JP2000081553A - Optical unit - Google Patents

Optical unit

Info

Publication number
JP2000081553A
JP2000081553A JP10250563A JP25056398A JP2000081553A JP 2000081553 A JP2000081553 A JP 2000081553A JP 10250563 A JP10250563 A JP 10250563A JP 25056398 A JP25056398 A JP 25056398A JP 2000081553 A JP2000081553 A JP 2000081553A
Authority
JP
Japan
Prior art keywords
optical
foamed resin
optical unit
optical fiber
diameter part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10250563A
Other languages
Japanese (ja)
Inventor
Itaru Sakabe
至 坂部
Wataru Katsurajima
渉 桂島
Hiroaki Sano
裕昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10250563A priority Critical patent/JP2000081553A/en
Publication of JP2000081553A publication Critical patent/JP2000081553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the coated optical fiber taking-out performance and side pressure resistance at a terminal together with laying performance when an optical unit is fed and laid into a pipeline by using air flow. SOLUTION: The structure, in which a foamed resin 3 existing in the spacing parts of wires arranged on the outermost periphery of an assemblage of the wires consisting of plural pieces of the coated optical fibers 2 or the coated optical fibers 2 and intervening wires bulges toward the outer side to form a major diameter part 4 and the foamed resin 3 in the middle of this major diameter part 4 forms a minor diameter part 5, is adopted as the structure of the optical unit having the assemblage described above and a sheath consisting of the foamed resin 3 with which the outer periphery of the assemblage is directly coated. As a result, the laying of the unit to the long-sized pipeline is made possible and the minor diameter part 5 tears easily and, therefore, the foamed resin 3 may be easily removed and the taking out of the coated optical fibers 2 is made simple. In addition, the major diameter part 4 acts as a buffer layer with respect to side pressures and, therefore, the excellent side pressure resistance is the obtained and the gripping and fixing of the terminal is facilitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は管路に気流を用いて送通
布設する光ユニットの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an optical unit which is installed in a pipeline by using an airflow.

【0002】[0002]

【従来の技術】光通信技術の利用の拡大に伴い、光ファ
イバの布設を容易に、経済的に行う技術として、予め小
径のパイプまたは小径のパイプを集合したパイプケーブ
ルを布設しておき、これらのパイプを必要により接続す
るなどして一連の管路を構成し、この中に光ファイバに
被覆を施した光心線を集合した光ユニットを気流を用い
て送り込み接続なしに布設するブロンファイバ技術が知
られている。この方法の利点は光通信網が必要になった
時点で、必要な場所に、必要な心数の光ファイバを、光
ファイバの接続なしに布設することができるため、初期
投資を抑え布設設備の稼働率を高めることができる点で
ある。
2. Description of the Related Art With the spread of the use of optical communication technology, as a technology for easily and economically laying an optical fiber, a small-diameter pipe or a pipe cable in which small-diameter pipes are assembled is laid beforehand. Bron fiber technology in which a series of pipes are constructed by connecting pipes as necessary, etc., and optical units in which optical fibers coated with optical fibers are assembled are sent using airflow and laid without connection It has been known. The advantage of this method is that when an optical communication network becomes necessary, the required number of optical fibers can be installed in the required places without connecting the optical fibers, thus reducing initial investment and reducing installation equipment. The operation rate can be increased.

【0003】この光ユニットとしては、標準品として図
4(A)に断面図を示すような光心線41を集合して線
材集合体を形成しナイロンなどの押し出し成形材料で内
層被覆43を施したうえ、最外装を発泡樹脂42で被覆
した断面外周が円形を成すものが一般に使用されてい
る。一方、布設距離を伸ばす光ユニット構造として、同
図(B)に断面図を示すような外被に長さ方向に沿った
溝46を有する光ユニットが実公平5−14253号公
報に記載されている。
[0003] This optical unit is designed as a standard product.
4 (A) is a sectional view in which optical fibers 41 as shown in the sectional view are assembled to form a wire rod aggregate, an inner layer coating 43 is applied with an extrusion molding material such as nylon, and an outermost covering is coated with a foamed resin 42. Those having a circular outer periphery are generally used. On the other hand, as an optical unit structure for extending the laying distance, an optical unit having a groove 46 along the length direction in a jacket as shown in the sectional view of FIG. I have.

【0004】[0004]

【発明が解決しようとする課題】この種の光ユニットを
使用する場合には布設可能距離が長いことと同様に、端
末で接続のために必要な50cm程度の光心線41の取
り出しが容易であることが重要である。また、函内での
収納など固定や把持を行う場合に外周から加えられる側
圧に対して光ユニットの伝送特性が安定していることが
必要である。ところが標準品は図4(A)に示すとおり
光心線の集合体43の周囲にナイロンなどからなる内層
被覆43が被覆されており、光心線41の損傷を防ぎつ
つ行う内層被覆43の除去作業が煩雑となっていた。ま
た布設距離を伸ばす構造として知られる同図(B)の光
ユニットは光心線の集合体の表面形状と無関係に発泡樹
脂45が被覆されており、発泡樹脂45の肉厚が短周期
で大きく変化する。このため、発泡樹脂45を除去する
際に破断が頻発し光心線41の取り出し作業が煩雑であ
り、また端末の固定や把持を行う場合に周囲から締め付
ける力を印加すると、光心線41の発泡樹脂45の凸部
直下に位置した部分に局所的に大きな力が加わり光心線
41に曲げが加わって伝送損失の劣化が生じていた。
When this type of optical unit is used, it is easy to take out the optical core wire 41 of about 50 cm required for connection at the terminal as well as the long possible installation distance. It is important that there is. In addition, it is necessary that the transmission characteristics of the optical unit be stable with respect to the lateral pressure applied from the outer periphery when fixing or gripping such as storage in a box. However, in the standard product, as shown in FIG. 4A, an inner coating 43 made of nylon or the like is coated around the optical core assembly 43, and the inner coating 43 is removed while preventing the optical core 41 from being damaged. The work was complicated. The optical unit shown in FIG. 1B, which is known as a structure for extending the installation distance, is covered with the foamed resin 45 irrespective of the surface shape of the aggregate of optical fibers, and the thickness of the foamed resin 45 increases in a short cycle. Change. Therefore, when the foamed resin 45 is removed, the optical fiber 41 is frequently broken, and the work of taking out the optical fiber 41 is complicated, and when a force for tightening from the surroundings is applied when the terminal is fixed or gripped, the optical fiber 41 is removed. A large force is locally applied to a portion located immediately below the convex portion of the foamed resin 45, and the optical core 41 is bent, resulting in deterioration of transmission loss.

【0005】[0005]

【課題を解決するための手段】本発明は、複数本の光心
線または光心線と介在線からなる線材の集合体とその外
周に直接被覆された発泡樹脂外被を備え、前記集合体の
最外層に位置する線材の間隙部に位置する発泡樹脂外被
は外側に向かって膨出して光ユニットの外径が大きくな
る長径部を構成し、前記長径部の中間に位置する発泡樹
脂外被は光ユニットの外径の小さな短径部を形成するこ
とを特徴とする光ユニットである。また、本発明におい
て線材の集合体としては中心介在線とその外周に点対称
に配置された略同外形の複数の線材からなり、前記線材
は光心線または光心線と介在線からなる線材の集合体を
用いることができる。すなわち本発明の光ユニットの発
泡樹脂層の断面外周は緩やかな凹凸を繰り返し、内部の
集合体をなす線材の間隙部の外側に位置する部分は外側
に膨出して長径部をなし、光ユニットの中心から個々の
光心線の中心を結ぶ線を延長し発泡樹脂被覆の外周と交
わる部分では光ユニットの中心と発泡樹脂被覆外周の距
離が短い短径部を形成する構造となっている。
SUMMARY OF THE INVENTION The present invention comprises an aggregate of a plurality of optical fibers or a wire rod composed of an optical fiber and an intervening wire, and a foamed resin jacket directly coated on the outer periphery of the aggregate. The foamed resin jacket located in the gap between the wires located in the outermost layer of the optical unit constitutes a long-diameter portion in which the outer diameter of the optical unit swells outward, and the outer diameter of the foamed resin located in the middle of the long-diameter portion is increased. The optical unit is characterized by forming a short diameter portion having a small outer diameter of the optical unit. Further, in the present invention, the aggregate of the wires includes a center intervening line and a plurality of wires having substantially the same outer shape arranged point-symmetrically on the outer periphery thereof, wherein the wire is an optical fiber or a wire composed of an optical fiber and an intervening wire Can be used. That is, the outer periphery of the cross section of the foamed resin layer of the optical unit of the present invention repeats gradual irregularities, and the portion located outside the gap of the wire rod forming the inner aggregate bulges outward to form a long diameter portion, and the optical unit has A line connecting the centers of the individual optical fibers from the center is extended to form a short diameter portion where the distance between the center of the optical unit and the outer periphery of the foamed resin coating is short at a portion intersecting the outer periphery of the foamed resin coating.

【0006】このような構造をとるため、光ユニットの
外被表面積が広がり気体流との摩擦が増加してより大き
な牽引力が得られるとともに、管路との接触面が小さく
なり管路と光ユニットの間に気体流が流入して光ユニッ
トが浮き上がる効果があり、見かけ上の摩擦が低下する
ため、布設距離を伸ばすことができる。
With such a structure, the surface area of the outer casing of the optical unit is increased, friction with the gas flow is increased, and a larger traction force is obtained. This has the effect that the gas flow flows in between the optical units and the optical unit rises, and the apparent friction decreases, so that the installation distance can be increased.

【0007】一方、光ユニットの中心から個々の光心線
の中心を結ぶ線を延長し発泡樹脂被覆の外周と交わる部
分では光ユニットの中心と発泡樹脂被覆の外周の距離が
短い短径部を形成する構造をなし発泡樹脂の被覆厚が薄
いため、端末で被覆を2方向に引くことによりこの薄い
部分が容易に切断され、光心線の取り出しが容易であ
る。またこの部分が薄く、かつ光心線の直ぐ外側に当た
ることから光心線を引き裂き紐のように外側に引くこと
によってこの短径部部分で発泡樹脂外被が容易に切断で
き、小さな力で切断できるため引き裂きに用いた光心線
に障害が生じることがない。
On the other hand, a line extending from the center of the optical unit to the center of each optical fiber is extended to form a short-diameter portion where the distance between the center of the optical unit and the outer periphery of the foamed resin coating is short at a portion intersecting with the outer periphery of the foamed resin coating. Since the structure is formed and the coating thickness of the foamed resin is thin, the thin portion is easily cut by pulling the coating in two directions at the end, and the optical fiber can be easily taken out. In addition, since this part is thin and just outside the optical fiber, the optical fiber is pulled outward like a tear cord, so that the foamed resin jacket can be easily cut at this short diameter part and cut with a small force As a result, the optical fiber used for tearing is not damaged.

【0008】さらに端末で外周から力を加えて把持固定
する場合、外部からの把持力は長径部が受けることにな
り、その直ぐ下が光心線間隙であることから、肉圧の発
泡樹脂層の緩衝層としての効果が大きく、光心線の伝送
特性への影響を低減することができる。同様に外部から
の側圧に対しても従来に比べ安定した性能を有する。ま
た長径部、短径部は内側の線材集合体の外表面の形状に
対応して形成されており、光心線の周囲の発泡樹脂の厚
みの長さ方向の変化が小さいため、外周から加えられた
側圧による光心線の局所的な曲がりが生じにくく安定し
た伝送特性が得られる。
Further, when the terminal is gripped and fixed by applying a force from the outer periphery, the gripping force from the outside is received by the long diameter portion, and immediately below the gap is the optical fiber gap. Has a large effect as a buffer layer, and the effect on the transmission characteristics of the optical fiber can be reduced. Similarly, it has more stable performance against external side pressure than the conventional one. In addition, the long diameter portion and the short diameter portion are formed corresponding to the shape of the outer surface of the inner wire aggregate, and the change in the length direction of the thickness of the foamed resin around the optical core wire is small. Local bending of the optical fiber core due to the applied lateral pressure hardly occurs, and stable transmission characteristics can be obtained.

【0009】このため、従来構造に比べて、端末での光
心線取り出し性に優れ、側圧特性に優れた光ユニットを
得ることができるのである。
Therefore, as compared with the conventional structure, it is possible to obtain an optical unit which is excellent in the optical fiber lead-out property at the terminal and has excellent lateral pressure characteristics.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態について図1
(A)を参照して説明する。光ユニット1は複数本の光
心線2を集合してなる線材集合体の周囲に発泡樹脂3を
被覆して構成され、線材集合体の外周に位置する複数本
の光心線2の間隙部の外側に対応して長径部4が長手方
向に形成され、光ユニットの中心から個々の光心線2の
中心を結ぶ線を延長し発泡樹脂被覆3の外周と交わる部
分、すなわち発泡樹脂被覆の外周上で長径部4の中間に
あたる部分に光ユニットの中心と発泡樹脂被覆外周の距
離が短い短径部5が形成されている。このように長径部
4と短径部5を交互に備えることで、光ユニットの外表
面は大きくなる。また長さ方向に連続して光心線の直ぐ
外側に短径部が位置する構造をとり、光心線のすぐ外側
の発泡樹脂被覆が薄いため引き裂きやすく、かつ側圧は
発泡樹脂からなる長径部4に加わるため、光心線への影
響が軽減される。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. The optical unit 1 is formed by covering a wire assembly formed by assembling a plurality of optical fibers 2 with a foamed resin 3, and a gap between the plurality of optical fibers 2 located on the outer periphery of the wire assembly. The major diameter portion 4 is formed in the longitudinal direction corresponding to the outside of the optical fiber, extends a line connecting the center of each optical fiber 2 from the center of the optical unit, and intersects the outer periphery of the foamed resin coating 3, that is, a portion of the foamed resin coating. A short diameter portion 5 having a short distance between the center of the optical unit and the outer periphery of the foamed resin coating is formed in a portion corresponding to a middle of the long diameter portion 4 on the outer circumference. By alternately providing the long diameter portions 4 and the short diameter portions 5 in this manner, the outer surface of the optical unit becomes large. In addition, it has a structure in which the short diameter portion is located immediately outside the optical fiber continuously in the length direction, the foam resin coating just outside the optical fiber is thin and easy to tear, and the lateral pressure is the long diameter portion made of foam resin. 4, the influence on the optical fiber is reduced.

【0011】ここで光心線としては光ファイバ1心を内
在する単心線だけでなく、図2に示すテープ光心線22
を用いることができる。また線材集合体が構成できれ
ば、例えばマルチモードファイバとシングルモードファ
イバといったように異なる種類の光ファイバを内在する
光心線を組み合わせて使用しても良い。プラスチックフ
ァイバをしようすることも可能である。さらにここで用
いる線材集合体を構成する線材としては光心線だけでな
く、線材の配列を安定化する機能を持たせて、光心線を
使う場合より安価に光ユニットを製造するため、光心線
より安価な略同外形の介在線を混在させても良い。この
ような介在線としてはポリエステルの小径ロッドなどが
使用できる。また周囲に配置する光心線の配列が安定と
なるように外周長を選択した介在線を中心介在線として
用い、その周囲に光心線、あるいは光心線と介在線を撚
り合わせるなどして配置して線材集合体を形成すること
ができる。
Here, the optical fiber is not limited to a single optical fiber having one optical fiber therein but also to a tape optical fiber 22 shown in FIG.
Can be used. In addition, as long as a wire aggregate can be formed, different types of optical fibers such as a multi-mode fiber and a single-mode fiber may be used in combination with the intrinsic optical fibers. It is also possible to use plastic fibers. In addition, as a wire constituting the wire assembly used here, not only the optical fiber, but also a function to stabilize the arrangement of the wires, and to manufacture an optical unit at a lower cost than when using the optical fiber, Intervening wires having substantially the same outer shape and cheaper than the core wire may be mixed. As such an intervening wire, a small-diameter rod of polyester or the like can be used. In addition, use the intervening wire whose perimeter length is selected as the central intervening line so that the arrangement of the optical core wires arranged around is stable, and twist the optical core wire, or the optical core wire and the intervening wire around it, etc. They can be arranged to form a wire aggregate.

【0012】[0012]

【実施例】以下に実施例を用いて本発明を具体的に説明
するが、これらは本発明の範囲を制限しない。 (実施例1)図1(A)は本発明の光ユニットの一実施
例を説明するためのもので、光ユニットの断面図であ
る。図中、1は光ユニット、2は光心線、3は発泡樹脂
である。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which do not limit the scope of the present invention. (Embodiment 1) FIG. 1A is a cross-sectional view of an optical unit according to an embodiment of the present invention. In the figure, 1 is an optical unit, 2 is an optical fiber, and 3 is a foamed resin.

【0013】図1(A)に示す7本の光心線はコア径10
μm、クラッド径125μmのシリカガラスファイバに
紫外線硬化型樹脂被覆を施した外径250μmのシング
ルモード光心線であり、個々に異なる色の着色層を最外
層に備え、互いに識別可能である。これらの光心線2を
中心1本、周囲6本に配列し、ピッチ300mmで撚り
合わせ線材集合体とし、その周囲に発泡樹脂3として発
泡ポリエチレンを被覆した。発泡樹脂層の外径は最大部
で1.4mm、最小部で1.0mmであり、線材集合体
の外周の光心線6本の間隙部の外側に対応して光ユニッ
ト外周に6個所の長径部4が長手方向に螺旋状に存在
し、それぞれの長径部4の中間が短径部5を形成する構
造である。
The seven optical fibers shown in FIG.
It is a single-mode optical fiber having an outer diameter of 250 μm, in which a silica glass fiber having a cladding diameter of 125 μm is coated with an ultraviolet-curable resin. These optical fibers 2 were arranged at one center and six perimeters to form a stranded wire assembly at a pitch of 300 mm, and the periphery thereof was covered with foamed polyethylene as a foamed resin 3. The outer diameter of the foamed resin layer is 1.4 mm at the maximum part and 1.0 mm at the minimum part, and six outer peripheral parts of the optical unit correspond to the outer parts of the six optical core wires on the outer periphery of the wire rod assembly. The long diameter portion 4 is formed in a spiral shape in the longitudinal direction, and a middle portion of each long diameter portion 4 forms a short diameter portion 5.

【0014】本光ユニットの製造方法について説明す
る。発泡ポリエチレンの被覆工程では、出口内径0.9
5mmと線材集合体の最大外径0.75mmに対しわず
かに大きな内径のダイスを用いて外周の光心線の間隙部
と光心線外側部との流路抵抗の差を大きくし、外側の6
本の光心線の間隙部に位置する部分に多量の樹脂が流れ
るようにして、ダイス出口で光ユニット外周が光心線間
隙部の外側で膨出する凹凸を有するように成形した。さ
らに引き続く冷却工程においてダイスを出た直後の光ユ
ニットを室温において表面を冷却し、外周の光心線の外
側に位置する被覆厚の薄い発泡樹脂を急冷して発泡を抑
制し、一方熱容量の大きな光心線間隙部に位置する発泡
被覆をより大きく発泡させた。図1(B)は図1(A)
の断面のうち角PQRの範囲の発泡樹脂の発泡状態を模
式的に示した図であり、前述の製造方法を採った結果、
長径部4の内部の発泡樹脂気泡が短径部5より大きくな
り、長径部4、短径部5の光ユニット中心からの距離差
が大きな光ユニットを製作できた。
A method of manufacturing the optical unit will be described. In the covering step of foamed polyethylene, the inner diameter of the outlet is 0.9.
Using a die having a diameter slightly larger than the maximum outer diameter of the wire assembly of 5 mm and 0.75 mm, the difference in flow path resistance between the gap between the outer optical fibers and the outer portion of the optical fibers is increased, and 6
A large amount of resin was allowed to flow to the portion of the optical fiber core located in the gap, and the optical unit was formed so that the outer periphery of the optical unit had irregularities bulging outside the optical core gap at the die exit. Further, in the subsequent cooling step, the surface of the optical unit immediately after leaving the dice is cooled at room temperature, and the foaming resin having a thin coating located outside the outer optical core wire is rapidly cooled to suppress foaming, while having a large heat capacity. The foam coating located in the gap between the optical fibers was foamed larger. FIG. 1 (B) is FIG. 1 (A)
It is a figure which showed typically the foaming state of the foaming resin of the range of the angle PQR in the cross section of FIG.
The foamed resin bubbles inside the long diameter portion 4 became larger than the short diameter portion 5, and an optical unit having a large difference in distance between the long diameter portion 4 and the short diameter portion 5 from the center of the optical unit could be manufactured.

【0015】この光ユニットを内径4.5mmの長さ1
000mのポリエチレン製パイプに4気圧の圧縮空気を
用いて送通する実験を行った結果全長を30分で送通で
き、良好な布設性能を備えることが確認できた。この光
ユニットは端末にて外被を手指で二方向に引くことで短
径部5の部分が長手方向に500mmにわたって連続的
に切断でき、接続に必要な余長を含めた光心線の取り出
しは容易であった。また1本の光心線2を外向きに引く
ことで短径部5の部分で発泡樹脂外被の切断を容易に発
生させることができ、この際に必要な力は小さく、着色
層の破壊や光心線の伝送特性の異常は生じなかった。
This optical unit is 4.5 mm in inner diameter and 1 mm long.
As a result of conducting an experiment in which air was passed through a 000 m polyethylene pipe using 4 atm of compressed air, it was confirmed that the entire length could be sent in 30 minutes, and good laying performance was provided. In this optical unit, the portion of the short diameter portion 5 can be continuously cut over 500 mm in the longitudinal direction by pulling the jacket in two directions with the fingers at the terminal, and the optical core including the extra length necessary for connection is taken out. Was easy. Further, by pulling one optical core wire 2 outward, the cutting of the foamed resin jacket can be easily generated at the short diameter portion 5, and the force required at this time is small, and the colored layer is broken. No abnormalities occurred in the transmission characteristics of the optical fibers.

【0016】次にこの種の光ユニットの一般的な端末処
理方法に倣って、硬度ショアA60のゴムを用いた長さ
15mm、外径6mmの円筒型のゴムブッシングの中心
孔に光ユニットを通し、固定を模擬してゴムブッシング
外周に側圧を加え光ユニットを締め付けた。20kgの
側圧を付加した場合にも光ユニット中の全光心線の伝送
損失の変化は測定限界の0.05dB以下で認められず
安定した性能が確認できた。
Next, the optical unit is passed through the center hole of a cylindrical rubber bushing having a length of 15 mm and an outer diameter of 6 mm using a rubber having a hardness of Shore A60 according to a general terminal processing method of this type of optical unit. Simulating the fixing, a lateral pressure was applied to the outer periphery of the rubber bushing to tighten the optical unit. Even when a lateral pressure of 20 kg was applied, no change in the transmission loss of all the optical fibers in the optical unit was observed below the measurement limit of 0.05 dB, and stable performance was confirmed.

【0017】(比較例)比較例として製作した2種の光
ユニットの断面図を図4(A),(B)に示す。いずれ
の光ユニットも7本の実施例1と同様の外径250μm
のシングルモード光心線41を集合した構造を備えてお
り、個々に異なる色の着色層を最外層に備え、互いに識
別可能である。
Comparative Example FIGS. 4A and 4B are cross-sectional views of two types of optical units manufactured as comparative examples. Each of the optical units has an outer diameter of 250 μm, which is the same as in the first embodiment.
Of single-mode optical fibers 41 are provided, and colored layers of different colors are provided on the outermost layer, and are distinguishable from each other.

【0018】図4(A)は光心線41を中心1本、周囲
6本に配列し、ピッチ300mmで撚り合わせ集合し、
ナイロンを押し出し被覆して外径0.9mmの内層被覆
43を形成した後、発泡樹脂42として発泡ポリエチレ
ンを被覆し外径1.6mmとした光ユニットである。こ
の光ユニットはナイロンの内層被覆43に粘りがあるた
め、手指では引き裂くことができず、光心線の取り出し
に刃物が必要で光心線に外傷を与えぬようにナイロンの
内層被覆43を除去する作業が煩雑であった。またこの
光ユニットを内径4.5mmの長さ1000mのポリエ
チレン製パイプに4気圧の圧縮空気を用いて送通する実
験を行った結果700mで停止した。
FIG. 4 (A) shows an optical fiber 41 arranged at one center and six circumferences, twisted and assembled at a pitch of 300 mm.
An optical unit having an outer diameter of 1.6 mm formed by extruding nylon to form an inner layer coating 43 having an outer diameter of 0.9 mm, and then coating the expanded resin with a foamed polyethylene. Since this optical unit has a sticky nylon inner coating 43, it cannot be torn with fingers, and a knife is required to take out the optical fiber, and the nylon inner coating 43 is removed so as not to damage the optical fiber. The work to do was complicated. An experiment was conducted in which the optical unit was passed through a polyethylene pipe having an inner diameter of 4.5 mm and a length of 1000 m using compressed air of 4 atm. As a result, the optical unit stopped at 700 m.

【0019】図4(B)は実施例1と同様の光心線41
を中心1本、周囲6本に配列し、ピッチ300mmで撚
り合わせ集合し、発泡ポリエチレンからなる発泡樹脂4
5を8条の溝を刻んだ星型のダイスを用いて被覆し、発
泡樹脂45の最大外径1.4mm、溝深さ0.20mm
とした光ユニットである。この光ユニット44を内径
4.5mmの長さ1000mのポリエチレン製パイプに
4気圧の圧縮空気を用いて送通する実験を行った結果全
長を35分で送通でき布設特性は良好であった。しか
し、端末での光心線41の取り出しは端末部分では手指
で発泡樹脂45が裂けるものの数cmの長さを引き裂く
と発泡樹脂45が引きちぎれ、再度その位置から被覆除
去を行う必要があり、光心線41の取り出し作業は非常
に煩雑であった。これは発泡樹脂45の外周に刻まれた
溝46と光心線の集合体の形を写す発泡樹脂45の内壁
のくぼみ46の形態が無関係であるため被覆が外周の溝
46に沿って長さ方向に切れず、局所的な薄肉部に応力
が集中するためである。次に、実施例1と同様に、長さ
15mm、外径6mmの円筒型のゴムブッシングの中心
孔に光ユニットを通し、固定を模擬してゴムブッシング
外周に側圧を加え光ユニットを締め付けた。10kgの
側圧を付加した場合に光ユニット中の2本の光心線が
0.3dBの伝送損失増加を示した。これは発泡樹脂4
5の外周に刻まれた溝46と光心線41の集合体の形を
写す発泡樹脂内壁のくぼみ47の形態が無関係であるた
め、外部からの側圧を受けた発泡樹脂45の凸部の直ぐ
下に光心線がある場合に大きな側圧が伝わるためであ
る。
FIG. 4B shows an optical fiber 41 similar to that of the first embodiment.
Are arranged in one center and six perimeters, twisted and gathered at a pitch of 300 mm, and foamed resin 4 made of foamed polyethylene
5 was coated using a star-shaped die having eight grooves, and the maximum outer diameter of the foamed resin 45 was 1.4 mm and the groove depth was 0.20 mm.
It is an optical unit. An experiment was conducted in which the optical unit 44 was passed through a polyethylene pipe having an inner diameter of 4.5 mm and a length of 1000 m using compressed air of 4 atm. As a result, the entire length could be sent in 35 minutes, and the installation characteristics were good. However, when the optical fiber 41 is taken out at the terminal, the foamed resin 45 is torn by a finger at the terminal part, but when the length of several cm is torn, the foamed resin 45 is torn off, and it is necessary to remove the coating again from that position. The operation of taking out the cord 41 was very complicated. This is because the shape of the groove 46 engraved on the outer periphery of the foamed resin 45 and the shape of the depression 46 on the inner wall of the foamed resin 45 that reflects the shape of the optical fiber aggregate is irrelevant, so that the coating extends along the groove 46 on the outer periphery. This is because stress is concentrated on a locally thin portion without being cut in the direction. Next, in the same manner as in Example 1, the optical unit was passed through the center hole of a cylindrical rubber bushing having a length of 15 mm and an outer diameter of 6 mm. When a lateral pressure of 10 kg was applied, the two optical fibers in the optical unit showed a transmission loss increase of 0.3 dB. This is foam resin 4
Since the shape of the recessed portion 47 of the foamed resin inner wall that reflects the shape of the aggregate of the optical fiber 41 and the groove 46 engraved on the outer periphery of 5 is irrelevant, the convex portion of the foamed resin 45 that has been subjected to the lateral pressure from the outside is immediately This is because a large lateral pressure is transmitted when there is an optical fiber below.

【0020】(実施例2)図2は本発明の第二の実施例
を説明するためのもので、光ユニットの断面図である。
図中、21は光ユニット、22は光心線、23は発泡樹
脂、24は中心介在線である。
(Embodiment 2) FIG. 2 is a sectional view of an optical unit for explaining a second embodiment of the present invention.
In the figure, 21 is an optical unit, 22 is an optical fiber, 23 is a foamed resin, and 24 is a center interposition line.

【0021】図2に示す4本の光心線22は長径0.6
5mm、短径0.4mmの2心テープ型光心線である。
これらの2心テープ型光心線22はそれぞれコア径10μ
m、クラッド径125μmのシリカガラスファイバに紫
外線硬化型樹脂被覆を施した外径250μmのシングル
モード光心線2本を紫外線硬化型樹脂からなるテープ被
覆材により一体化して構成される。これらの光心線22
を外径0.5mmのポリエステル樹脂製の中心介在線2
4の周囲に4本に配列し、ピッチ400mmで撚り合わ
せ線材集合体とし、発泡樹脂23として発泡ポリエチレ
ンを被覆した。発泡樹脂23の外径は最大部で2.0m
m、最小部で1.5mmであり、光心線22の間隙部の
外側に対応して光ユニット21外周に4個所の長径部2
5が長手方向に螺旋状に存在し、それぞれの長径部の中
間が短径部26を形成する構造である。この光ユニット
21についても実施例1と同様、良好な布設特性とテー
プ型光心線22の良好な取り出し性、および側圧に対す
る安定した伝送特性が確認できた。
The four optical fibers 22 shown in FIG.
This is a two-core tape type optical fiber having a diameter of 5 mm and a minor diameter of 0.4 mm.
Each of these two-core tape type optical fibers 22 has a core diameter of 10 μm.
m, two single-mode optical fibers each having an outer diameter of 250 μm obtained by coating a silica glass fiber having a cladding diameter of 125 μm with an ultraviolet-curable resin are integrated with a tape coating material made of an ultraviolet-curable resin. These optical fibers 22
Is a center interposed line 2 made of polyester resin having an outer diameter of 0.5 mm.
4 were arranged around the wire 4 to form a stranded wire assembly at a pitch of 400 mm, and foamed polyethylene was coated as the foamed resin 23. The outer diameter of the foamed resin 23 is 2.0 m at the maximum.
m, which is 1.5 mm at the minimum part, and four long diameter portions 2 on the outer periphery of the optical unit 21 corresponding to the outside of the gap portion of the optical core wire 22.
5 are spirally formed in the longitudinal direction, and a middle portion of each long diameter portion forms a short diameter portion 26. As in the case of Example 1, good laying characteristics, good take-out property of the tape-type optical fiber 22 and stable transmission characteristics with respect to lateral pressure were confirmed for the optical unit 21 as well.

【0022】(実施例3)図3は本発明の第三の実施例
を説明するためのもので、光ユニットの断面図である。
図中、31は光ユニット、32は光心線、33は発泡樹
脂である。また34は介在線として加えたポリエステル
糸である。
(Embodiment 3) FIG. 3 is a sectional view of an optical unit for explaining a third embodiment of the present invention.
In the figure, 31 is an optical unit, 32 is an optical fiber, and 33 is a foamed resin. 34 is a polyester yarn added as an intervening wire.

【0023】図3に示す2本の光心線32はコア径10
μm、クラッド径125μmのシングルモードファイバ
に紫外線硬化型樹脂被覆を施した外径250μmのシン
グルモード光心線であり、光心線と同外径の2本のポリ
エステル糸34と撚り合わせ集合し、発泡樹脂33とし
て発泡ポリエチレンを被覆して光ユニットを構成した。
発泡樹脂33の外径は最大部で1.1mm、最小部で
0.75mmであり、光心線32と介在線34の間隙部
の外側に対応して光ユニット31外周に4個所の長径部
35が長手方向に螺旋状に存在し、それぞれの長径部の
中間が短径部36を形成する構造である。この光ユニッ
トについても実施例1と同様、良好な布設特性と光心線
の良好な取り出し性、および側圧に対する安定した伝送
特性が確認できた。またこの光ユニットは集合した線材
数が少ないため、外周を円形となるよう被覆した場合に
対向する光心線間隙部を結ぶ線を軸として容易に曲げ半
径15mm以下に曲がり、損失増加が生じ易かったが、
本発明の光ユニットについては光心線と介在線の間隙に
多量の発泡樹脂が存在するため曲がりに対する抗力が大
きくなり、曲げに対する耐性を向上することができた。
The two optical fibers 32 shown in FIG.
μm, a single-mode optical fiber having an outer diameter of 250 μm obtained by applying a UV curable resin coating to a single-mode fiber having a cladding diameter of 125 μm, and twisted and assembled with two polyester yarns 34 having the same outer diameter as the optical fiber, An optical unit was formed by covering foamed polyethylene as the foamed resin 33.
The outer diameter of the foamed resin 33 is 1.1 mm at the maximum part and 0.75 mm at the minimum part, and four major diameter parts are provided on the outer periphery of the optical unit 31 corresponding to the outside of the gap between the optical core 32 and the interposed wire 34. 35 are spirally arranged in the longitudinal direction, and a middle portion of each long diameter portion forms a short diameter portion 36. As in the case of Example 1, good laying characteristics, good take-out of the optical fiber, and stable transmission characteristics with respect to the lateral pressure were confirmed for this optical unit. In addition, since this optical unit has a small number of assembled wires, when the outer periphery is covered with a circle, the optical unit easily bends to a bending radius of 15 mm or less around a line connecting opposing optical fiber gaps, and loss is likely to increase. But
In the optical unit of the present invention, since a large amount of foamed resin is present in the gap between the optical fiber and the intervening wire, the resistance to bending is increased, and the resistance to bending can be improved.

【0024】[0024]

【発明の効果】以上説明したように、本願の構成によれ
ば、布設距離、光心線の取り出し性、側圧特性に優れた
光ユニットを得ることができる。このため光心線の接続
頻度の高い光LANなどの用途に用いると効果がある。
As described above, according to the configuration of the present invention, it is possible to obtain an optical unit having excellent laying distance, optical core wire take-out property, and lateral pressure characteristics. For this reason, it is effective when used for an application such as an optical LAN where the optical fiber is frequently connected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明に係わる光ユニットの実施例1
の断面を示す模式図である。(B)は光ユニットの実施
例1の発泡樹脂の構造を説明する図である。
FIG. 1A is a first embodiment of an optical unit according to the present invention.
It is a schematic diagram which shows the cross section. (B) is a diagram illustrating the structure of the foamed resin of Example 1 of the optical unit.

【図2】本発明に係わる光ユニットの実施例2の断面を
示す模式図である。
FIG. 2 is a schematic view illustrating a cross section of an optical unit according to a second embodiment of the present invention.

【図3】本発明に係わる光ユニットの実施例3の断面を
示す模式図である。
FIG. 3 is a schematic diagram illustrating a cross section of a third embodiment of the optical unit according to the present invention.

【図4】本発明の効果を説明する比較例の断面を示す模
式図である。
FIG. 4 is a schematic view showing a cross section of a comparative example for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1:光ユニット 2:光心線 3:発泡樹脂 4:長径部 5:短径部 6:気泡 21:光ユニット 22:光心線 23:発泡樹脂 24:中心介在線 25:長径部 26:短径部 31:光ユニット 32:光心線 33:発泡樹脂 34:介在線 35:長径部 36:短径部 40:光ユニット 41:光心線 42:発泡樹脂 43:内層被覆 44:光ユニット 45:発泡樹脂 46:外周に刻まれた溝 47:発泡樹脂内壁のくぼみ 1: Optical unit 2: Optical core wire 3: Foam resin 4: Long diameter part 5: Short diameter part 6: Bubbles 21: Optical unit 22: Optical core wire 23: Foam resin 24: Center interposed line 25: Long diameter part 26: Short Diameter part 31: Optical unit 32: Optical core wire 33: Foam resin 34: Intervening wire 35: Long diameter part 36: Short diameter part 40: Optical unit 41: Optical core wire 42: Foam resin 43: Inner layer coating 44: Optical unit 45 : Foam resin 46 : Groove on the outer circumference 47 : Indentation of foam resin inner wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 裕昭 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 2H001 BB02 BB06 BB25 KK17 2H050 BB03R BB10S BB33Q BB42S BC11 BD00  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroaki Sano 1-chome, Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa F-term (reference) in Yokohama Works, Sumitomo Electric Industries, Ltd. 2H001 BB02 BB06 BB25 KK17 2H050 BB03R BB10S BB33Q BB42S BC11 BD00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数本の光心線または光心線と介在線か
らなる線材の集合体とその外周に直接被覆された発泡樹
脂外被を備え、前記集合体の最外周に配置された線材の
間隙部に位置する前記発泡樹脂外被は外側に向かって膨
出する長径部をなし、前記長径部の中間の前記発泡樹脂
外被は短径部とすることを特徴とする光ユニット
1. An assembly comprising a plurality of optical fibers or an assembly of wires composed of optical fibers and intervening wires and a foamed resin jacket directly coated on the outer periphery thereof, and a wire arranged on the outermost periphery of the assembly An optical unit, wherein the foamed resin jacket located in the gap portion of the optical unit has a long diameter portion bulging outward, and the foamed resin jacket in the middle of the long diameter portion has a short diameter portion.
【請求項2】 前記線材の集合体は中心介在線とその外
周に点対称に配置された略同外形の複数の線材からな
り、前記線材は光心線または光心線と介在線からなるこ
とを特徴とする第1項記載の光ユニット
2. The wire assembly comprises a center intervening line and a plurality of wires of substantially the same outer shape arranged point-symmetrically around the center intervening line, and the wire comprises an optical core line or an optical core line and an intervening line. The optical unit according to claim 1, wherein
JP10250563A 1998-09-04 1998-09-04 Optical unit Pending JP2000081553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10250563A JP2000081553A (en) 1998-09-04 1998-09-04 Optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10250563A JP2000081553A (en) 1998-09-04 1998-09-04 Optical unit

Publications (1)

Publication Number Publication Date
JP2000081553A true JP2000081553A (en) 2000-03-21

Family

ID=17209764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250563A Pending JP2000081553A (en) 1998-09-04 1998-09-04 Optical unit

Country Status (1)

Country Link
JP (1) JP2000081553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025531A (en) * 2001-01-03 2001-04-06 김기웅 Component fixing method of fiber ornaments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025531A (en) * 2001-01-03 2001-04-06 김기웅 Component fixing method of fiber ornaments

Similar Documents

Publication Publication Date Title
KR940000839B1 (en) Optical fiber unit
US5658406A (en) Methods of making telecommunications cable
WO2004055835A1 (en) Protective tube for communication cable and communication wire
JP2014211511A (en) Optical cable
JP6618744B2 (en) Optical fiber cable, optical fiber cable manufacturing method and manufacturing apparatus
WO2018230618A1 (en) Slot-type optical cable
JP2001318286A (en) Optical fiber cable and electric power-light combined line
JPH085878A (en) Optical cable having u-shaped carrier whose crushing performance is improved
JP2000081553A (en) Optical unit
JPH10301002A (en) Optical fiber flat type cable
JP2003337267A (en) Optical fiber cable
JP7192782B2 (en) Optical fiber unit and optical fiber cable
JP3216369B2 (en) Tube composite cable and method of manufacturing the same
JP4134758B2 (en) Metal optical composite cable
JPH1131418A (en) Cable
JP2005091616A (en) Optical fiber cable and method for manufacturing the same
JP2000215743A (en) Composite cable
JP2002286980A (en) Optical fiber cord, its manufacturing method, and optical fiber cord with optical connector attached
JP2932936B2 (en) Power cable
JPH09138331A (en) Coated optical fiber for pneumatic feeding and its sorting method
JPH08271771A (en) Optical fiber cable and its production
JP2004206008A (en) Optical fiber cable and its manufacturing method
JPH10170775A (en) Optical fiber unit for optical marine cable
JP2001124964A (en) Indoor opticla fiber cable
JP4013045B2 (en) Fiber optic cable