JP2000082576A - Manufacture of pipe for induction heating - Google Patents

Manufacture of pipe for induction heating

Info

Publication number
JP2000082576A
JP2000082576A JP10253804A JP25380498A JP2000082576A JP 2000082576 A JP2000082576 A JP 2000082576A JP 10253804 A JP10253804 A JP 10253804A JP 25380498 A JP25380498 A JP 25380498A JP 2000082576 A JP2000082576 A JP 2000082576A
Authority
JP
Japan
Prior art keywords
pipe
magnetic metal
induction heating
temperature
sensitive magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10253804A
Other languages
Japanese (ja)
Inventor
Susumu Shimawaki
勧 嶋脇
Masakazu Naito
雅和 内藤
Tatsuo Nakatsugawa
達雄 中津川
Nobuo Ganji
伸夫 元治
Naoaki Ishimaru
直昭 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP10253804A priority Critical patent/JP2000082576A/en
Publication of JP2000082576A publication Critical patent/JP2000082576A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the manufacture of a device, by inserting an inner pipe made of magnetic metal into an outer pipe made of non-magnetic metal with an inner diameter substantially equal to the outer diameter of the inner pipe, and compression-forming the two pipes to form a two-layer pipe for induction heating comprising the inner pipe and outer pipe. SOLUTION: A heat sensitive magnetic metal pipe 101 is mounted on a non- magnetic metal pipe 102. After the mounting, the two are compression-formed. Preferably, the compression-forming is executed at temperatures near the environ ment temperature when induction heating is carried out specifically at 100 deg.C to 300 deg.C, and more effectively at around 200 deg.C. This causes the non-magnetic metal pipe 102 to contract and brings about a gapless joint, thereby improving heating characteristics. By using copper near the heat sensitive magnetic metal pipe 101 in melting point as a material for the non-magnetic metal pipe 102, it is possible to decrease the difference in thermal expansion coefficients between the heat sensitive magnetic metal pipe 101 with its Curie temperature adjusted to an appropriate temperature and the non-magnetic metal pipe 102, and therefore decrease stresses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、所望のキュリー温
度に調整した誘導加熱用パイプの製造方法に関する。
The present invention relates to a method for producing an induction heating pipe adjusted to a desired Curie temperature.

【0002】[0002]

【従来の技術】一般に、感温磁性金属は、鉄とニッケル
との合金、又は鉄とニッケルとクロムとの合金として形
成され、各々の含有率を調整することによって、キュリ
ー温度を自由に調整することができるものである。この
感温磁性金属をアルミニウム等の金属と張り合わせるこ
とによって、特別な温度調整装置を用いることなく、自
己温度制御を可能とした加熱装置が提案されている。こ
のような従来の加熱装置について、図8を参照して説明
する。
2. Description of the Related Art Generally, a temperature-sensitive magnetic metal is formed as an alloy of iron and nickel or an alloy of iron, nickel and chromium, and the Curie temperature can be freely adjusted by adjusting the content of each alloy. Is what you can do. A heating device has been proposed in which the temperature-sensitive magnetic metal is bonded to a metal such as aluminum, thereby enabling self-temperature control without using a special temperature adjusting device. Such a conventional heating device will be described with reference to FIG.

【0003】図8は、従来の加熱装置の概略構成図であ
る。図8に示すように、従来の加熱装置は、感温磁性金
属801の上面に感温磁性金属801よりも抵抗率の低
いアルミニウム板802が接合されている。このように
アルミニウム板を接合するのは、感温磁性金属801の
自己温度制御特性の向上を図るためである。誘導コイル
803は、インバータ804から高周波電力の供給を受
けて感温磁性金属801に対して交番磁界(高周波磁
界)を印可する。
FIG. 8 is a schematic configuration diagram of a conventional heating device. As shown in FIG. 8, in the conventional heating device, an aluminum plate 802 having a lower resistivity than the temperature-sensitive magnetic metal 801 is joined to an upper surface of the temperature-sensitive magnetic metal 801. The reason why the aluminum plates are joined in this way is to improve the self-temperature control characteristics of the temperature-sensitive magnetic metal 801. The induction coil 803 receives the supply of high-frequency power from the inverter 804 and applies an alternating magnetic field (high-frequency magnetic field) to the temperature-sensitive magnetic metal 801.

【0004】次に、以上のように構成された従来の加熱
装置の動作について説明する。インバータ804が誘導
コイル803に高周波電力を供給すると、誘導コイル8
03が発生する交番磁界(高周波磁界)が感温磁性金属
801と鎖交する。これにより、感温磁性金属801
は、生成消滅を繰り返す交番磁束内(高周波磁束内)に
置かれるため、感温磁性金属801中に磁界の変化を妨
げる磁界を生じるように渦電流が発生する。この渦電流
と、感温磁性金属801が有する電気抵抗によってジュ
ール熱が発生し、感温磁性金属801が発熱する。
Next, the operation of the conventional heating apparatus configured as described above will be described. When the inverter 804 supplies high frequency power to the induction coil 803, the induction coil 8
The alternating magnetic field (high-frequency magnetic field) generated by the magnetic flux 03 crosses the temperature-sensitive magnetic metal 801. Thereby, the temperature-sensitive magnetic metal 801
Is placed in an alternating magnetic flux (in a high-frequency magnetic flux) that repeats generation and extinction, so that an eddy current is generated in the temperature-sensitive magnetic metal 801 so as to generate a magnetic field that prevents a change in the magnetic field. Joule heat is generated by the eddy current and the electric resistance of the temperature-sensitive magnetic metal 801, and the temperature-sensitive magnetic metal 801 generates heat.

【0005】感温磁性金属801の温度が上昇し、キュ
リー温度に近づいてくると、感温磁性金属801の飽和
磁束密度が低下してくる。その結果、誘導コイル803
が発生する高周波磁界によって発生する誘導電流は、感
温磁性金属801の内部にまで流れるようになり、誘導
電流が流れる通路断面積が大きくなって抵抗が減少する
ため、発熱量が減少する。さらに温度が上昇してキュリ
ー温度に到達すると、誘導電流は、抵抗率の大きい感熱
磁性金属801ではなく、抵抗率の小さいアルミニウム
板802を流れるようになる。これにより回路全体の電
気抵抗はさらに小さくなって、発熱量が急激に低下す
る。
As the temperature of the temperature-sensitive magnetic metal 801 rises and approaches the Curie temperature, the saturation magnetic flux density of the temperature-sensitive magnetic metal 801 decreases. As a result, the induction coil 803
The induced current generated by the high-frequency magnetic field generated by the current flows to the inside of the temperature-sensitive magnetic metal 801, and the cross-sectional area of the passage through which the induced current flows becomes large and the resistance decreases, so that the calorific value decreases. When the temperature further rises and reaches the Curie temperature, the induced current flows not through the heat-sensitive magnetic metal 801 having a large resistivity but through the aluminum plate 802 having a small resistivity. As a result, the electric resistance of the entire circuit is further reduced, and the amount of generated heat is sharply reduced.

【0006】発熱量が低下して、感温磁性金属801の
温度がキュリー温度を下回ると、誘導電流は、再び感温
磁性金属801に流れ、発熱量が上昇する。
When the calorific value decreases and the temperature of the temperature-sensitive magnetic metal 801 falls below the Curie temperature, the induced current flows through the temperature-sensitive magnetic metal 801 again, and the calorific value increases.

【0007】このように、従来の加熱装置は、感温磁性
金属801の合金の組成によって決まるキュリー温度を
中心とした温度を維持する。
As described above, the conventional heating device maintains a temperature centered on the Curie temperature determined by the composition of the alloy of the temperature-sensitive magnetic metal 801.

【0008】以上のような加熱装置における感温磁性金
属801とアルミニウム板802とを接合する方法とし
て、図9に示す方法が提案されている。図9は、従来の
感温磁性金属とアルミニウム板とを接合する方法を示す
断面図である。図9に示すように、従来の感温磁性金属
とアルミニウム板との接合は、2枚の板材901と90
2とを加熱炉903において400℃程度に加熱して、
圧力をかけたローラ904の間を通して行っている。
As a method of joining the temperature-sensitive magnetic metal 801 and the aluminum plate 802 in the above-described heating device, a method shown in FIG. 9 has been proposed. FIG. 9 is a cross-sectional view showing a conventional method for joining a temperature-sensitive magnetic metal and an aluminum plate. As shown in FIG. 9, a conventional joining of a temperature-sensitive magnetic metal and an aluminum plate is performed by using two plate members 901 and 90.
2 in a heating furnace 903 to about 400 ° C.,
It passes between rollers 904 under pressure.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記の従来の
感温磁性金属とアルミニウム板との接合方法は、平板を
接合することはできるが、中空円筒状のパイプを形成す
ることはできない。すなわち、感温磁性金属とアルミニ
ウム板とを平板状で接合した後、これをパイプ状に形成
するために端部を溶接しようとすると、感温磁性金属
は、融点が約1200℃であるのに対し、アルミニウム
の融点は約600℃であるため、この溶接熱によって周
辺のアルミニウムが融解してしまうからである。
However, according to the above-mentioned conventional method of joining a temperature-sensitive magnetic metal and an aluminum plate, flat plates can be joined, but a hollow cylindrical pipe cannot be formed. That is, after joining a temperature-sensitive magnetic metal and an aluminum plate in a flat plate shape and then trying to weld the ends to form a pipe, the temperature-sensitive magnetic metal has a melting point of about 1200 ° C. On the other hand, since the melting point of aluminum is about 600 ° C., the surrounding aluminum is melted by this welding heat.

【0010】本発明は、このような問題点に鑑みてなさ
れたものであり、所定のキュリー温度が設定された感温
磁性金属と非磁性金属とからなる誘導加熱用パイプを簡
単な構成で製造することができる誘導加熱用パイプの製
造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and has a simple structure for producing an induction heating pipe made of a temperature-sensitive magnetic metal and a non-magnetic metal at a predetermined Curie temperature. It is an object of the present invention to provide a method for producing a pipe for induction heating which can be performed.

【0011】[0011]

【課題を解決するための手段】本発明者らは、融点の異
なる複数の金属材料を平板状に接合した後、これをパイ
プ状に溶接する際、融点の低い金属材料が溶解してしま
う点に着目し、融点の異なる磁性金属と非磁性金属とを
それぞれ独立にパイプ状に形成し、その後で両者を接合
することによって、自己温度制御特性の優れた誘導加熱
用パイプを形成することができることを見出し、本発明
をするに至った。
Means for Solving the Problems The present inventors have found that a plurality of metal materials having different melting points are joined in a flat plate shape, and when these are welded in a pipe shape, the metal material having a lower melting point is dissolved. Focusing on, it is possible to form an induction heating pipe with excellent self-temperature control characteristics by forming a magnetic metal and a non-magnetic metal having different melting points independently from each other in a pipe shape, and then joining them. And found the present invention.

【0012】すなわち、本発明は、磁性金属よりなる内
パイプを、この内パイプの外径とほぼ等しい内径を有す
る非磁性金属よりなる外パイプに挿入し、両者を圧縮形
成して前記内パイプと前記外パイプとからなる2層の誘
導加熱用パイプを形成することを特徴とする。
That is, according to the present invention, an inner pipe made of a magnetic metal is inserted into an outer pipe made of a non-magnetic metal having an inner diameter substantially equal to the outer diameter of the inner pipe. A two-layer induction heating pipe comprising the outer pipe is formed.

【0013】これにより、本発明者らは、金属材料を溶
接する際に融点の低い金属材料が溶解する問題点を解決
し、磁性金属パイプと非磁性金属パイプとを簡単な構成
で接合することを可能にすると共に、簡易な構成で加熱
効率の高い誘導加熱用パイプを製造することを可能とし
た。
Accordingly, the present inventors have solved the problem that a metal material having a low melting point is melted when welding a metal material, and can join a magnetic metal pipe and a nonmagnetic metal pipe with a simple configuration. In addition, it is possible to manufacture an induction heating pipe having a high heating efficiency with a simple configuration.

【0014】[0014]

【発明の実施の形態】本発明の第1の態様に係る誘導加
熱用パイプの製造方法は、磁性金属よりなる内パイプ
を、この内パイプの外径とほぼ等しい内径を有する非磁
性金属よりなる外パイプに挿入し、両者を圧縮形成して
前記内パイプと前記外パイプとからなる2層の誘導加熱
用パイプを形成する構成を採る。
BEST MODE FOR CARRYING OUT THE INVENTION According to a method of manufacturing an induction heating pipe according to a first aspect of the present invention, an inner pipe made of a magnetic metal is made of a nonmagnetic metal having an inner diameter substantially equal to the outer diameter of the inner pipe. A configuration is adopted in which the two layers are inserted into an outer pipe and formed by compression to form a two-layer induction heating pipe composed of the inner pipe and the outer pipe.

【0015】この構成により、異なる融点を持つ磁性金
属からなるパイプと非磁性金属からなるパイプとをそれ
ぞれ独立に形成し、その後で両者を接合することができ
るため、融点の低い金属が溶接時に溶けるという問題が
生ずることがなく、磁性金属からなるパイプと非磁性金
属からなるパイプとを簡単な方法で隙間なく接合するこ
とができる。
With this configuration, a pipe made of a magnetic metal and a pipe made of a non-magnetic metal having different melting points can be formed independently of each other and then joined together, so that the metal having a low melting point melts during welding. Thus, the pipe made of a magnetic metal and the pipe made of a non-magnetic metal can be joined without any gap by a simple method.

【0016】また、本発明の第2の態様は、第1の態様
に係る誘導加熱用パイプの製造方法において、前記内パ
イプは、前記外パイプと接触する面上に凹部を有する構
成を採る。
According to a second aspect of the present invention, in the method for producing an induction heating pipe according to the first aspect, the inner pipe has a concave portion on a surface in contact with the outer pipe.

【0017】この構成により、磁性金属からなるパイプ
と非磁性金属からなるパイプとを簡単な方法で隙間なく
接合することができると共に、その接合力を高めること
が可能となる。
According to this configuration, the pipe made of the magnetic metal and the pipe made of the non-magnetic metal can be joined without any gap by a simple method, and the joining strength can be increased.

【0018】また、本発明の第3の態様は、第1の態様
又は第2の態様に係る誘導加熱用パイプの製造方法にお
いて、前記内パイプの長手方向の寸法は、前記外パイプ
の長手方向の寸法よりも大きく、前記内パイプを前記外
パイプに挿入した際に前記内パイプの両端部が前記外パ
イプから突出する構成を採る。
According to a third aspect of the present invention, in the method of manufacturing an induction heating pipe according to the first aspect or the second aspect, the length of the inner pipe in the longitudinal direction is smaller than the length of the outer pipe in the longitudinal direction. , And when the inner pipe is inserted into the outer pipe, both ends of the inner pipe project from the outer pipe.

【0019】この構成により、磁性金属の熱伝導性の悪
さを利用することができるため、断熱効果を高める部材
を不要とすることができ、構成の簡略化、コスト低下を
図ることが可能となる。
With this configuration, the poor thermal conductivity of the magnetic metal can be used, so that a member for enhancing the heat insulating effect can be eliminated, and the configuration can be simplified and the cost can be reduced. .

【0020】また、本発明の第4の態様は、第1の態様
から第3の態様に係る誘導加熱用パイプの製造方法にお
いて、前記圧縮形成を、誘導加熱実行時の環境温度近傍
で行う構成を採る。
According to a fourth aspect of the present invention, in the method for manufacturing an induction heating pipe according to any one of the first to third aspects, the compression forming is performed near an ambient temperature at the time of performing the induction heating. Take.

【0021】この構成により、非磁性金属パイプが収縮
するため、磁性金属からなるパイプと非磁性金属からな
るパイプとを簡単な方法で隙間なく接合することができ
る。
According to this configuration, since the non-magnetic metal pipe shrinks, the pipe made of the magnetic metal and the pipe made of the non-magnetic metal can be joined without any gap by a simple method.

【0022】また、本発明の第5の態様は、第1の態様
から第4の態様のいずれかに記載の誘導加熱用パイプの
製造方法において、前記磁性金属の融点に近い融点を持
つ非磁性金属を用いる構成を採る。
According to a fifth aspect of the present invention, there is provided the method of manufacturing an induction heating pipe according to any one of the first to fourth aspects, wherein the non-magnetic material has a melting point close to the melting point of the magnetic metal. A configuration using metal is adopted.

【0023】この構成により、磁性金属パイプと非磁性
金属パイプとの熱膨張係数の差を小さくすることができ
るため、誘導加熱実行時の応力を小さく抑えることが可
能となる。
With this configuration, the difference in the coefficient of thermal expansion between the magnetic metal pipe and the non-magnetic metal pipe can be reduced, so that the stress during induction heating can be reduced.

【0024】また、本発明の第6の態様に係る誘導加熱
用パイプの製造方法は、磁性金属よりなるパイプを形成
し、このパイプの少なくとも外側を非磁性金属で被覆す
る構成を採る。
Further, a method of manufacturing a pipe for induction heating according to a sixth aspect of the present invention employs a configuration in which a pipe made of a magnetic metal is formed, and at least the outside of the pipe is covered with a non-magnetic metal.

【0025】この構成により、非磁性金属からなるパイ
プを形成する必要が無くなるため、加工が容易になると
共に、製造工程の簡略化を図ることが可能となる。
With this configuration, it is not necessary to form a pipe made of a non-magnetic metal, so that the working becomes easy and the manufacturing process can be simplified.

【0026】また、本発明の第7の態様は、第1の態様
から第6の態様に係る誘導加熱用パイプの製造方法にお
いて、非磁性金属の外周面に離型層を設ける構成を採
る。
In a seventh aspect of the present invention, in the method for manufacturing an induction heating pipe according to the first to sixth aspects, a configuration is employed in which a release layer is provided on the outer peripheral surface of the non-magnetic metal.

【0027】この構成により、トナー、埃等が誘導加熱
用パイプに付着することを防止することができる。
With this configuration, it is possible to prevent toner, dust and the like from adhering to the induction heating pipe.

【0028】以下、本発明の実施の形態について、図面
を参照して説明する。 (実施の形態1)図1は、本発明の実施の形態1に係る
誘導加熱用パイプの全体斜視図と、この誘導加熱用パイ
プをA−Aで切断した断面図である。本発明の実施の形
態1に係る誘導加熱用パイプは、鉄とニッケルが31〜
38%の系、鉄とニッケルが4〜55%、クロムが15
%以下の系の合金である感温磁性金属材料101の外周
に非磁性金属材料102を被覆積層して形成される。感
温磁性金属材料101のキュリー温度は、140〜25
0℃に設定してあるが、合金の組成を調整することによ
り、使用するトナーの種類に応じてキュリー温度を変更
させることが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is an overall perspective view of an induction heating pipe according to Embodiment 1 of the present invention, and a cross-sectional view of the induction heating pipe cut along AA. In the induction heating pipe according to Embodiment 1 of the present invention, iron and nickel
38% system, iron and nickel 4-55%, chromium 15
% Of a temperature-sensitive magnetic metal material 101, which is an alloy having a percentage of less than or equal to about 0.5%. The Curie temperature of the temperature-sensitive magnetic metal material 101 is 140 to 25.
Although the temperature is set at 0 ° C., the Curie temperature can be changed according to the type of toner used by adjusting the composition of the alloy.

【0029】次に、本発明の実施の形態1に係る誘導加
熱用パイプの製造方法について、図2及び図3を参照し
て説明する。図2は、本発明の実施の形態1に係る誘導
加熱用パイプの製造手順を示すフロー図である。また、
図3(a)〜(c)は、本発明の実施の形態1に係る誘
導加熱用パイプの製造プロセスを示す図である。
Next, a method of manufacturing the induction heating pipe according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a flowchart showing a procedure for manufacturing the induction heating pipe according to Embodiment 1 of the present invention. Also,
3 (a) to 3 (c) are diagrams showing a process for manufacturing the induction heating pipe according to Embodiment 1 of the present invention.

【0030】本発明の実施の形態1に係る誘導加熱用パ
イプの製造は、感温磁性金属材料101と非磁性金属材
料102とを予めパイプ状に形成し、感温磁性金属材料
101を非磁性金属材料102内に挿入し、同時に圧縮
形成して行う。
In the manufacture of the induction heating pipe according to the first embodiment of the present invention, the temperature-sensitive magnetic metal material 101 and the non-magnetic metal material 102 are formed in a pipe shape in advance, and the temperature-sensitive magnetic metal material 101 is made non-magnetic. It is inserted into the metal material 102 and simultaneously formed by compression.

【0031】すなわち、図2において、感温磁性金属パ
イプ101と、非磁性金属パイプ102とをそれぞれ作
成する(ステップ1、ステップ2)。これを図3(a)
に示す。両者は、平板からパイプ状にする際の溶接をそ
れぞれ独立に行うため、融点の相違によって非磁性金属
が溶解する問題は生じない。
That is, in FIG. 2, a temperature-sensitive magnetic metal pipe 101 and a non-magnetic metal pipe 102 are formed (steps 1 and 2). This is shown in FIG.
Shown in Since the two members perform welding independently from a flat plate into a pipe shape, there is no problem that the nonmagnetic metal is melted due to a difference in melting point.

【0032】次に、感温磁性金属パイプ101と、非磁
性金属パイプ102とを装着する(ステップ3)。これ
を図3(b)に示す。両者を装着したあと、圧縮形成す
る(ステップ4)。これを図3(c)に示す。この時、
圧縮形成を誘導加熱実行時の環境温度近傍の温度、具体
的には100℃〜300℃、より効果的には200℃前
後で加工するのが望ましい。これにより、非磁性金属パ
イプが収縮し、隙間なく接合させることができ、加熱特
性の向上を図ることができる。
Next, the temperature-sensitive magnetic metal pipe 101 and the non-magnetic metal pipe 102 are attached (Step 3). This is shown in FIG. After both are mounted, they are compression-formed (step 4). This is shown in FIG. At this time,
It is desirable to perform the compression forming at a temperature near the environmental temperature at the time of performing the induction heating, specifically at 100 ° C. to 300 ° C., more effectively at about 200 ° C. As a result, the nonmagnetic metal pipe shrinks and can be joined without any gap, thereby improving the heating characteristics.

【0033】非磁性金属パイプ102の材料として、ア
ルミニウムを使用すると、加工性を向上させることがで
きる。
When aluminum is used as the material of the non-magnetic metal pipe 102, workability can be improved.

【0034】また、非磁性金属パイプ102の材料とし
て、感温磁性金属パイプ101と融点の近い銅を使用す
ることで、適温に調節したキュリー温度を有する感温磁
性金属パイプ101と非磁性金属パイプ102との熱膨
張係数を小さくし、応力を小さくすることも可能であ
る。
Further, by using copper having a melting point close to that of the temperature-sensitive magnetic metal pipe 101 as the material of the non-magnetic metal pipe 102, the temperature-sensitive magnetic metal pipe 101 and the non-magnetic metal pipe having a Curie temperature adjusted to an appropriate temperature are used. It is also possible to reduce the coefficient of thermal expansion with respect to 102 and reduce the stress.

【0035】(実施の形態2)次に、本発明の実施の形
態2に係る誘導加熱用パイプと、その製造方法につい
て、図4を参照して説明する。図4(a)〜(c)は、
本発明の実施の形態2に係る誘導加熱用パイプと、その
製造プロセスを示す図である。実施の形態2において
は、図4(a)に示すように、感温磁性金属材料401
の表面に深さ数十ミクロンの凹部402を多数形成し、
この感温磁性金属材料と非磁性金属材料とを予めパイプ
状に形成する。次に、図4(b)に示すように、感温磁
性金属パイプ401を非磁性金属パイプ102内に挿入
する。次に、図4(c)に示すように、これらを同時に
圧縮形成して誘導加熱用パイプを作成する。図4(c)
には、B−Bで切断した断面図を併記しているが、この
断面図に示すように、感温磁性金属パイプ401の表面
に設けられた凹部402に非磁性金属パイプ102が食
い込むため、両者をより強力に接合させることができ、
加熱特性の向上を図ることができる。
(Embodiment 2) Next, an induction heating pipe according to Embodiment 2 of the present invention and a method for manufacturing the same will be described with reference to FIG. 4 (a) to 4 (c)
It is a figure which shows the pipe for induction heating which concerns on Embodiment 2 of this invention, and its manufacturing process. In the second embodiment, as shown in FIG.
A large number of recesses 402 having a depth of several tens of microns on the surface of
The temperature-sensitive magnetic metal material and the non-magnetic metal material are formed in a pipe shape in advance. Next, as shown in FIG. 4B, the temperature-sensitive magnetic metal pipe 401 is inserted into the non-magnetic metal pipe 102. Next, as shown in FIG. 4C, these are simultaneously compression-formed to form an induction heating pipe. FIG. 4 (c)
Also shows a cross-sectional view taken along the line BB. As shown in the cross-sectional view, the non-magnetic metal pipe 102 bites into the concave portion 402 provided on the surface of the temperature-sensitive magnetic metal pipe 401. Both can be joined more strongly,
Heating characteristics can be improved.

【0036】(実施の形態3)次に、本発明の実施の形
態3に係る誘導加熱用パイプと、その製造方法につい
て、図5を参照して説明する。図5(a)〜(c)は、
本発明の実施の形態3に係る誘導加熱用パイプと、その
製造プロセスを示す図である。実施の形態3において
は、図5(a)に示すように、非磁性金属パイプ501
の長さを感温磁性金属パイプ101の長さよりも短くな
るように形成し、この感温磁性金属材料と非磁性金属材
料とを予めパイプ状に形成する。次に、図5(b)に示
すように、感温磁性金属パイプ401を非磁性金属パイ
プ501内に挿入する。次に、図5(c)に示すよう
に、これらを同時に圧縮形成して誘導加熱用パイプを作
成する。これにより、感温磁性金属パイプ101の熱伝
導の悪さを利用して断熱効果を高める部材を不要とする
ことができる。
(Embodiment 3) Next, an induction heating pipe according to Embodiment 3 of the present invention and a method of manufacturing the same will be described with reference to FIG. FIGS. 5 (a) to 5 (c)
It is a figure which shows the pipe for induction heating which concerns on Embodiment 3 of this invention, and its manufacturing process. In the third embodiment, as shown in FIG.
Is formed so as to be shorter than the length of the temperature-sensitive magnetic metal pipe 101, and the temperature-sensitive magnetic metal material and the non-magnetic metal material are formed in a pipe shape in advance. Next, as shown in FIG. 5B, the temperature-sensitive magnetic metal pipe 401 is inserted into the non-magnetic metal pipe 501. Next, as shown in FIG. 5C, these are simultaneously compression-formed to form an induction heating pipe. This eliminates the need for a member that enhances the heat insulating effect by utilizing the poor heat conduction of the temperature-sensitive magnetic metal pipe 101.

【0037】(実施の形態4)次に、本発明の実施の形
態4に係る誘導加熱用パイプと、その製造方法につい
て、図6及び図7を参照して説明する。図6は、本発明
の実施の形態4に係る誘導加熱用パイプの製造手順を示
すフロー図である。また、図7(a)(b)は、本発明
の実施の形態4に係る誘導加熱用パイプの製造方法を示
す図である。
(Embodiment 4) Next, an induction heating pipe according to Embodiment 4 of the present invention and a method for manufacturing the same will be described with reference to FIGS. FIG. 6 is a flowchart showing a procedure for manufacturing an induction heating pipe according to Embodiment 4 of the present invention. FIGS. 7A and 7B are diagrams showing a method for manufacturing an induction heating pipe according to Embodiment 4 of the present invention.

【0038】図6において、感温磁性金属パイプ101
を作成する(ステップT1)。これを図7(a)に示
す。感温磁性金属パイプ101は、平板からパイプ状に
する際の溶接を独立に行うため、融点の相違によって非
磁性金属が溶解する問題は生じない。
In FIG. 6, a temperature-sensitive magnetic metal pipe 101
Is created (step T1). This is shown in FIG. Since the temperature-sensitive magnetic metal pipe 101 performs welding independently from a flat plate into a pipe shape, there is no problem that the nonmagnetic metal is melted due to a difference in melting point.

【0039】次に、感温磁性金属パイプ101を液状化
した非磁性金属材料の中へ没入し、感温磁性金属パイプ
101のメッキを行う(ステップT2)。これにより、
感温磁性金属パイプに非磁性金属材料を積層する工程を
容易に行うことが可能となる。
Next, the temperature-sensitive magnetic metal pipe 101 is immersed in the liquefied non-magnetic metal material, and the temperature-sensitive magnetic metal pipe 101 is plated (step T2). This allows
The step of laminating the non-magnetic metal material on the temperature-sensitive magnetic metal pipe can be easily performed.

【0040】なお、上記の説明では、非磁性金属材料を
感温磁性金属にメッキする方法を示したが、本発明は、
これに限定されず、蒸着、スパッタリング、CVC等に
より非磁性金属材料を感温磁性金属に被覆することも可
能である。
In the above description, a method of plating a non-magnetic metal material on a temperature-sensitive magnetic metal has been described.
The present invention is not limited to this, and it is also possible to coat the non-magnetic metal material on the temperature-sensitive magnetic metal by vapor deposition, sputtering, CVC, or the like.

【0041】[0041]

【発明の効果】以上の説明から明らかなように、本発明
によれば、異なる融点を持つ磁性金属からなるパイプと
非磁性金属からなるパイプとをそれぞれ独立に形成し、
その後で両者を接合することができるため、融点の低い
金属が溶接時に溶けるという問題が生ずることがなく、
磁性金属からなるパイプと非磁性金属からなるパイプと
を簡単な方法で隙間なく接合することができる。
As is apparent from the above description, according to the present invention, a pipe made of a magnetic metal and a pipe made of a non-magnetic metal having different melting points are formed independently of each other.
Since the two can be joined afterwards, there is no problem that the metal with a low melting point melts during welding,
A pipe made of a magnetic metal and a pipe made of a non-magnetic metal can be joined without any gap by a simple method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係る誘導加熱用パイプ
の全体斜視図と、誘導加熱用パイプをA−Aで切断した
断面図
FIG. 1 is an overall perspective view of an induction heating pipe according to Embodiment 1 of the present invention, and a cross-sectional view of the induction heating pipe cut along AA.

【図2】上記実施の形態1に係る誘導加熱用パイプの製
造手順を示すフロー図
FIG. 2 is a flowchart showing a procedure for manufacturing the induction heating pipe according to the first embodiment.

【図3】(a) 上記実施の形態1に係る誘導加熱用パ
イプの製造プロセスを示す図 (b) 上記実施の形態1に係る誘導加熱用パイプの製
造プロセスを示す図 (c) 上記実施の形態1に係る誘導加熱用パイプの製
造プロセスを示す図
FIG. 3A is a diagram illustrating a process of manufacturing the induction heating pipe according to the first embodiment. FIG. 3B is a diagram illustrating a process of manufacturing the induction heating pipe according to the first embodiment. The figure which shows the manufacturing process of the pipe for induction heating which concerns on form 1.

【図4】(a) 本発明の実施の形態2に係る誘導加熱
用パイプの全体斜視図 (b) 上記実施の形態2に係る誘導加熱用パイプの全
体斜視図 (c) 上記実施の形態2に係る誘導加熱用パイプの全
体斜視図と、誘導加熱用パイプをB−Bで切断した断面
FIG. 4A is an overall perspective view of an induction heating pipe according to a second embodiment of the present invention. FIG. 4B is an overall perspective view of an induction heating pipe according to the second embodiment. Perspective view of the induction heating pipe according to the above, and a cross-sectional view of the induction heating pipe cut along BB

【図5】(a) 本発明の実施の形態3に係る誘導加熱
用パイプの製造プロセスを示す図 (b) 上記実施の形態3に係る誘導加熱用パイプの製
造プロセスを示す図 (c) 上記実施の形態3に係る誘導加熱用パイプの製
造プロセスを示す図
FIG. 5 (a) is a diagram showing a process for manufacturing an induction heating pipe according to Embodiment 3 of the present invention. (B) A diagram showing a process for manufacturing an induction heating pipe according to Embodiment 3 above. The figure which shows the manufacturing process of the pipe for induction heating which concerns on Embodiment 3.

【図6】本発明の実施の形態4に係る誘導加熱用パイプ
の製造手順を示すフロー図
FIG. 6 is a flowchart showing a procedure for manufacturing an induction heating pipe according to Embodiment 4 of the present invention.

【図7】(a) 上記実施の形態4に係る誘導加熱用パ
イプの製造プロセスを示す図 (b) 上記実施の形態4に係る誘導加熱用パイプの製
造プロセスを示す図
FIG. 7A is a diagram illustrating a manufacturing process of an induction heating pipe according to the fourth embodiment. FIG. 7B is a diagram illustrating a manufacturing process of the induction heating pipe according to the fourth embodiment.

【図8】従来の加熱装置の概略構成図FIG. 8 is a schematic configuration diagram of a conventional heating device.

【図9】従来の感温磁性金属とアルミニウム板とを接合
する方法を示す断面図
FIG. 9 is a sectional view showing a conventional method for joining a temperature-sensitive magnetic metal and an aluminum plate.

【符号の説明】[Explanation of symbols]

101、401 感温磁性金属パイプ 102、501 非磁性金属パイプ 402 凹部 101, 401 Temperature-sensitive magnetic metal pipe 102, 501 Non-magnetic metal pipe 402 Recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 雅和 東京都目黒区下目黒2丁目3番8号 松下 電送システム株式会社内 (72)発明者 中津川 達雄 東京都目黒区下目黒2丁目3番8号 松下 電送システム株式会社内 (72)発明者 元治 伸夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石丸 直昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3K059 AD03 AD40 CD63 CD66  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masakazu Naito 2-3-8 Shimomeguro, Meguro-ku, Tokyo Inside Matsushita Electric Transmission System Co., Ltd. (72) Tatsuo Nakatsugawa 2-3-3 Shimomeguro, Meguro-ku, Tokyo No. 8 Inside Matsushita Electric Transmission System Co., Ltd. F term (reference) 3K059 AD03 AD40 CD63 CD66

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁性金属よりなる内パイプを、この内パ
イプの外径とほぼ等しい内径を有する非磁性金属よりな
る外パイプに挿入し、両者を圧縮形成して前記内パイプ
と前記外パイプとからなる2層の誘導加熱用パイプを形
成することを特徴とする誘導加熱用パイプの製造方法。
1. An inner pipe made of a magnetic metal is inserted into an outer pipe made of a non-magnetic metal having an inner diameter substantially equal to the outer diameter of the inner pipe, and both are compressed to form the inner pipe and the outer pipe. A method for producing an induction heating pipe, comprising forming a two-layer induction heating pipe comprising:
【請求項2】 前記内パイプは、前記外パイプと接触す
る面上に凹部を有することを特徴とする請求項1記載の
誘導加熱用パイプの製造方法。
2. The method according to claim 1, wherein the inner pipe has a concave portion on a surface in contact with the outer pipe.
【請求項3】 前記内パイプの長手方向の寸法は、前記
外パイプの長手方向の寸法よりも大きく、前記内パイプ
を前記外パイプに挿入した際に前記内パイプの両端部が
前記外パイプから突出することを特徴とする請求項1又
は請求項2記載の誘導加熱用パイプの製造方法。
3. A longitudinal dimension of the inner pipe is larger than a longitudinal dimension of the outer pipe. When the inner pipe is inserted into the outer pipe, both ends of the inner pipe are separated from the outer pipe. The method for producing an induction heating pipe according to claim 1, wherein the pipe is projected.
【請求項4】 前記圧縮形成を、誘導加熱実行時の環境
温度近傍で行うことを特徴とする請求項1から請求項3
のいずれかに記載の誘導加熱用パイプの製造方法。
4. The method according to claim 1, wherein the compression is performed at a temperature close to the ambient temperature when the induction heating is performed.
The method for producing an induction heating pipe according to any one of the above.
【請求項5】 前記磁性金属の融点に近い融点を持つ非
磁性金属を用いることを特徴とする請求項1から請求項
4のいずれかに記載の誘導加熱用パイプの製造方法。
5. The method for producing an induction heating pipe according to claim 1, wherein a nonmagnetic metal having a melting point close to the melting point of the magnetic metal is used.
【請求項6】 磁性金属よりなるパイプを形成し、この
パイプの少なくとも外側を非磁性金属で被覆することを
特徴とする誘導加熱用パイプの製造方法。
6. A method for producing a pipe for induction heating, comprising forming a pipe made of a magnetic metal, and coating at least the outside of the pipe with a non-magnetic metal.
【請求項7】 非磁性金属の外周面に離型層を設けるこ
とを特徴とする請求項1から請求項6のいずれかに記載
の誘導加熱用パイプの製造方法。
7. The method for producing an induction heating pipe according to claim 1, wherein a release layer is provided on an outer peripheral surface of the non-magnetic metal.
JP10253804A 1998-09-08 1998-09-08 Manufacture of pipe for induction heating Pending JP2000082576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253804A JP2000082576A (en) 1998-09-08 1998-09-08 Manufacture of pipe for induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253804A JP2000082576A (en) 1998-09-08 1998-09-08 Manufacture of pipe for induction heating

Publications (1)

Publication Number Publication Date
JP2000082576A true JP2000082576A (en) 2000-03-21

Family

ID=17256391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253804A Pending JP2000082576A (en) 1998-09-08 1998-09-08 Manufacture of pipe for induction heating

Country Status (1)

Country Link
JP (1) JP2000082576A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032415A1 (en) * 2008-09-17 2010-03-25 ダイキン工業株式会社 Refrigerant heating apparatus manufacturing method
CN108348010A (en) * 2015-10-30 2018-07-31 英美烟草(投资)有限公司 With the product that the equipment for heating smokeable material is used together
US11064725B2 (en) 2015-08-31 2021-07-20 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US11241042B2 (en) 2012-09-25 2022-02-08 Nicoventures Trading Limited Heating smokeable material
US11452313B2 (en) 2015-10-30 2022-09-27 Nicoventures Trading Limited Apparatus for heating smokable material
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032415A1 (en) * 2008-09-17 2010-03-25 ダイキン工業株式会社 Refrigerant heating apparatus manufacturing method
US11672279B2 (en) 2011-09-06 2023-06-13 Nicoventures Trading Limited Heating smokeable material
US11241042B2 (en) 2012-09-25 2022-02-08 Nicoventures Trading Limited Heating smokeable material
US11064725B2 (en) 2015-08-31 2021-07-20 British American Tobacco (Investments) Limited Material for use with apparatus for heating smokable material
US11659863B2 (en) 2015-08-31 2023-05-30 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
CN108348010A (en) * 2015-10-30 2018-07-31 英美烟草(投资)有限公司 With the product that the equipment for heating smokeable material is used together
JP2019501633A (en) * 2015-10-30 2019-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Articles for use with a device for heating smoking material
JP2020115877A (en) * 2015-10-30 2020-08-06 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
JP2021019640A (en) * 2015-10-30 2021-02-18 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11452313B2 (en) 2015-10-30 2022-09-27 Nicoventures Trading Limited Apparatus for heating smokable material
US11825870B2 (en) 2015-10-30 2023-11-28 Nicoventures Trading Limited Article for use with apparatus for heating smokable material

Similar Documents

Publication Publication Date Title
US5475203A (en) Method and woven mesh heater comprising insulated and noninsulated wire for fusion welding of plastic pieces
JP2000082576A (en) Manufacture of pipe for induction heating
JPH0646526B2 (en) Self-heating, self-welding bus bar
KR20080071518A (en) Projection weld and method for creating the same
KR100703000B1 (en) Heating Device and Fixing Apparatus Having the Same
JPH05196187A (en) Connecting method of pipe and joint
JPH10138346A (en) Method for welding release inhibiting ring for joint of fluororesin tube
WO1999008485A9 (en) Electric liquid heating vessels
JP3756260B2 (en) Low frequency electromagnetic induction heater
JP3677803B2 (en) Welding method for thermoplastic resin tube
JP2014229395A (en) Induction heating apparatus
JPS60170907A (en) Wound magnetic core and manufacture of the same
JPH0389095A (en) Thermoplastic pipe joint and manufacture thereof
JP2662616B2 (en) Double-sided heater
JPH0389094A (en) Thermoplastic pipe joint and manufacture thereof
JPH11176565A (en) Induction heating pipe
JP2003100426A (en) Hot blast generator by induction heating
TWI606751B (en) Miniaturized head for induction welding of printed circuits
JP2004074692A (en) T-die
JPH09323359A (en) Ih resin heater and bonding device for convoluted pipe using the heater
JPH09235682A (en) Base material for thermal welding
JPS60124463A (en) Resistance press-welding method of different metals
JPH10227385A (en) High frequency induction heating joint
JPH10688A (en) Ih resin heater and connection device of convoluted pipe and straight pipe using the same
JP2000177015A (en) Method and apparatus for melt-bonding polyethylene pipe