JP2000082470A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2000082470A
JP2000082470A JP10249269A JP24926998A JP2000082470A JP 2000082470 A JP2000082470 A JP 2000082470A JP 10249269 A JP10249269 A JP 10249269A JP 24926998 A JP24926998 A JP 24926998A JP 2000082470 A JP2000082470 A JP 2000082470A
Authority
JP
Japan
Prior art keywords
pvdf
hfp
capacity
binder
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249269A
Other languages
Japanese (ja)
Inventor
Yasufumi Shibata
靖文 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10249269A priority Critical patent/JP2000082470A/en
Publication of JP2000082470A publication Critical patent/JP2000082470A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the deterioration of capacity without causing deterioration, even if a battery is used in an on-vehicle environment by using a binder formed of a copolymer of PVDF and HFP wherein the ratio of PVDF to HFP is in a specific range. SOLUTION: A binder in which the ratio of PVDF to HFP is 80-95:20-5 is used. When the ratio of initial capacity to the capacity after heating is evaluated as a capacity recovery rate, the capacity recovery rate is improved as compared with PVDF alone, when the mixing ratio of PVDF to HFP is in the range of 80-95:20-5. The initial peeling strength of an electrode agent according to a tape peel test is improved as compared with PVDF alone as well. Because gaps between particles inside a positive electrode agent and a negative electrode agent can be prevented from growing by improving the adhesion of the binder so that the internal resistance of a battery can be restrained from rising, the deterioration of capacity can be reduced. When this copolymer is used, baking temperature can be lowered as compared with the case that PVDF is used alone, and baking cost can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン2
次電池、特に電極に使用される結着剤が改良されたリチ
ウムイオン2次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a secondary battery, particularly a lithium ion secondary battery in which a binder used for an electrode is improved.

【0002】[0002]

【従来の技術】従来より、リチウムイオン2次電池の電
極を構成する活物質同士を結合させたり、活物質と集電
体とを結合させるための結着剤として、PVDFが用い
られていた。
2. Description of the Related Art Conventionally, PVDF has been used as a binder for binding active materials constituting electrodes of a lithium ion secondary battery or for binding an active material and a current collector.

【0003】また、特開平4−95363号公報には、
PVDF(フッ化ビニリデン)の結着性を改良するため
に、PVDFとHFP(ヘキサフルオロプロピレン)と
の共重合体(コポリマー)を使用することが提案されて
いる。
[0003] Also, JP-A-4-95363 discloses that
In order to improve the binding property of PVDF (vinylidene fluoride), it has been proposed to use a copolymer of PVDF and HFP (hexafluoropropylene).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来のP
VDFからなる結着剤を使用した場合、特に車載用途等
では長時間高温にさらされることになるので、電池容量
が低下するという問題があった。これは、高温に長時間
さらされることにより、リチウムイオン2次電池の正極
剤、負極剤が劣化することに加えて、結着剤としてのP
VDFも劣化し、その接着力が低下するためと考えられ
る。接着力が低下すると、正極剤及び負極剤の内部の粒
子が互いにあるいは集電体からはがれ、その間に隙間が
でき、接触抵抗が上昇するので、電池の内部抵抗が大き
くなり電池容量が低下するからである。
However, the above conventional P
In the case where a binder made of VDF is used, there is a problem that the battery capacity is lowered because the binder is exposed to a high temperature for a long period of time, especially in a vehicle-mounted use. This is because the positive electrode material and the negative electrode material of the lithium ion secondary battery are deteriorated by prolonged exposure to a high temperature, and P
It is considered that VDF also deteriorated and its adhesive strength was reduced. When the adhesive strength decreases, the particles inside the positive electrode agent and the negative electrode agent separate from each other or from the current collector, a gap is formed between them, and the contact resistance increases, so that the internal resistance of the battery increases and the battery capacity decreases. It is.

【0005】また、上述したPVDFとHFPとのコポ
リマーを使用した場合には、結着剤にゴム弾性が付与さ
れて結着性を向上できるが、特に車載用途に使用する場
合には、上述したように高温の環境であるため、PVD
FとHFPとの割合に最適な範囲が存在する。従って、
PVDFとHFPとのコポリマーであればいずれも使用
できるということにはならない。
[0005] When the above-mentioned copolymer of PVDF and HFP is used, rubber elasticity is imparted to the binder to improve the binding property. PVD because of the high temperature environment
There is an optimal range for the ratio between F and HFP. Therefore,
It does not mean that any copolymer of PVDF and HFP can be used.

【0006】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、車載環境で使用しても劣化せ
ず、容量低下を抑制することができるリチウムイオン2
次電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a lithium ion battery that does not deteriorate even when used in an on-vehicle environment and can suppress a decrease in capacity.
Another object is to provide a battery.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、リチウムイオン2次電池であって、PV
DFとHFPとのコポリマーからなり、PVDF:HF
P=80〜95:20〜5である結着剤が使用されてい
ることを特徴とする。
In order to achieve the above object, the present invention relates to a lithium ion secondary battery, comprising:
Consisting of a copolymer of DF and HFP, PVDF: HF
It is characterized in that a binder having P = 80 to 95:20 to 5 is used.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0009】本発明者らは、高い温度に長時間さらされ
ても接着力が低下しない結着剤を研究し、PVDFとH
FPとの配合比率が最適化されたコポリマーを見いだし
た。
[0009] The present inventors have studied binders that do not lose their adhesive strength even after prolonged exposure to high temperatures, and have found that PVDF and H
A copolymer in which the blending ratio with FP was optimized was found.

【0010】図1には、PVDFとHFPとの配合比率
を種々変えた場合の高温劣化試験の結果が示される。こ
こで、高温劣化試験は、各結着剤を用いて電極を構成
し、これに電解液を含浸させ、ポリエチレン等のセパレ
ータを介して対向配置して構成したリチウムイオン2次
電池の初期容量を測定し、その後60℃で50時間加熱
した後の容量を測定し、初期容量と加熱後の容量との比
率を容量回復率として評価するものである。図1からわ
かるように、結着剤として使用するコポリマーのPVD
FとHFPとの配合比率は、PVDF:HFP=80〜
95:20〜5の範囲で、PVDF単体よりも容量回復
率の向上が見られる。
FIG. 1 shows the results of a high-temperature deterioration test when the mixing ratio of PVDF and HFP is variously changed. Here, in the high-temperature deterioration test, the initial capacity of a lithium ion secondary battery configured by forming an electrode using each binder, impregnating the electrode with the electrolyte, and arranging the electrode facing each other with a separator made of polyethylene or the like interposed therebetween. The capacity is measured after heating at 60 ° C. for 50 hours, and the ratio between the initial capacity and the capacity after heating is evaluated as a capacity recovery rate. As can be seen from FIG. 1, PVD of the copolymer used as a binder
The compounding ratio of F to HFP is PVDF: HFP = 80 to
In the range of 95:20 to 5, the capacity recovery rate is improved as compared with PVDF alone.

【0011】また図2には、電極剤の初期剥離強度の試
験結果が示される。この試験は、結着剤として使用され
るコポリマーのPVDFとHFPとの配合比率を変え、
テープ剥離試験により電極剤の初期の剥離強度を測定す
るものである。図2からわかるように、図1の場合と同
様にPVDF:HFP=80〜95:20〜5の範囲で
PVDF単体よりも初期剥離強度が向上している。
FIG. 2 shows the test results of the initial peel strength of the electrode material. In this test, the blend ratio of PVDF and HFP of the copolymer used as a binder was changed,
The initial peel strength of the electrode agent is measured by a tape peel test. As can be seen from FIG. 2, as in the case of FIG. 1, in the range of PVDF: HFP = 80 to 95:20 to 5, the initial peel strength is higher than that of PVDF alone.

【0012】図1において、PVDF単体の場合に比べ
て高温劣化試験での容量回復率が向上しているのは、P
VDFにHFPを添加することにより、図2に示される
ように初期の接着力が向上し、高温劣化試験後もPVD
F単体に比べ高い接着力が保持されているためと考えら
れる。結着剤の接着力が向上することにより、正極剤及
び負極剤内部での粒子間に隙間が発生することを防止で
き、電池の内部抵抗の上昇を抑制できるので、容量低下
を低減することができる。ただし、PVDF/HFP=
95/5よりも更にPVDFの配合比率が高くなると、
特性がPVDF単体とほぼ変わらなくなるので、PVD
Fの配合比率としては95%が上限であると考えられ
る。
In FIG. 1, the capacity recovery rate in the high-temperature deterioration test is higher than that of the PVDF alone,
By adding HFP to VDF, the initial adhesive strength is improved as shown in FIG.
It is considered that the adhesive strength is higher than that of F alone. By improving the adhesive force of the binder, it is possible to prevent a gap from being generated between particles inside the positive electrode agent and the negative electrode agent, and it is possible to suppress an increase in the internal resistance of the battery. it can. However, PVDF / HFP =
When the blending ratio of PVDF becomes higher than 95/5,
Since the characteristics are almost the same as PVDF alone, PVD
It is considered that the upper limit of the compounding ratio of F is 95%.

【0013】また、図3には、結着剤として使用される
コポリマー中のPVDFの配合比率とコポリマーの融点
との関係が示される。図3に示されるように、PVDF
の配合比率が80%を下回ると、コポリマーの融点が1
00℃を下回ることになる。従って、リチウムイオン2
次電池が長時間高温にさらされる車載用途には使用でき
ない。また、電極の作製工程中には、溶媒であるNMP
等を除去するために、約80℃で電極を乾燥させる工程
があるが、結着剤として使用されるコポリマーの融点が
低くなると、この乾燥工程で結着剤が溶け、均一な膜厚
の電極を製造することができなくなる。このため、PV
DFの配合比率としては80%が下限であると考えられ
る。
FIG. 3 shows the relationship between the blending ratio of PVDF in the copolymer used as a binder and the melting point of the copolymer. As shown in FIG.
Is less than 80%, the melting point of the copolymer becomes 1
It will be below 00 ° C. Therefore, lithium ion 2
It cannot be used for in-vehicle applications where the secondary battery is exposed to high temperatures for long periods. Also, during the electrode manufacturing process, NMP which is a solvent is used.
There is a step of drying the electrode at about 80 ° C. in order to remove the like, but when the melting point of the copolymer used as the binder becomes low, the binder dissolves in this drying step, and the electrode having a uniform film thickness is formed. Cannot be manufactured. For this reason, PV
It is considered that the lower limit of the blending ratio of DF is 80%.

【0014】以上に説明した図1,図2、図3から、結
着剤として使用されるコポリマー中のPVDFとHFP
との配合比率は、PVDF:HFP=80〜95:20
〜5の範囲が最適であると考えられる。この時のコポリ
マーの融点は、110〜140℃となる。
From FIG. 1, FIG. 2 and FIG. 3 described above, it can be seen that PVDF and HFP in the copolymer used as a binder are used.
Is blended with PVDF: HFP = 80-95: 20.
A range of ~ 5 is considered optimal. The melting point of the copolymer at this time is 110 to 140 ° C.

【0015】図4には、PVDF:HFP=87.5:
12.5の配合比率のコポリマーを結着剤として用い、
電極焼成温度を変えたときの高温劣化試験の結果が示さ
れる。図4において、縦軸には、初期容量に対する60
℃50時間加熱後の容量回復率が示される。この電極焼
成は、集電体上に結着剤とともに塗布された活物質を集
電体に固定するために行われる。図4に示されるよう
に、電極焼成温度が140℃〜160℃の場合に容量回
復率が60%を越えると考えられ、この温度範囲で焼成
するのが好適であると考えられる。PVDFを単体で結
着剤として用いたときの焼成温度は175℃程度である
ので、本発明にかかるコポリマーを使用した場合には、
焼成温度を下げることができ、焼成のためのコストを低
減することができる。
FIG. 4 shows that PVDF: HFP = 87.5:
Using a copolymer having a compounding ratio of 12.5 as a binder,
The result of the high temperature degradation test when the electrode firing temperature is changed is shown. In FIG. 4, the vertical axis indicates 60 with respect to the initial capacity.
The capacity recovery rate after heating at 50 ° C. for 50 hours is shown. This electrode baking is performed to fix the active material applied on the current collector together with the binder to the current collector. As shown in FIG. 4, when the electrode firing temperature is 140 ° C. to 160 ° C., the capacity recovery rate is considered to exceed 60%, and firing in this temperature range is considered suitable. Since the sintering temperature when PVDF is used alone as a binder is about 175 ° C., when the copolymer according to the present invention is used,
The firing temperature can be reduced, and the cost for firing can be reduced.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
結着剤としてPVDFとHFPとのコポリマーを使用
し、この配合比率を最適化することにより、結着剤の接
着性を向上でき、電極の抵抗の上昇を抑制できる。この
ため、電池の内部抵抗が上昇することを防止でき、容量
低下を抑制することができる。
As described above, according to the present invention,
By using a copolymer of PVDF and HFP as a binder and optimizing the compounding ratio, the adhesiveness of the binder can be improved, and an increase in the resistance of the electrode can be suppressed. Therefore, an increase in the internal resistance of the battery can be prevented, and a decrease in capacity can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 結着剤として使用されるコポリマーのPVD
FとHFPとの配合比率を変えた場合の高温劣化試験の
結果を示す図である。
FIG. 1: PVD of a copolymer used as a binder
It is a figure showing the result of a high temperature degradation test at the time of changing the compounding ratio of F and HFP.

【図2】 結着剤として使用されるコポリマーのPVD
FとHFPとの配合比率を変えた場合の電極剤の初期剥
離強度の結果を示す図である。
FIG. 2. PVD of a copolymer used as a binder
It is a figure showing the result of initial peel strength of an electrode agent at the time of changing the compounding ratio of F and HFP.

【図3】 結着剤として使用されるコポリマーのPVD
FとHFPとの配合比率を変えた場合の結着剤の融点の
変化を示す図である。
FIG. 3. PVD of a copolymer used as a binder
It is a figure which shows the change of the melting point of a binder at the time of changing the compounding ratio of F and HFP.

【図4】 電極焼成温度と容量回復率との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between an electrode firing temperature and a capacity recovery rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 PVDFとHFPとのコポリマーからな
り、PVDF:HFP=80〜95:20〜5である結
着剤が使用されていることを特徴とするリチウムイオン
2次電池。
1. A lithium ion secondary battery comprising a binder comprising a copolymer of PVDF and HFP, wherein PVDF: HFP = 80-95: 20-5.
JP10249269A 1998-09-03 1998-09-03 Lithium ion secondary battery Pending JP2000082470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10249269A JP2000082470A (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249269A JP2000082470A (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2000082470A true JP2000082470A (en) 2000-03-21

Family

ID=17190464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249269A Pending JP2000082470A (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2000082470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157184B2 (en) 2001-05-25 2007-01-02 Microbatterie Gmbh Method for producing electrode sheets for electrochemical elements
US8574761B2 (en) 2008-01-22 2013-11-05 Sony Corporation Battery
JP2014132591A (en) * 2014-03-13 2014-07-17 Daikin Ind Ltd Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
WO2019087815A1 (en) * 2017-10-30 2019-05-09 株式会社日立製作所 Positive electrode mixture layer, positive electrode, half secondary battery, and secondary battery
WO2022176796A1 (en) * 2021-02-16 2022-08-25 株式会社クレハ Binder solution, slurry, solid electrolyte layer, electrode, and all-solid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157184B2 (en) 2001-05-25 2007-01-02 Microbatterie Gmbh Method for producing electrode sheets for electrochemical elements
CN1331259C (en) * 2001-05-25 2007-08-08 微电池股份有限公司 Method for producing electrode sheet of electrochemical elements
US8574761B2 (en) 2008-01-22 2013-11-05 Sony Corporation Battery
JP2014132591A (en) * 2014-03-13 2014-07-17 Daikin Ind Ltd Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
WO2019087815A1 (en) * 2017-10-30 2019-05-09 株式会社日立製作所 Positive electrode mixture layer, positive electrode, half secondary battery, and secondary battery
WO2022176796A1 (en) * 2021-02-16 2022-08-25 株式会社クレハ Binder solution, slurry, solid electrolyte layer, electrode, and all-solid battery

Similar Documents

Publication Publication Date Title
JP5289394B2 (en) Lithium ion secondary battery
US20120225199A1 (en) Current collector coating for li-ion battery cells using aqueous binder
JP4859399B2 (en) Lithium ion secondary battery
US20060019153A1 (en) Non-aqueous electrolyte battery
JP4426154B2 (en) Method for producing electrode film and battery element including the electrode film
JP2006120462A (en) Nonaqueous electrolyte battery
WO2018207530A1 (en) Nonaqueous electrolyte secondary battery
JP2001508916A (en) Lithium ion battery and method of manufacturing the same
JP2000348725A (en) Lithium ion secondary battery
JP2016207636A (en) Positive electrode for lithium ion battery and lithium ion battery using the same
EP3826088A1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
JP2014116164A (en) Solid-state battery
JP2020507900A (en) Positive electrode for secondary battery and lithium secondary battery including the same
KR102227311B1 (en) Method for recycling positive electrode material
JP2000082470A (en) Lithium ion secondary battery
JP2001307735A (en) Lithium secondary battery
KR102465819B1 (en) Positive electrode for secondary battery and secondary battery comprising the same
US20230369655A1 (en) Electrode Assembly and Battery Cell Including the Same
EP4113654A1 (en) Electrode for secondary battery, secondary battery including same, and electrode manufacturing method
EP3907785B1 (en) Metal thin film for electrode current collector, comprising taping regions, and method for manufacturing electrode using same
KR102402611B1 (en) Electrode assembly and method for preparing the same
JP2001052707A (en) Lithium secondary battery
JP6701511B2 (en) Non-aqueous electrolyte secondary battery
JP2021093312A (en) Lithium ion battery manufacturing method
JP2006059635A (en) Nonaqueous electrolyte battery