses thereof will be described. ● Soft vinyl chloride resin: Film, packaging (fiber, food), adhesive tape, plywood and copper plate lamination, covers, temporary materials for building and civil engineering, agriculture (for heat insulation coating), leather, hose, For daily necessities, miscellaneous goods, and electric wires ● Rigid polyvinyl chloride resin: pipes, films and sheets-for food container packaging, fittings, corrugated plates, flat plates, molded products, profiled products ● Polyvinylidene chloride: fibers, films, processed meat materials,
Packaging for fresh meat, packaging for processed agricultural and marine products, packaging for preserved food, molded product ● Polyethylene: Low-density polyethylene, film, food packaging, carry bag, heavy packaging, agriculture, civil engineering, laminate, injection molding Products, wire coating, hollow molding, pipes ● High-density polyethylene: film, food and sundries packaging, shopping bags for supermarkets, hollow molded products, injection molding, stretch tape (for binding), pipes, fibers, fertilizer, rice and wheat bags, Simple tent sheet ● Polystyrene: Electric / Industrial-Electric materials, Packaging-Shrink wrap (food), miscellaneous goods ● AS resin (Styrene-acrylonitrile copolymer): Electric / mechanical parts, automobile parts, stationery, miscellaneous goods, etc. ● ABS Resin (styrene-acrylonitrile-butadiene resin): electronic / electric parts, general equipment, vehicles, miscellaneous goods (building materials, furniture, toys, etc.) Goods packaging containers, general construction materials, cold stores for insulation, agricultural products containers, cushioning packaging materials ● polypropylene: injection molding, films, food packaging, fiber packaging, laminate building materials, stretched tape, agricultural bags,
Sandbag, binding rope, fiber, hollow molding, extrusion molding ● Polycarbonate: for electronic / electric / OA / insulation, automobile / machinery, film / sheet, food packaging, building materials, agricultural materials, medical / security

【0013】この他、光触媒活性物質を焼却灰に混入す
ることによっても、目的とする有機物質の分解活性を期
待することができる。あるいは、焼却すべき廃棄物(焼
却物)に焼却前に光触媒前駆体を混入しておく方法も有
効である。前者では、全体に均一に光触媒を混入するこ
とができるという利点がある。焼却前に光触媒(または
光触媒前駆体)を混合する場合には、できるだけ均一に
混合できるように、ミルを利用するのが有利である。他
方、後者においては焼却中に生成する有機物質をその場
で吸着し、排気中への放出量の抑制効果を期待できる。
In addition, by mixing a photocatalytically active substance into incineration ash, the desired activity of decomposing organic substances can be expected. Alternatively, a method in which a photocatalyst precursor is mixed into waste to be incinerated (incinerated material) before incineration is also effective. The former has the advantage that the photocatalyst can be mixed uniformly throughout. When mixing the photocatalyst (or photocatalyst precursor) before incineration, it is advantageous to use a mill so that the mixing can be as uniform as possible. On the other hand, in the latter, an organic substance generated during incineration is adsorbed in situ, and an effect of suppressing the amount of emission into the exhaust gas can be expected.

【0014】いずれにせよ光触媒を含む焼却灰は、従来
と同じように埋め立てなどの最終処分とする過程で光照
射を受け有機物質の分解が進行する。あるいはより積極
的に、焼却後に光触媒の活性発現に好適な光を人工的に
照射することにより、有機物質の分解を進行させること
もできる。たとえば酸化チタンの場合、波長400nm以
下の光を照射することによって高度な触媒作用を発現す
る。
In any case, the incinerated ash containing the photocatalyst receives light irradiation in the process of final disposal such as landfill as in the past, and the decomposition of organic substances proceeds. Alternatively, the decomposition of the organic substance can be progressed more actively by artificially irradiating light suitable for expressing the activity of the photocatalyst after incineration. For example, in the case of titanium oxide, a high degree of catalytic action is exhibited by irradiation with light having a wavelength of 400 nm or less.

【0015】焼却灰中等のダイオキシン類のような有機
物質の分解を目的とする場合、酸化チタンであれば添加
する材料に対して約0.01%(以下、特に断らない限
り%は重量%を意味する)以上となるように添加すること
により、十分な分解作用を期待することができる。ダイ
オキシン類が特に多量に存在することが疑われる場合に
は、更に多量の酸化チタンを混合することによって、分
解速度を速めることができる。一方、不必要に多量の添
加は合理的でないため、通常50%以下、望ましくは3
0%以下、より望ましくは5%以下となるように混合する
ことにより、効果的な分解を期待することができる。材
料中に予め光触媒前駆体を添加する場合には、一般的な
焼却条件で生成する焼却灰や分解すべき有機物質の量、
焼却を通じて前駆体から生成する光触媒の歩留まり等を
考慮して、最終的に必要量の光触媒が供給できるように
する。具体的には、例えば塩化ビニルの場合、塩化ビニ
ルに対して0.1−5wt%、より好ましくは0.1−1w
t%となるように添加することができる。0.1wt%は、
焼却を通じて生成する有機物質を確実に吸着し、分解を
進めるために必要となる望ましい添加量である。光触媒
(またはその前駆体)は、多く添加するほど確実な有機
物質の吸着、並びに分解作用を期待できるが、樹脂材料
に予め加える場合には、その特性を損なわない範囲で利
用することが望ましい。一般的な重合体においては、5
wt%を越える無機素材を添加すると樹脂材料本来の特性
を損なう原因となる場合がある。塩化ビニルのような樹
脂材料には、通常フィラー(filler)と呼ばれる無機材料
が、その強度等、物理的特性を調整するために添加され
る。フィラーとして添加される無機材料は、一般に1wt
%程度用いられていることから、本発明における光触媒
(またはその前駆体)もこの範囲で使用すれば、樹脂材
料本来の特性を損なうことが無い。更に、本発明による
光触媒(またはその前駆体)をフィラーとして添加すれ
ば、樹脂材料の特性を損なうことなく、十分な量を添加
することができる。言うまでも無く、樹脂材料の素材と
光触媒(またはその前駆体)の組み合わせによって、許
容量は変動する。当業者であれば、素材の特性を損なわ
ない範囲で添加可能な量を経験的に設定することができ
る。
When the purpose is to decompose organic substances such as dioxins in incinerated ash or the like, titanium oxide is used in an amount of about 0.01% (hereinafter, unless otherwise specified,% is weight%) based on the added material. ), Sufficient decomposition action can be expected. When it is suspected that dioxins are present in a particularly large amount, the decomposition rate can be increased by mixing a larger amount of titanium oxide. On the other hand, since an unnecessarily large amount is not rational, it is usually 50% or less, preferably 3% or less.
By mixing so as to be 0% or less, more desirably 5% or less, effective decomposition can be expected. When the photocatalyst precursor is added in advance to the material, the amount of incinerated ash generated under general incineration conditions and the amount of organic substances to be decomposed,
In consideration of the yield of the photocatalyst generated from the precursor through incineration, it is possible to finally supply a required amount of the photocatalyst. Specifically, for example, in the case of vinyl chloride, 0.1-5 wt%, more preferably 0.1-1 w
It can be added to become t%. 0.1 wt% is
This is a desirable addition amount necessary for securely adsorbing organic substances generated through incineration and promoting decomposition. The more the photocatalyst (or a precursor thereof) is added, the more reliable the adsorption and decomposition of the organic substance can be expected. However, when the photocatalyst (or its precursor) is added to the resin material in advance, it is preferable to use the photocatalyst within a range that does not impair the characteristics. In a typical polymer, 5
Addition of an inorganic material in excess of wt% may impair the inherent properties of the resin material. To a resin material such as vinyl chloride, an inorganic material usually called a filler is added to adjust physical properties such as strength. Inorganic materials added as fillers are generally 1 wt.
%, The photocatalyst (or a precursor thereof) in the present invention does not impair the inherent properties of the resin material when used in this range. Furthermore, if the photocatalyst (or a precursor thereof) according to the present invention is added as a filler, a sufficient amount can be added without impairing the properties of the resin material. Needless to say, the allowable amount varies depending on the combination of the resin material and the photocatalyst (or a precursor thereof). Those skilled in the art can empirically set the amount that can be added within a range that does not impair the properties of the material.

【0016】本発明における光触媒(またはその前駆
体)は、塩化ビニルのような樹脂材料を加熱により軟化
させ、両者を混練することにより均一に分散させること
ができる。光触媒(またはその前駆体)を樹脂材料中に
均一に分散させることにより、有機物質の吸着と分解を
効率良く行わせることができる。
The photocatalyst (or its precursor) in the present invention can be uniformly dispersed by softening a resin material such as vinyl chloride by heating and kneading the two. By uniformly dispersing the photocatalyst (or a precursor thereof) in the resin material, adsorption and decomposition of the organic substance can be efficiently performed.

【0017】本発明による環境汚染の防止方法は、合成
樹脂の焼却にともなうダイオキシン類のみならず、環境
に拡散し汚染の原因となる恐れのある有機物質全てに適
用することができる。このような有機物質をもたらす製
品(あるいは廃棄物)として、農薬、界面活性剤、高分
子材料、糞尿、および内分泌かく乱物質等を示すことが
できる。殺虫剤、除草剤、殺菌剤等として環境中に散布
される農薬に対して、予め光触媒活性物質を混入してお
けば、散布後速やかに光の照射を受けて農薬の分解が進
行する。農薬の中には、即効性ではなく、一定の期間に
わたって環境中に残留することで、必要な効果を達成す
るものもある。この種の薬剤については、光触媒表面に
易分解性の不活性な担体とともに農薬の有効成分を吸着
させておくことにより、必要な期間にわたって農薬の活
性を維持させることもできる。担体の分解に伴って農薬
の有効成分が光触媒物質の表面に吸着され、分解作用を
受けるようになる。たとえば糖類等の水溶性担体は、水
分により経時的に崩壊し、やがて光触媒成分が完全に露
出し、農薬の有効成分と直接接触するようになる。農薬
や界面活性剤等は、使用時まで光を遮断した状態で保管
することが可能なので、保管中に各素材の劣化を招くこ
とは無く、したがって単に光触媒を混入しておくだけで
よい。この他、家畜やペットの糞尿を構成する有機物質
は、予め酸化チタンを混入した飼料を与えることによ
り、排泄後の分解を速やかに進めることができる。また
石油材料とは、各種石油製品やその廃棄物が含まれる。
これらの製品や廃棄物には、光と接触しない限り予め光
触媒を添加しておくことができる。あるいは、廃棄段階
で光触媒を添加しても良い。酸化チタンの有機物質の分
解活性については、次のような報告がある。したがっ
て、上記のような有機物質に限らず、これらの有機物質
に対しては、本発明を適用することができる。
The method for preventing environmental pollution according to the present invention can be applied not only to dioxins accompanying incineration of synthetic resins, but also to all organic substances which may diffuse into the environment and cause pollution. Products (or wastes) that provide such organic substances include pesticides, surfactants, polymeric materials, manure, endocrine disruptors, and the like. If a photocatalytically active substance is previously mixed with an agricultural chemical sprayed in the environment as an insecticide, a herbicide, a bactericide, etc., irradiation with light promptly after spraying will accelerate the decomposition of the agricultural chemical. Some pesticides achieve the desired effect by remaining in the environment for a period of time rather than being immediate. For this type of drug, the activity of the pesticide can be maintained for a required period of time by adsorbing the active ingredient of the pesticide on the photocatalyst surface together with the easily decomposable inert carrier. As the carrier is decomposed, the active ingredient of the pesticide is adsorbed on the surface of the photocatalytic substance and undergoes decomposition. For example, a water-soluble carrier such as a saccharide is degraded with time due to moisture, and the photocatalytic component is completely exposed before coming into direct contact with the active ingredient of the agricultural chemical. Agrochemicals, surfactants, and the like can be stored in a light-shielded state until use, so that each material does not deteriorate during storage, and therefore, it is only necessary to mix a photocatalyst. In addition, the organic substances constituting the manure of livestock and pets can be promptly decomposed after excretion by giving a feed mixed with titanium oxide in advance. Petroleum materials include various petroleum products and their waste.
A photocatalyst can be added to these products and wastes in advance unless they come into contact with light. Alternatively, a photocatalyst may be added at the disposal stage. There are the following reports on the activity of titanium oxide for decomposing organic substances. Therefore, the present invention can be applied not only to the above organic substances but also to these organic substances.

【0018】1) 有機ハロゲン化合物 ・トリクロロエチレン、テトラクロロエチレン A. L. Pruden and D. F. Ollis, J. Catal., 81, 404(1
983) ・塩素含有芳香族化合物(クロロフェノール類、クロロ
ベンゼン類、ダイオキシン類) M. Barbeni,et al., Chemosphere, 15, 1913(1986) 2) 界面活性剤 ・ドデシルベンゼンスルホン酸、そのナトリウム塩 H. Hidaka,et al. Nouv. J. Chim., 9, 67(1985) H. Hidaka,et al. J. Photochem., 35, 219(1986) ・塩化ベンジルドデシルジメチルアンモニウム H. hidaka,et al., Yukagaku(J. Jpn. Oil Chem. So
c.), 36, 386(1987) 3) 農薬 ・2,4-D P. Pichat,et al.,"The First International Conferre
nce on TiO2 Photocatalytic Purification and Treatm
ent of Water and Air" p.206(1992) ・シマジン E. Perizzetti,et al., Environ. Sci. Technol., 24,
1559(1990) ・ジメチル2,2,2-トリクロロ-1-ヒドロキシエチルホス
フェート K. Harada, et al., Wat. Res., 24, 1415(1990)
1) Organohalogen compounds: trichloroethylene, tetrachloroethylene AL Pruden and DF Ollis, J. Catal., 81, 404 (1
983) ・ Chlorine-containing aromatic compounds (chlorophenols, chlorobenzenes, dioxins) M. Barbeni, et al., Chemosphere, 15, 1913 (1986) 2) Surfactants ・ Dodecylbenzenesulfonic acid, its sodium salt H Hidaka, et al. Nouv. J. Chim., 9, 67 (1985) H. Hidaka, et al. J. Photochem., 35, 219 (1986) ・ Benzyl dodecyl dimethyl ammonium chloride H. hidaka, et al. , Yukagaku (J. Jpn. Oil Chem. So
c.), 36, 386 (1987) 3) Pesticides • 2,4-D P. Pichat, et al., "The First International Conferre
nce on TiO 2 Photocatalytic Purification and Treatm
ent of Water and Air "p.206 (1992) ・ Simazine E. Perizzetti, et al., Environ. Sci. Technol., 24,
1559 (1990) ・ Dimethyl 2,2,2-trichloro-1-hydroxyethyl phosphate K. Harada, et al., Wat. Res., 24, 1415 (1990)

【0019】本発明において、光触媒による有機化合物
の生成低減効果を高めるために、副成分を組み合わせる
ことができる。副成分としては、例えば遷移金属酸化物
を示すことができる。具体的には、たとえば酸化鉄、酸
化銅、酸化バナジウム、酸化マンガン、酸化銅、酸化ニ
ッケル、酸化クロム等の遷移金属酸化物が挙げられる。
これらの副成分は、酸化チタンと混合しても良く、酸化
チタン表面にコーティングしたりして担持させても良
い。このような遷移金属酸化物が環境汚染の原因となる
有機物質の生成を抑止する機構については現在研究中で
明らかでないが、ダイオキシン類等の環境汚染の原因と
なる有機物質は水に溶解しない疎水性(油性)の化合物
であり、疎水性(油性)の表面により選択的に吸着する
可能性がある。酸化チタン単味は、やや親水性の酸化物
であり、光照射によって両親媒性となることが知られて
いるが、燃焼中にダイオキシン類が発生する時点では結
晶化した後に光照射の履歴がないので親水的であろうと
思われる。これに対して遷移金属酸化物表面は、高温に
晒される際の酸化状態によっては、より金属的な表面が
露出し、燃焼直後よりより疎水的(親油性)であるもの
と考えられる。一般的に遷移金属酸化物は容易に酸素を
失いやすく、低温の不完全な燃焼ではより酸素不足の状
態になり定比の酸素を失い還元された状態になることが
予想される。このため燃焼後は、ダイオキシン類等をよ
り吸着しやすい状態であることが予測できる。また、ダ
イオキシン類は、分解温度も高く燃焼時または冷却時に
固相の状態で析出してくる可能性も高い。このような場
合は気相状態で吸着されるときに比べてさらに触媒表面
の親油性が必要となるであろう。またもう一つの効果と
して、遷移金属酸化物が燃焼を促進している可能性が考
えられる。実際酸化チタン等の酸化物をポリスチレンに
添加すると、同一の燃焼条件においても未燃焼物が、未
添加のものと比べて少なく、良く燃える傾向にある。い
ずれの遷移金属酸化物も同様の傾向があり、遷移金属の
効果はこのような効果が複合されたものであるものと現
在は考察している。このような混合触媒に、さらにゼオ
ライトや活性炭などの吸着剤を添加しても良い。活性炭
は親油性の吸着剤であり、この用途には好適である。
In the present invention, in order to enhance the effect of reducing the production of organic compounds by the photocatalyst, auxiliary components can be combined. As the subcomponent, for example, a transition metal oxide can be shown. Specific examples include transition metal oxides such as iron oxide, copper oxide, vanadium oxide, manganese oxide, copper oxide, nickel oxide, and chromium oxide.
These subcomponents may be mixed with titanium oxide, or may be coated on the surface of titanium oxide and carried. The mechanism by which such transition metal oxides suppress the production of organic substances that cause environmental pollution is not currently known, but organic substances that cause environmental pollution such as dioxins are not soluble in water. It is a hydrophobic (oil-based) compound and may be selectively adsorbed to a hydrophobic (oil-based) surface. Titanium oxide alone is a slightly hydrophilic oxide, and is known to become amphiphilic by light irradiation.However, when dioxins are generated during combustion, the light irradiation history It seems to be hydrophilic because there is no. On the other hand, the transition metal oxide surface is considered to be more hydrophobic (lipophilic) than immediately after combustion, depending on the oxidation state when exposed to a high temperature. In general, transition metal oxides easily lose oxygen, and it is expected that incomplete combustion at a low temperature will result in a more oxygen-deficient state and a reduced state due to loss of a constant ratio of oxygen. For this reason, after combustion, it can be predicted that dioxins and the like are more easily adsorbed. In addition, dioxins have a high decomposition temperature and are likely to be precipitated in a solid phase during combustion or cooling. In such a case, the lipophilicity of the catalyst surface will be required as compared with the case where the catalyst is adsorbed in the gas phase. As another effect, it is conceivable that the transition metal oxide promotes combustion. In fact, when an oxide such as titanium oxide is added to polystyrene, the amount of unburned substances is smaller than that of the non-added one and tends to burn well even under the same combustion conditions. All transition metal oxides have a similar tendency, and it is currently considered that the effect of the transition metal is a combination of such effects. An adsorbent such as zeolite or activated carbon may be further added to such a mixed catalyst. Activated carbon is a lipophilic adsorbent and is suitable for this application.

【0020】本発明においては、副成分に加え、更に付
加的に助触媒成分を加えることもできる。助触媒成分と
は、芳香族化合物に対して、開裂反応や酸化分解反応な
どの触媒作用を示す化合物であり、例えば、酸化バナジ
ウム、コバルト−モリブデンの硫化物、ニッケル−タン
グステン系の遷移金属化合物などの触媒、または、塩化
アルミ、シリカ・アルミナ、シリカ・マグネシア、シリ
カ・ジルコニア、アルミナ・酸化硼素などの固体酸性を
示す酸型触媒がある。以下、実施例に基づいて本発明を
更に具体的に説明する。
In the present invention, a co-catalyst component can be further added in addition to the auxiliary component. The co-catalyst component is a compound that exhibits a catalytic action such as a cleavage reaction or an oxidative decomposition reaction on an aromatic compound, such as vanadium oxide, cobalt-molybdenum sulfide, and a nickel-tungsten transition metal compound. Or an acid type catalyst exhibiting solid acidity such as aluminum chloride, silica-alumina, silica-magnesia, silica-zirconia, and alumina-boron oxide. Hereinafter, the present invention will be described more specifically based on examples.

【0021】[0021]

【実施例】実施例1.光触媒酸化チタンゾル(6wt%、
アルカリ解膠型、多木化学製)をアルミナ基板にスプレ
ーコートで約1ミクロンの厚みに薄膜化したものについ
て、種々の温度で熱処理した後、有害ガスであるメチル
メルカプタンの分解活性を評価した。まず暗時に3ppm
のメチルメルカプタンガスをサンプルの入っている11
lのガラス容器に導入し、BLBランプ4Wを8cmの距
離で照射しガスの分解速度を評価した。30分後に濃度
減少率をR30としてグラフにプロットすると図1のよ
うになり、初期は光触媒活性があまり大きくないが、温
度上昇とともに活性が向上し、800℃を超えると活性
低下をきたす。このような酸化チタンゾルを焼却廃棄を
想定して700℃で熱処理したものについて、ダイオキ
シン類(DCDD:2,7-dichloro-p-dibenzodioxin)の
分解活性を、ガスクロマトグラフによって評価した結
果、ダイオキシン類の分解能力があることが示された。
[Embodiment 1] Photocatalytic titanium oxide sol (6wt%,
(Alkali deflocculation type, manufactured by Taki Kagaku Co., Ltd.) was spray-coated on an alumina substrate to form a thin film having a thickness of about 1 μm. After heat treatment at various temperatures, the decomposition activity of toxic gas methyl mercaptan was evaluated. First 3ppm in the dark
Of methyl mercaptan gas containing the sample
Then, the mixture was introduced into a glass container of 1 l and irradiated with a 4 W BLB lamp at a distance of 8 cm to evaluate the gas decomposition rate. After 30 minutes, the concentration reduction rate is plotted on a graph as R30, as shown in FIG. 1. At the beginning, the photocatalytic activity is not so large, but the activity increases as the temperature rises, and the activity decreases when the temperature exceeds 800 ° C. As a result of evaluating the decomposition activity of dioxins (DCDD: 2,7-dichloro-p-dibenzodioxin) by gas chromatograph on a titanium oxide sol heat-treated at 700 ° C assuming incineration disposal, It was shown to be degradable.

【0022】実施例2.チタンのアルコキサイドである
テトライソプロポキシド(TiOC)をイソプロ
ピルアルコールに水を加えた溶液に滴下後30分間撹拌
して加水分解して白色懸濁液を得た。これを遠心分離後
乾燥機に入れて12時間80℃で乾燥後粉砕して、非晶
質酸化チタン粉末を得た。粉末エックス線回析法による
同定によって、室温で乾燥した粉体は回析線が現れず、
非晶質であることを示していたが、300℃以上ではア
ナターゼの結晶化が認められた。またこの非晶質酸化チ
タンに疑似ポリマーとしてPVAを混合して焼成した場
合、やはり300℃からアナターゼの結晶化が認められ
た。
Embodiment 2 FIG. Tetraisopropoxide (TiOC 3 H 7 ), which is an alkoxide of titanium, was dropped into a solution obtained by adding water to isopropyl alcohol, and then stirred for 30 minutes to hydrolyze to obtain a white suspension. This was centrifuged, dried in a dryer for 12 hours at 80 ° C., and pulverized to obtain an amorphous titanium oxide powder. By the powder X-ray diffraction method, the powder dried at room temperature showed no diffraction line,
Although it was shown to be amorphous, crystallization of anatase was observed above 300 ° C. When PVA was mixed as a pseudopolymer with the amorphous titanium oxide and calcined, anatase crystallization was also observed at 300 ° C.

【0023】焼成前後の光触媒活性を硫化水素(H
S)の分解によって評価した。初期のHS濃度は2
00ppm、紫外線強度は2.2mW/cm2であった。未焼成
の非晶質酸化チタンは、全く分解活性を示さなかった
が、300℃以上の焼成によって顕著な分解活性を示し
た。またこの結果は、PVAと混合して点火して燃焼さ
せた場合も同様であった。
The photocatalytic activity before and after calcination was measured using hydrogen sulfide (H
2 S) was evaluated by decomposition. Initial H 2 S concentration is 2
00 ppm and an ultraviolet intensity of 2.2 mW / cm 2 . The unfired amorphous titanium oxide did not show any decomposition activity, but showed remarkable decomposition activity when fired at 300 ° C. or higher. The same result was obtained when the mixture was ignited and burned after mixing with PVA.

【0024】実施例3.芳香族ポリマーのモデル物質と
してポリスチレンに実施例2で作製した酸化チタンを5
0wt%添加して、300℃で燃焼させた状態(残しが存
在する)を流路に設置し、0.8L/minの一定流速で空
気を導入したところ、ポリスチレン及びスチレンモノマ
ーやベンズアルデヒド等の生成物も、酸化チタンを含ま
ないときと比較して0.7wt%以下の検出量であった。
分析は液体クロマトグラフを用いて行った。
Embodiment 3 FIG. 5 The titanium oxide prepared in Example 2 was added to polystyrene as a model substance of an aromatic polymer.
0 wt% added and burned at 300 ° C (there is a residue) was installed in the flow path, and air was introduced at a constant flow rate of 0.8 L / min, which produced polystyrene and styrene monomer and benzaldehyde. The detection amount of the substance was 0.7 wt% or less as compared with the case where no titanium oxide was contained.
The analysis was performed using a liquid chromatograph.

【0025】実施例4.ポリスチレンをベンゼンで溶解
したものに、Ti0(石原産業製ST01)のみ及
び、V(酸化バナジウム)を1:1で混合したも
のをそれぞれ、0.5wt%から2wt%程度添加して、これ
を300℃で燃焼させたとき発生するガスを、液体クロ
マトグラフで分析した。結果を表1に示す。
Embodiment 4 FIG. A solution obtained by dissolving polystyrene in benzene, Ti0 2 (manufactured by Ishihara Sangyo Kaisha, ST01) only and, V 2 O 5 (the vanadium oxide) 1: mixed ones, respectively 1, was added about 2 wt% from 0.5 wt% The gas generated when this was burned at 300 ° C. was analyzed by liquid chromatography. Table 1 shows the results.

【0026】[0026]

【表1】 ―――――――――――――――――――――――――――― 添加物(触媒添加%) ベンズアルデヒド スチレンモノマー ――――――――――――――――――――――――――― ポリスチレンのみ 0.075g 0.05g TiO2(1wt%) 0.075g 0.05g TiO2-V2O5(0.5wt%) 0.03g 0.02g TiO2-V2O5 0.035g 0.05g TiO2-V2O5 0.03g 0.04g ――――――――――――――――――――――――――――[Table 1] ―――――――――――――――――――――――――― Additives (catalyst addition%) Benzaldehyde Styrene monomer ―――――――― ――――――――――――――――――― Polystyrene only 0.075 g 0.05 g TiO 2 (1 wt%) 0.075 g 0.05 g TiO 2 -V 2 O 5 (0.5 wt% ) 0.03 g 0.02 g TiO 2 -V 2 O 5 0.035 g 0.05 g TiO 2 -V 2 O 5 0.03 g 0.04 g ――――――――――――――――― ―――――――――――

【0027】酸化バナジウムを添加した系では、ごく微
量の添加によっても排出される芳香族化合物含有ガスの
量が抑制されていることが分かる。触媒を含む残しは黒
色のタール様のものが付着した状態であったが、ここに
1mW/cm以上の紫外線照射を一週間行うことによっ
て、白色の灰に変化した。このことから、ポリマー中へ
予めごく微量の触媒を導入することにより、ガス状に排
出される芳香族化合物量も低減できる殊に加え、残しに
吸着残存した化合物も、光照射によって酸化分解される
ことが分かった。
It can be seen that in the system to which vanadium oxide was added, the amount of the aromatic compound-containing gas discharged even with a very small addition was suppressed. The residue containing the catalyst was in a state where a black tar-like substance had adhered thereto. However, irradiation with ultraviolet rays of 1 mW / cm 2 or more for one week changed the color to white ash. From this fact, by introducing a very small amount of the catalyst into the polymer in advance, the amount of the aromatic compound discharged in gaseous form can be reduced.In addition, the compound remaining adsorbed on the residue is also oxidatively decomposed by light irradiation. I understood that.

【0028】[0028]

【発明の効果】本発明によれば、焼却廃棄時にホルモン
用物質等を発生し環境汚染を引き起こす可能性のある材
料に、5wt%以下のごく微量の触媒を添加することによ
って、有害排出物の発生を抑止し、さらに吸着した有害
排出物も光触媒分解が可能である。
According to the present invention, harmful emissions can be reduced by adding a very small amount of a catalyst of 5 wt% or less to a material that may generate hormonal substances and the like and cause environmental pollution at the time of incineration disposal. The generation is suppressed, and the adsorbed harmful effluent can be decomposed by photocatalysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 酸化チタンゾルの光触媒活性と熱処理温度と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the photocatalytic activity of a titanium oxide sol and a heat treatment temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710−5 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Akira Fujishima 710-5 Nakamaruko, Nakahara-ku, Kawasaki City, Kanagawa Prefecture

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 環境汚染の原因となる有機物質を光触媒
の作用で分解することによる環境汚染の防止方法。
1. A method for preventing environmental pollution by decomposing an organic substance causing environmental pollution by the action of a photocatalyst.
【請求項2】 光触媒が酸化チタンである請求項1の方
法。
2. The method of claim 1, wherein the photocatalyst is titanium oxide.
【請求項3】 有機物質が焼却灰に含まれるものである
請求項1の方法。
3. The method according to claim 1, wherein the organic substance is contained in the incineration ash.
【請求項4】 光触媒が、焼却すべき物質に予め添加さ
れたものである請求項3の方法。
4. The method of claim 3, wherein the photocatalyst is pre-added to the material to be incinerated.
【請求項5】 光触媒が、加熱によって触媒活性を増強
される光触媒前駆体として焼却すべき物質に添加されて
いる請求項4の方法。
5. The method according to claim 4, wherein the photocatalyst is added to the substance to be incinerated as a photocatalyst precursor whose catalytic activity is enhanced by heating.
【請求項6】 光触媒前駆体が、非晶質の光触媒前駆体
である請求項5の方法。
6. The method of claim 5, wherein the photocatalyst precursor is an amorphous photocatalyst precursor.
【請求項7】 光触媒を、焼却前および/または焼却後
に焼却物に混入する請求項3の方法。
7. The method according to claim 3, wherein the photocatalyst is incorporated into the incineration before and / or after incineration.
【請求項8】 更に付加的に、遷移金属酸化物とともに
光触媒を作用させる請求項1の方法。
8. The method of claim 1, further comprising the additional step of activating a photocatalyst with the transition metal oxide.
【請求項9】 遷移金属酸化物が酸化バナジウムである
請求項8の方法。
9. The method of claim 8, wherein the transition metal oxide is vanadium oxide.
【請求項10】 有機物質が環境中に人為的に放出され
たものである請求項1の方法。
10. The method of claim 1, wherein the organic material has been artificially released into the environment.
【請求項11】 有機物質が、農薬、界面活性剤、高分
子材料、糞尿、および内分泌かく乱物質からなる群から
選択される請求項10の方法。
11. The method of claim 10, wherein the organic substance is selected from the group consisting of pesticides, surfactants, polymeric materials, manure, and endocrine disruptors.
【請求項12】 環境汚染の原因となる有機物質を含む
か、または廃棄の過程において環境汚染の原因となる有
機物質を生じる可能性の有る素材に、光触媒および/ま
たは光触媒前駆体を添加した環境汚染を防止する機能を
有する材料。
12. An environment in which a photocatalyst and / or a photocatalyst precursor is added to a material that contains an organic substance that causes environmental pollution or has a possibility of producing an organic substance that causes environmental pollution in the course of disposal. A material that has the function of preventing contamination.
【請求項13】 素材が有機塩素化合物である請求項1
2の材料。
13. The material according to claim 1, wherein the material is an organic chlorine compound.
2 materials.
【請求項14】 素材が農薬である請求項12の材料。14. The material according to claim 12, wherein the material is a pesticide. 【請求項15】 遷移金属酸化物に環境汚染の原因とな
る有機物質を接触させる工程を含む、環境汚染の原因と
なる有機物質の吸着方法。
15. A method for adsorbing an organic substance causing environmental pollution, comprising a step of bringing an organic substance causing environmental pollution into contact with a transition metal oxide.
JP11114226A 1998-04-21 1999-04-21 Prevention of environmental pollution and material having function for preventing environmental pollution Pending JP2000084361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11114226A JP2000084361A (en) 1998-04-21 1999-04-21 Prevention of environmental pollution and material having function for preventing environmental pollution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11117698A JPH11342316A (en) 1998-04-21 1998-04-21 Method of preventing environmental pollution and product having function of preventing environmental pollution
JP10-111176 1998-04-21
JP11114226A JP2000084361A (en) 1998-04-21 1999-04-21 Prevention of environmental pollution and material having function for preventing environmental pollution

Publications (1)

Publication Number Publication Date
JP2000084361A true JP2000084361A (en) 2000-03-28

Family

ID=26450631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11114226A Pending JP2000084361A (en) 1998-04-21 1999-04-21 Prevention of environmental pollution and material having function for preventing environmental pollution

Country Status (1)

Country Link
JP (1) JP2000084361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
WO2002034301A1 (en) * 2000-10-20 2002-05-02 Noritake Co., Limited Material for treating harmful substance, and method and apparatus for treating harmful substance
WO2004091308A1 (en) * 2003-04-14 2004-10-28 Yasuo Satou Method of hygienically processing animal excrement
JP2010248331A (en) * 2009-04-14 2010-11-04 Vip Corporation:Kk Soil-improving material from burned ash and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
WO2002034301A1 (en) * 2000-10-20 2002-05-02 Noritake Co., Limited Material for treating harmful substance, and method and apparatus for treating harmful substance
US7396796B2 (en) 2000-10-20 2008-07-08 Noritake Co., Limited Treatment agent, method and device for treating hazardous substances
WO2004091308A1 (en) * 2003-04-14 2004-10-28 Yasuo Satou Method of hygienically processing animal excrement
JPWO2004091308A1 (en) * 2003-04-14 2006-07-06 佐藤 康夫 Biological excrement sanitization method
JP2010248331A (en) * 2009-04-14 2010-11-04 Vip Corporation:Kk Soil-improving material from burned ash and method for producing the same

Similar Documents

Publication Publication Date Title
Vinu et al. Environmental remediation by photocatalysis
Balakrishnan et al. Immobilized TiO2/chitosan beads for photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid
Evgenidou et al. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts
Binas et al. Modified TiO2 based photocatalysts for improved air and health quality
Zeshan et al. Remediation of pesticides using TiO2 based photocatalytic strategies: A review
Rengaraj et al. Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2
Dimitroula et al. Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: Synthesis, characterization and testing of various TiO2 samples
Rammohan et al. Green photocatalysis for degradation of organic contaminants: a review
Vela et al. Recent overview on the abatement of pesticide residues in water by photocatalytic treatment using TiO2
Han et al. Titanium dioxide-based antibacterial surfaces for water treatment
Carbajo et al. Effect of water composition on the photocatalytic removal of pesticides with different TiO 2 catalysts
Regraguy et al. Photocatalytic degradation of methyl orange in the presence of nanoparticles NiSO4/TiO2
Salgado et al. Photocatalysis and photodegradation of pollutants
Moradeeya et al. Conductive polymer layered semiconductor for degradation of triclopyr acid and 2, 4-dichlorophenoxyacetic acid from aqueous stream using coalesce adsorption-photocatalysis technique
JP2000084361A (en) Prevention of environmental pollution and material having function for preventing environmental pollution
SG190475A1 (en) A photocatalyst
JP2000140634A (en) Removing method of harmful substance in liquid
Jones et al. Dry phase titanium dioxide-mediated photocatalysis: basis for in situ surface destruction of hazardous chemicals
KR101929829B1 (en) Composite for antibacterial and deodorant agent using silverion water
Khan Metal oxide powder photocatalysts
JP2000354737A (en) Device and method for decomposing harmful component
JP4420496B2 (en) How to remove harmful substances
Anderson et al. Catalytic and photocatalytic removal of pollutants from aqueous sources
Sacco et al. TiO2 photocatalysis for environmental purposes
Hajiani et al. Removal of pharmaceutical pollutants from aquatic environments using heterogeneous photocatalysis