JP2000080972A - Output adjustment controller for hydroelectric power plant - Google Patents

Output adjustment controller for hydroelectric power plant

Info

Publication number
JP2000080972A
JP2000080972A JP10252625A JP25262598A JP2000080972A JP 2000080972 A JP2000080972 A JP 2000080972A JP 10252625 A JP10252625 A JP 10252625A JP 25262598 A JP25262598 A JP 25262598A JP 2000080972 A JP2000080972 A JP 2000080972A
Authority
JP
Japan
Prior art keywords
output
command
abnormality
peak
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10252625A
Other languages
Japanese (ja)
Inventor
Shusuke Sawa
秀典 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10252625A priority Critical patent/JP2000080972A/en
Publication of JP2000080972A publication Critical patent/JP2000080972A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To perform control suitable for elimination or prevention of abnormalities caused by abnormality factors by quickly detecting the hunting of output control caused by surging generated in the conduit system of a hydroelectric power plant or independent running by the remote control operation of an electric wire. SOLUTION: In the abnormality detecting section 200 of an output adjustment controller 10, means 201, 202 and 203 are provided to detect the peak deviation and the peak cycle of the actual output Pd of a generator. A function generator 204 having areas preset according to abnormality factors including 'independent running', 'surging', 'sudden command change' and the like inputs the peak deviation and the peak cycle of Pd, and outputs '1' when entering any of these function areas. A cycle determination section 205 takes in the peak cycle, and outputs '1' to cycle range of a corresponding abnormality factor. AND 206 to 208 respectively identify 'surging', 'independent running' and 'sudden command change', outputs abnormality generating signals and perform locking for an increasing/decreasing command 65PR/PL.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、出力指令値に対し
て追従制御を行う水力発電所の出力調整制御装置に係わ
り、特に発電機出力の振動から異常要因を弁別して、出
力制御の乱調を防止する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output adjustment control device of a hydroelectric power plant which performs a follow-up control with respect to an output command value. The present invention relates to a control device for preventing such a situation.

【0002】[0002]

【従来の技術】水力発電所は無人化されており、出力調
整制御の出力指令値は遠方制御により数値制御されて、
周波数制御(一般にAFCと呼ばれる)を行っている。
出力調整はカイドベーン開度により使用水量を調整す
る。出力変化にともない使用水量を変化させたとき、圧
力の急激な上昇や下降、または、水圧脈動が発生する。
この水撃作用が水圧鉄管等に直接及ばないように、圧力
トンネルと水圧鉄管の間にサージタンクを備えている。
2. Description of the Related Art A hydroelectric power plant is unmanned, and an output command value of an output adjustment control is numerically controlled by a remote control.
Frequency control (generally called AFC) is performed.
For output adjustment, the amount of water used is adjusted according to the opening degree of the guide vane. When the amount of used water is changed in accordance with a change in output, a sharp rise or fall in pressure or hydraulic pulsation occurs.
A surge tank is provided between the pressure tunnel and the penstock so that the water hammer does not directly reach the penstock.

【0003】しかし、出力の急変がサージタンクの周期
と一致すると、共振現象を起こして水位変化が大きくな
り、サージタンクの基準水位を超える危険性がある。こ
のため、サージタンクの周波数特性と案内羽根開閉操作
の周波数特性を分析し、サージタンクの水位変動を安定
限度内に抑えるようにサージタンク容量を決めている
(「最新高級電験講座;第11巻,水力発電所」電気書
院,昭和51年)。
[0003] However, when the sudden change of the output coincides with the cycle of the surge tank, a resonance phenomenon occurs, and the water level changes greatly, and there is a risk of exceeding the reference water level of the surge tank. For this reason, the frequency characteristics of the surge tank and the frequency characteristics of the guide vane opening / closing operation are analyzed, and the surge tank capacity is determined so as to suppress fluctuations in the water level of the surge tank within a stable limit (see “The latest high-class electric test course; Vol., Hydroelectric Power Station, Denki Shoin, 1976).

【0004】また、水路系の水撃作用や水圧脈動により
水車出力が変動することが知られており、出力値の変動
周期からサージングを検出して出力をロックする公知例
がある(特開昭59−5882号、5883号)。
Further, it is known that the output of a water turbine fluctuates due to the water hammer action and water pressure pulsation of a water channel system, and there is a known example in which surging is detected from the fluctuation cycle of the output value and the output is locked (Japanese Patent Application Laid-Open No. H10-157,197). 59-5882, 5883).

【0005】一方、送電線が事故等により開放されて、
発電機が小さな系統へ電力を供給する、単独運転が行わ
れる場合がある。図9に、単独運転を行っている電力系
統を示す。送電線が×印で示すように開放されると、発
電機Gは小さな負荷LにパワーP1の単独運転を行う。
発電機Gは調速制御装置GOVによって負荷制御してい
るが、電力指令の変化に高速に追随できるように、GO
Vの制御ゲインを大きくしている。しかし、単独運転時
には制御ゲインが大き過ぎて不安定になり、発散または
リミットサイクルに至る。
On the other hand, when the transmission line is opened due to an accident or the like,
In some cases, an isolated operation is performed in which a generator supplies power to a small system. FIG. 9 shows an electric power system that is operating independently. When the transmission line is opened as indicated by the mark x, the generator G performs the isolated operation of the power P1 with a small load L.
The load of the generator G is controlled by the speed control device GOV.
The control gain of V is increased. However, at the time of isolated operation, the control gain is too large and becomes unstable, leading to divergence or a limit cycle.

【0006】[0006]

【発明が解決しようとする課題】中央給電指令所は送電
線端の負荷変動に応じて水力発電所に給電指令を出力す
る。このため、水力発電所の出力調整制御の指令値は時
々刻々の負荷変動を反映し、急変する場合がしばしばあ
る。出力指令の急変による水車制御により水撃作用や水
圧脈動が発生し、水車出力が変動することも多くなって
いる。また、送電線の遠隔遮断による単独運転時にも、
制御系が不安定になって水車出力が変動する。水撃作用
などによる水系のサージングや単独運転による制御系の
振動などは、早急に対応しないと重大事故に発展する恐
れがある。
The central power supply command station outputs a power supply command to the hydroelectric power plant in response to a load change at the end of the transmission line. For this reason, the command value of the output adjustment control of the hydroelectric power plant often changes suddenly, reflecting the momentary load fluctuation. Water turbine operation due to a sudden change in the output command causes water hammer action and water pressure pulsation, and the output of the turbine is often fluctuated. In addition, during islanding operation by remote cutoff of the transmission line,
The control system becomes unstable and the turbine output fluctuates. Surging of the water system due to water hammer, vibration of the control system due to isolated operation, and the like may lead to serious accidents if not addressed immediately.

【0007】このように、水力発電所における実出力の
変動には指令値の急変の他に複数の異常要因があり、そ
れらが重なりあって異常な変動を招いていることもあ
る。しかし、それら複数の異常要因を弁別する方法がな
いため、異常を解消するための適切な運転制御が迅速に
行えないという問題があった。
As described above, the fluctuation of the actual output in the hydroelectric power plant includes a plurality of abnormal factors in addition to the sudden change of the command value, and these may be overlapped to cause abnormal fluctuation. However, since there is no method for discriminating between the plurality of abnormal factors, there has been a problem that appropriate operation control for eliminating abnormalities cannot be quickly performed.

【0008】本発明の目的は、従来技術の問題点に鑑
み、水力発電所の出力変動の異常要因を弁別し、要因に
応じて速やかに異常を解消する水力発電所出力調整制御
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydroelectric power plant output adjustment control device which discriminates an abnormal factor of output fluctuation of a hydroelectric power plant and quickly eliminates the abnormality according to the factor in view of the problems of the prior art. It is in.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明は、水車のガイドベーンを操作して、前記水車により
回転する発電機の出力を制御する水力発電所の出力調整
制御装置において、中央給電所からの出力指令(Pre
f)と発電機の実出力(Pd)の偏差に応じて、前記ガ
イドベーンの開度の増減指令を生成する出力指令生成部
と、発電機出力振動関数に基づいて、予め水力発電所の
複数の異常要因による複数の異常振動領域を設定してお
き、リアルタイムに前記実出力(Pd)の最大値と最小
値を求め、前記最大値と最小値によるピーク偏差とピー
ク周期(時間差)の対が前記異常振動領域の何れかに入
るとき異常信号を発行する異常検出部と、を設けたこと
を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to an output adjustment control device for a hydroelectric power plant, which operates a guide vane of a turbine to control the output of a generator rotated by the turbine. Output command (Pre
f) and an output command generation unit that generates a command to increase or decrease the opening degree of the guide vanes in accordance with a deviation between the actual output (Pd) of the generator and a plurality of hydropower stations based on the generator output vibration function. A plurality of abnormal vibration regions caused by the abnormal factors are set, and the maximum value and the minimum value of the actual output (Pd) are obtained in real time. An abnormality detection unit that issues an abnormality signal when entering any of the abnormal vibration regions.

【0010】ここで、前記発電機出力振動関数とは、出
力指令(Pref)との偏差が0となる実出力(Pd)
の定常状態を基準とし、この定常状態からの変化を示す
関数であって、変化する振幅と周期(または周波数)の
2要素で表される振動関数である。
Here, the generator output oscillation function is an actual output (Pd) whose deviation from the output command (Pref) is zero.
Is a function indicating a change from the steady state with reference to the steady state, and is a vibration function represented by two elements of a changing amplitude and a period (or frequency).

【0011】前記異常検出部は、リアルタイムに求めた
前記出力指令の変化が所定値以下で、かつ前記実出力の
ピーク偏差とピーク周期の対が前記異常振動領域に入る
ときに、前記異常信号を発行することを特徴とする。つ
まり、出力指令Prefの変化によらない実出力Pdの
異常振動を異常発生とみなしている。
The abnormality detecting section detects the abnormality signal when a change in the output command obtained in real time is equal to or less than a predetermined value and a pair of a peak deviation and a peak cycle of the actual output enters the abnormal vibration region. Issuing is characterized. That is, abnormal vibration of the actual output Pd that does not depend on a change in the output command Pref is regarded as abnormal occurrence.

【0012】また、前記異常要因に送電線の遠隔遮断に
よる発電機の単独運転(以下、単独運転と呼ぶ)、水力
発電所の水系のサージング(以下、サージングと呼ぶ)
および前記出力指令の急変(以下、指令急変と呼ぶ)が
含まれ、各々の異常振動領域が周期(または周波数)特
性により差別化されて設定されている場合、前記異常検
出部は、発行する異常信号の異常要因を前記実出力のピ
ーク周期に基づいて弁別することを特徴とする。なお、
要因別の異常振動領域の設定はファジー関数によっても
よい。
[0012] In addition, due to the above-mentioned abnormal factors, the generator is operated independently (hereinafter, referred to as "independent operation") by remote cutoff of a transmission line, and the surging of the water system of the hydroelectric power plant (hereinafter, referred to as "surging").
And an abrupt change of the output command (hereinafter referred to as a command abrupt change) is included, and when each abnormal vibration region is set to be differentiated by a cycle (or frequency) characteristic, the abnormality detection unit issues an abnormality to be issued. It is characterized in that the cause of the signal abnormality is discriminated based on the peak period of the actual output. In addition,
The setting of the abnormal vibration area for each factor may be performed by a fuzzy function.

【0013】さらに、前記異常要因に応じた異常対応制
御部を設け、前記単独運転の場合は前記ガイドベーンを
操作する制御ゲインを低減する。また、前記サージング
の場合は前記増減指令の出力をロックし、前記指令急変
の場合は前記出力指令を前回値にホールドするとともに
前記給電所に警報を発行することを特徴とする。
Further, an abnormality handling control unit corresponding to the cause of the abnormality is provided, and in the case of the single operation, a control gain for operating the guide vane is reduced. Further, in the case of the surging, the output of the increase / decrease command is locked, and in the case of the sudden change of the command, the output command is held at the previous value and an alarm is issued to the power supply station.

【0014】あるいは、前記異常検出部は、リアルタイ
ムに前記出力指令の最大値と最小値を求め、前記最大値
と最小値によるピーク偏差とピーク周期(時間差)の対
が前記指令急変の異常振動領域に入るか否かを判定し、
入る場合は前記実出力による異常信号の出力を抑止する
とともに前記給電所に警報を発行することを特徴とす
る。つまり、実出力Pdの変動が出力指令Prefに追
随している場合は、異常発生とみての対応制御を留保
し、とりあえず警報を発行して様子をみるようにしても
よい。
Alternatively, the abnormality detecting section obtains a maximum value and a minimum value of the output command in real time, and a pair of a peak deviation and a peak cycle (time difference) based on the maximum value and the minimum value is an abnormal vibration area of the command sudden change. Judge whether to enter,
When entering, the output of the abnormal signal due to the actual output is suppressed and an alarm is issued to the power supply station. That is, when the fluctuation of the actual output Pd is following the output command Pref, the corresponding control may be reserved assuming that an abnormality has occurred, and an alarm may be issued for the time being to see the situation.

【0015】上記の異常検出部は、前記実出力のピーク
偏差とピーク周期の対が前記異常振動領域に入り、かつ
前記ピーク偏差が前回値から増大している場合に、前記
異常信号を発行することを特徴とする。つまり、実出力
Pdの変動が拡大方向か縮小方向かを判定して一過性の
変化に対する即応を回避し、制御の安定性を確保する。
また、リアルタイムに拡大方向を監視することで、異常
発生をその予兆の段階で検出でき、異常の発生ないし拡
大を防止できる。
The abnormality detecting section issues the abnormality signal when the pair of the peak deviation and the peak cycle of the actual output enters the abnormal vibration region and the peak deviation increases from the previous value. It is characterized by the following. That is, it is determined whether the fluctuation of the actual output Pd is in the enlargement direction or the contraction direction, to avoid a quick response to the transient change, and to ensure the stability of the control.
Further, by monitoring the enlargement direction in real time, the occurrence of an abnormality can be detected at the stage of its sign, and the occurrence or enlargement of the abnormality can be prevented.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図2に、本発明が適用される実施例の
発電所の全体構成図を示す。水力発電所は、上ダム1と
下ダム2を圧力トンネル3と水圧鉄管4で連絡して水車
5に接続し、圧力トンネル3と水圧鉄管4の間にサージ
タンク6を設置している。電気系は、送電線13に主変
圧器7、並列遮断器8を介して発電機9を接続する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an overall configuration diagram of a power plant according to an embodiment to which the present invention is applied. In the hydroelectric power plant, the upper dam 1 and the lower dam 2 are connected to a water turbine 5 through a pressure tunnel 3 and a penstock 4, and a surge tank 6 is installed between the pressure tunnel 3 and the penstock 4. In the electric system, the generator 9 is connected to the transmission line 13 via the main transformer 7 and the parallel circuit breaker 8.

【0017】出力調整制御装置10は、出力検出装置1
1からの発電機9の実出力Pdと、中央給電指令所から
の給電指令である出力指令値Prefを入力し、出力増指
令65PRおよび出力減指令65PLを水車制御装置12へ
出力する。水車制御装置12は、一般に調速機制御装置
とアクチュエータ(機械系)から構成され、調速機制御
装置はガイドベーンの増減指令を受けてガイドベーンの
開度を制御する。
The output adjustment control device 10 includes the output detection device 1
1 and an output command value Pref, which is a power supply command from a central power supply command center, and outputs an output increase command 65PR and an output decrease command 65PL to the water turbine controller 12. The water turbine control device 12 generally includes a governor control device and an actuator (mechanical system), and the governor control device controls the guide vane opening in response to a guide vane increase / decrease command.

【0018】図1は、一実施例による出力制御装置の構
成を示す。出力制御装置10は一点鎖線の上半分に示す出
力指令生成部100と、下半分に示す異常検出部200からな
る。出力指令生成部100は、遠隔制御による出力指令Pre
fと発電機実出力Pdを入力して、減算器101でPrefと
Pdの偏差を演算し、その偏差に応じて出力調整部102か
ら増減指令65PR、65PLを出力する。指令65PR、65
PLはそれぞれ、AND回路103、104で異常検出部200
からの出力と論理演算し、異常検出時は増指令65PR、
減指令65PLの出力が阻止される。
FIG. 1 shows the configuration of an output control device according to one embodiment. The output control device 10 includes an output command generator 100 shown in the upper half of the dashed line and an abnormality detector 200 shown in the lower half. The output command generation unit 100 outputs the output command Pre by remote control.
f and the actual generator output Pd are input, the difference between Pref and Pd is calculated by the subtracter 101, and the output adjuster 102 outputs increase / decrease commands 65PR and 65PL according to the difference. Command 65PR, 65
The PLs are provided by AND circuits 103 and 104, respectively.
Logical operation with the output from the
The output of the decrease command 65PL is blocked.

【0019】異常検出部200はPdを入力し、最大値検
出部201、最小値検出部202、周期検出部203、Pdの周
期(時間差)と最大値−最小値の偏差に応じた関数を発
生する関数発生器204、周期判定部205、及びそれらの出
力を演算処理するAND回路206〜208とNOT回路209
からなる論理回路で構成する。
The abnormality detecting section 200 receives Pd and generates a function corresponding to the maximum value detecting section 201, the minimum value detecting section 202, the cycle detecting section 203, and the cycle (time difference) of Pd and the difference between the maximum value and the minimum value. Function generator 204, period determination unit 205, and AND circuits 206 to 208 for performing arithmetic processing on their outputs, and NOT circuit 209
It consists of a logic circuit consisting of

【0020】次に、出力制御装置10の動作を具体的に説
明する。図3は、出力指令Prefと実出力Pdの時間変
化を示す。この例では、出力指令Prefが一定にもかかわ
らず、実出力Pdに脈動が発生している。最大値検出部
201と最小値検出部202は実出力Pdの最大値P1と最小
値P2、最大値P3と最小値P4、...をリアルタイム
に検出し、周期検出部203はピーク間の時間差t12、t
23、t34...を検出し、関数発生器204は│P1−P2
│とt12、│P2−P3│とt23、│P3−P4│と
3 4、...に対応する関数値(‘0'または‘1')を
次々に出力する。なお、出力指令Prefを入力とする他の
組は、Prefが一定なので、ピーク偏差及びピーク周期が
0であり、関数発生器204の出力は‘0'となる。
Next, the operation of the output control device 10 will be specifically described. FIG. 3 shows a temporal change of the output command Pref and the actual output Pd. In this example, the pulsation occurs in the actual output Pd even though the output command Pref is constant. Maximum value detector
201 and minimum value detector 202 is the maximum value P 1 and the minimum value P 2 of the actual output Pd, maximum value P 3 and the minimum value P 4,. . . Is detected in real time, and the period detection unit 203 detects the time differences t 12 and t 12 between the peaks.
23, t 34. . . And the function generator 204 calculates | P 1 −P 2
│ and t 12, │P 2 -P 3 │ and t 23, │P 3 -P 4 │ and t 3 4,. . . Are successively output as function values ('0' or '1') corresponding to. In the other sets to which the output command Pref is input, since Pref is constant, the peak deviation and the peak cycle are 0, and the output of the function generator 204 is “0”.

【0021】図4は、ピーク偏差とピーク周期による関
数発生の概念図を示す。関数発生器204には、実出力P
dのピーク偏差とピーク周期(時間差)に対し、図示の
斜線領域の関数を設定している。この斜線領域は、サー
ジング共振や、単独運転による振動などの異常範囲が予
め設定されている。そして、Pdのピーク偏差とピーク
周期が斜線領域の範囲内のときは‘1’を出力し、範囲
外のときは‘0’を出力する。図3のP1からP2間
は、ピーク偏差が小さくピーク周期も短いので設定関数
の範囲外となる。しかし、P2からP3及びP3からP
4は、関数発生器204の設定範囲に入るので、出力
‘1’となって異常の発生を示す。
FIG. 4 is a conceptual diagram showing the generation of a function by the peak deviation and the peak period. The function generator 204 has an actual output P
For the peak deviation and the peak period (time difference) of d, a function in the shaded area shown in the figure is set. In this shaded region, an abnormal range such as surging resonance or vibration caused by isolated operation is set in advance. Then, when the peak deviation and the peak cycle of Pd are within the range of the shaded region, “1” is output, and when it is out of the range, “0” is output. Since the peak deviation is small and the peak period is short between P1 and P2 in FIG. 3, it is outside the range of the setting function. However, P2 to P3 and P3 to P
4 is within the setting range of the function generator 204, so that the output becomes "1", indicating the occurrence of an abnormality.

【0022】ところで、単独運転による振動周期は20
〜30秒、サージングによる振動周期は60〜120秒
である。また、サージングなどを誘発する指令急変の振
動周期は90〜150秒である。本実施例では、関数発
生器204に「単独運転」、「サージング」及び「指令急
変」の各領域関数を設定している。
By the way, the oscillation cycle of the isolated operation is 20
The vibration period due to surging is 60 to 120 seconds. The vibration cycle of the command sudden change that induces surging is 90 to 150 seconds. In the present embodiment, the function generator 204 is set with the respective area functions of “independent operation”, “surging”, and “command sudden change”.

【0023】図5に、異常要因別の設定関数をもつ関数
発生器の説明図を示す。ピーク周期20〜30秒の斜線
領域(イ)が「単独運転」の関数、ピーク周期60〜1
20秒の斜線領域(ロ)が「サージング」の関数、ピー
ク周期120〜150秒の斜線領域(ハ)が「指令急
変」の関数を示す。なお、「サージング」の振動周期は
水路の長さや水量によって異なり、発電所に応じたチュ
ーニングが行われる。
FIG. 5 is an explanatory diagram of a function generator having a setting function for each abnormality factor. The hatched area (a) with a peak cycle of 20 to 30 seconds is a function of "independent operation", and a peak cycle of 60 to 1
A hatched area (b) of 20 seconds indicates a function of “surging”, and a hatched area (c) of a peak cycle of 120 to 150 seconds indicates a function of “command sudden change”. Note that the oscillation cycle of "surging" differs depending on the length of the water channel and the amount of water, and tuning is performed according to the power plant.

【0024】実出力Pdのピーク変動が関数設定領域に
入ると、関数発生器204の出力が‘0’から‘1’とな
り、AND回路206〜208に出力される。一方、周期判定
部205は周期検出部203からのピーク周期により、現在の
ピーク周期が「40〜90秒」か、「40秒未満」か、
「90秒超」かを判定し、該当する周期の出力端に
‘1’を出力する。各周期範囲の出力端はそれぞれAN
D回路206,207,208に接続されている。なお、関数発
生器204の関数設定領域の周期に重複がある場合は、予
め定めた優先順ないしは双方に‘1’を出力する。
When the peak fluctuation of the actual output Pd enters the function setting area, the output of the function generator 204 changes from "0" to "1" and is output to the AND circuits 206 to 208. On the other hand, the cycle determination unit 205 determines whether the current peak cycle is “40 to 90 seconds” or “less than 40 seconds” according to the peak cycle from the cycle detection unit 203.
It is determined whether it is “more than 90 seconds”, and “1” is output to the output terminal of the corresponding cycle. The output terminal of each period range is AN
D circuits 206, 207, and 208 are connected. If there is an overlap in the periods of the function setting areas of the function generator 204, "1" is output to a predetermined priority or both.

【0025】AND回路206の出力は、関数発生器20
4の出力が‘1’かつ現在のピーク周期が「40〜90
秒」の場合、つまり「サージング」の検出で‘1’とな
り、NOT209を通じてAND103,104に入力
する。したがって、出力指令生成部100から水車制御
装置12への増減指令65PR,65PLはAND103,10
4により、サージングが解消されるまでロックされる。
The output of the AND circuit 206 is output to the function generator 20
4 is “1” and the current peak cycle is “40 to 90”.
Seconds ”, that is,“ 1 ”upon detection of“ surging ”, and is input to the ANDs 103 and 104 via the NOT 209. Therefore, the increase / decrease commands 65PR and 65PL from the output command generation unit 100 to the water turbine control device 12
4 locks until the surging is removed.

【0026】AND回路207の出力は、関数発生器20
4の出力が‘1’かつ現在のピーク周期が「40秒未
満」の場合、つまり「単独運転」の検出で‘1’とな
り、水車制御装置12に伝送される。これを受けた水車
制御装置12は調速制御のゲインを所定値まで下げて、
「単独運転」による発振を防止する。同時に、増減指令
をロックするようにしてもよい。
The output of the AND circuit 207 is output to the function generator 20
4 is “1” and the current peak cycle is “less than 40 seconds”, that is, “1” upon detection of “single operation”, and is transmitted to the water turbine controller 12. The water turbine controller 12 receiving this lowers the speed control gain to a predetermined value,
Oscillation due to "independent operation" is prevented. At the same time, the increase / decrease command may be locked.

【0027】AND回路208の出力は、関数発生器20
4の出力が‘1’かつ現在のピーク周期が「120秒
超」の場合、つまり「指令急変」の検出で‘1’とな
る。「指令急変」の場合は、「サージング」などの誘因
となるので、遠方制御に警報(30−Pref)を出力
する。さらに、出力指令値Prefを前回値に保持して、
異常現象の発生を事前に防止する。
The output of the AND circuit 208 is output from the function generator 20
When the output of No. 4 is “1” and the current peak cycle is “more than 120 seconds”, that is, it becomes “1” upon detection of “command sudden change”. In the case of "command sudden change", an alarm (30-Pref) is output to the remote control because it causes "surging" or the like. Further, the output command value Pref is held at the previous value,
Prevent the occurrence of abnormal phenomena in advance.

【0028】図6に、出力指令値の保持回路を示す。保
持回路220は、出力指令生成部100の出力指令Prefの入
力部に設けられる。保持回路220は警報出力30Prefが0
⇒1のときPrefを前回値に保持し、30Prefが1⇒0の
ときPrefをそのまま出力する。
FIG. 6 shows an output command value holding circuit. The holding circuit 220 is provided at an input unit of the output command Pref of the output command generation unit 100. The holding circuit 220 sets the alarm output 30Pref to 0.
When ⇒1, Pref is held at the previous value, and when 30Pref is 1⇒0, Pref is output as it is.

【0029】本実施例によれば、発電機の実出力の変動
に現われた異常要因として、単独運転、サージングある
いは異常給電指令を弁別でき、制御系をロックするなど
の要因に応じた対応制御が速やかに実行できるので、異
常の解消ないしは防止が可能になる。
According to the present embodiment, as an abnormal factor which appears in the fluctuation of the actual output of the generator, it is possible to discriminate an isolated operation, a surging or an abnormal power supply command, and to perform a corresponding control according to a factor such as locking of the control system. Since it can be executed promptly, it is possible to eliminate or prevent the abnormality.

【0030】図7は、他の実施例による出力制御装置の
構成を示す。図1との主たる相違は出力指令Prefの異常
検出機能と、偏差方向判定機能を設けた点にある。
FIG. 7 shows the configuration of an output control device according to another embodiment. The main difference from FIG. 1 lies in that an abnormality detection function of the output command Pref and a deviation direction determination function are provided.

【0031】出力指令Prefの異常検出機能は、最大値検
出部211、最小値検出部212、周期検出部213、Pre
fの周期(時間差)と最大値−最小値の偏差に応じた関
数を発生する関数発生器214、周期判定部205からなり、
実出力Pdの場合と同様の構成となる。ただし、関数発生
器214には「指令急変」領域の設定だけでよく、また、
関数発生器204には「指令急変」領域の設定がなくてよ
い。
The abnormality detection function of the output command Pref includes a maximum value detection unit 211, a minimum value detection unit 212, a cycle detection unit 2113,
a function generator 214 for generating a function corresponding to the difference between the period (time difference) of f and the maximum value-minimum value, and a period determination unit 205;
The configuration is similar to that of the actual output Pd. However, the function generator 214 only needs to set the "command sudden change" area,
The function generator 204 need not have the “command sudden change” area.

【0032】これにより、Prefが「指令急変」の領
域に入った場合、関数発生器214の出力が‘1’とな
り、遠方制御への警報「30−Pref」が出力され
る。図1の場合と同様ではあるが、出力指令の変化を直
接監視するので、「指令急変」の検出が速やかに行え
る。
Thus, when Pref enters the area of "command sudden change", the output of the function generator 214 becomes "1", and an alarm "30-Pref" for the remote control is output. Although similar to the case of FIG. 1, the change in the output command is directly monitored, so that the “command sudden change” can be detected quickly.

【0033】一方、関数発生器204は、実出力Pdの振
動特性が「単独運転」または「サージング」の領域に入
った場合に‘1’を、AND回路210に出力する。ま
た、偏差方向判定回路215はPdの最大値と最小値を入
力して、ピーク偏差を求めるとともに前回のピーク偏差
と比較し、今回の偏差値が大きい場合(振動が拡大して
いる)に‘1’を、今回の偏差値が小さい場合(振動が
縮小している)に‘0’を、AND回路210に出力す
る。さらに、NOT回路216は、関数発生器214の出力
‘0’のとき、つまりPrefの「指令急変」がないとき
‘1’を、AND回路210に出力する。
On the other hand, the function generator 204 outputs “1” to the AND circuit 210 when the vibration characteristic of the actual output Pd falls within the “single operation” or “surging” region. In addition, the deviation direction determination circuit 215 inputs the maximum value and the minimum value of Pd, obtains the peak deviation, compares it with the previous peak deviation, and when the present deviation value is large (vibration is expanding). 1 is output to the AND circuit 210 when the present deviation value is small (the vibration is reduced). Further, the NOT circuit 216 outputs “1” to the AND circuit 210 when the output of the function generator 214 is “0”, that is, when there is no “command sudden change” of Pref.

【0034】これにより、AND回路210は、「単独運
転」または「サージング」の異常を検知し、その異常が
拡大方向であり、かつ出力指令に急変が見られない場合
に、異常発生を判定して‘1’を出力する。したがっ
て、異常の判定の信頼度が向上でき、また、一過性の振
動などによる誤判定を回避できる。また、偏差方向判定
回路215の出力を監視し、その拡大方向が持続するとき
異常現象の予兆として検出するようにしてもよい。これ
らにより、異常現象の早期検出とその防止が可能にな
る。
Thus, the AND circuit 210 detects an abnormality of “single operation” or “surging”, and determines that an abnormality has occurred if the abnormality is in the enlargement direction and no abrupt change is found in the output command. To output '1'. Therefore, the reliability of abnormality determination can be improved, and erroneous determination due to transient vibration or the like can be avoided. Further, the output of the deviation direction determination circuit 215 may be monitored and detected as a sign of an abnormal phenomenon when the enlargement direction continues. These enable early detection and prevention of abnormal phenomena.

【0035】なお、AND回路210を要因毎に分け、
図1と同様の周期判定部により異常を弁別し、異常要因
に応じた制御を行うようにしてもよい。あるいは、図1
の異常検出部200に周期判定部205を付加する構成
としてもよい。
The AND circuit 210 is divided for each factor.
An abnormality may be discriminated by the same cycle determination unit as in FIG. 1 and control may be performed according to the cause of the abnormality. Alternatively, FIG.
May be added to the abnormality detection unit 200 of the first embodiment.

【0036】以上の実施例では、発電機の実出力の異常
振動のピーク偏差とピーク周期の関数を、異常要因別に
予め設定して弁別している。各要因に対応した関数の設
定は、過去の実績値とシミュレーション等により可能と
なる。ところが、上ダムと下ダムの水位差等により予め
設定すべき範囲が限定できないことがある。この場合、
ピーク偏差とピーク周期の関数をファジー関数で設定
し、ファジー推論を行う。
In the above embodiment, the functions of the peak deviation and the peak period of the abnormal vibration of the actual output of the generator are set in advance for each cause of the abnormality and discriminated. The setting of the function corresponding to each factor can be made by past performance values, simulations, and the like. However, the range to be set in advance may not be limited due to the water level difference between the upper dam and the lower dam. in this case,
The function of the peak deviation and the peak period is set by a fuzzy function, and fuzzy inference is performed.

【0037】図8に、ピーク周期を入力とするメンバー
シップ関数を示す。図示で、Aは「単独運転」、Bは
「サージング」、Cは「指令急変」の確信度を示す。確
信度は要因毎のピーク偏差を基に、100%の異常発生
可能性を1.0、0%の異常発生可能性を0.0として
チューニングしている。これによれば、水路系の複雑な
動作をファジー関数により表現できるため、異常検出部
の構成が容易になる。
FIG. 8 shows a membership function with the peak period as input. In the figure, A indicates the degree of certainty of "independent operation", B indicates "surging", and C indicates the degree of certainty of "command sudden change". The certainty is tuned based on the peak deviation for each factor, with the probability of occurrence of an abnormality of 100% being 1.0 and the probability of occurrence of an abnormality of 0% being 0.0. According to this, since the complicated operation of the waterway system can be expressed by the fuzzy function, the configuration of the abnormality detection unit becomes easy.

【0038】また、上記の実施例では単独運転の検出に
発電機の実出力を用いたが、送電線の周波数を入力と
し、送電線の遠端遮断時に発生する周波数変動と周期を
関数設定しても実現できる。
In the above embodiment, the actual output of the generator was used to detect the islanding operation. However, the frequency of the transmission line was used as an input, and the frequency fluctuation and the period generated when the transmission line was cut off at the far end were set as functions. Can also be achieved.

【0039】さらに、可変速揚水発電は揚水時にも回転
速度を変化させてAFCを行うが、回転速度の変化が使
用水量の変化となるため、水圧脈動が発生する。このた
め、出力指令、実出力の入力に代えて、回転速度指令と
実回転速度を入力として同様の回路構成をとることによ
り、上記と同様の異常要因の弁別ができる。
Further, in variable speed pumped-storage power generation, AFC is performed by changing the rotation speed even during pumping. However, since the change in the rotation speed changes the amount of water used, water pressure pulsation occurs. Therefore, by using the same circuit configuration with the input of the rotation speed command and the actual rotation speed instead of the input of the output command and the actual output, it is possible to discriminate the same cause of abnormality as described above.

【0040】[0040]

【発明の効果】本発明によれば、水力発電所の複数の異
常振動特性と発電機の実出力の振動特性を対比し、実出
力が何れかの異常特性の領域に入る場合は異常発生と判
断するので、速やかに異常を検出できる効果がある。
According to the present invention, a plurality of abnormal vibration characteristics of a hydroelectric power plant are compared with the vibration characteristics of the actual output of the generator. Since the determination is made, there is an effect that the abnormality can be quickly detected.

【0041】また、異常発生時の振動周期から異常要因
を弁別し、要因に適応した異常解消または防止の制御を
行うので、水力発電所の安全な運転を確保できる。
Further, since the cause of the abnormality is discriminated from the vibration cycle at the time of occurrence of the abnormality, and the control for eliminating or preventing the abnormality is performed according to the cause, the safe operation of the hydroelectric power plant can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による水力発電所の出力調整
制御装置のブロック図。
FIG. 1 is a block diagram of an output adjustment control device of a hydroelectric power plant according to one embodiment of the present invention.

【図2】本発明が適用される水力発電所の概略の構成
図。
FIG. 2 is a schematic configuration diagram of a hydroelectric power plant to which the present invention is applied.

【図3】出力指令と実出力の一例の時間変化図。FIG. 3 is a time change diagram of an example of an output command and an actual output.

【図4】水力発電所における異常特性の設定領域を示す
概念図。
FIG. 4 is a conceptual diagram showing a setting region of an abnormal characteristic in a hydroelectric power plant.

【図5】一実施例による複数の異常特性の設定領域を示
す説明図。
FIG. 5 is an explanatory diagram showing setting regions of a plurality of abnormal characteristics according to one embodiment.

【図6】出力調整制御装置のホールド回路の構成図。FIG. 6 is a configuration diagram of a hold circuit of the output adjustment control device.

【図7】本発明の他の実施例による水力発電所の出力調
整制御装置のブロック図。
FIG. 7 is a block diagram of an output adjustment control device of a hydroelectric power plant according to another embodiment of the present invention.

【図8】異常特性の設定領域をファジー関数で設定した
例を示す説明図。
FIG. 8 is an explanatory diagram showing an example in which a setting region of an abnormal characteristic is set by a fuzzy function.

【図9】単独運転時の系統構成を示す説明図。FIG. 9 is an explanatory diagram showing a system configuration during an isolated operation.

【符号の説明】[Explanation of symbols]

1…上ダム、2…下ダム、3…水圧トンネル、4…水圧
鉄管、5…水車、9…発電機、10…出力調整制御装
置、11…出力検出装置、12…水車制御装置、100
…出力指令生成部、102…出力調整部、103,10
4…AND回路、200…異常検出部、201,211
…最大値検出部、202,212…最小値検出部、20
3…周期検出部、204,214…関数発生器、205
…周期判定部、206〜208…AND回路、209…
NOT回路、210…AND回路、215…偏差方向判
定回路、216…NOT回路、220…ホールド回路。
DESCRIPTION OF SYMBOLS 1 ... Upper dam, 2 ... Lower dam, 3 ... Hydraulic tunnel, 4 ... Hydraulic iron pipe, 5 ... Turbine, 9 ... Generator, 10 ... Output adjustment control device, 11 ... Output detection device, 12 ... Water turbine control device, 100
... Output command generator, 102 ... Output adjuster, 103,10
4: AND circuit, 200: abnormality detection unit, 201, 211
... Maximum value detectors, 202, 212 ... Minimum value detectors, 20
3. Period detection unit, 204, 214 ... Function generator, 205
... Period determination unit, 206-208 ... AND circuit, 209 ...
NOT circuit, 210: AND circuit, 215: deviation direction determination circuit, 216: NOT circuit, 220: hold circuit.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水車のガイドベーンを操作して、前記水
車により回転する発電機の出力を制御する水力発電所の
出力調整制御装置において、 中央給電所からの出力指令と発電機の実出力の偏差に応
じて、前記ガイドベーンの開度の増減指令を生成する出
力指令生成部と、 発電機出力の振動関数に基づいて、予め水力発電所の複
数の異常要因による複数の異常振動領域を設定してお
き、リアルタイムに前記実出力の最大値と最小値を求
め、前記最大値と最小値によるピーク偏差とピーク周期
(時間差)の対が前記異常振動領域の何れかに入るとき
異常信号を発行する異常検出部と、を設けたことを特徴
とする水力発電所の出力調整制御装置。
1. An output adjustment control device for a hydroelectric power plant, which operates a guide vane of a water turbine to control an output of a generator rotated by the water turbine, wherein an output command from a central power supply station and an actual output of the generator are An output command generation unit that generates a command to increase or decrease the guide vane opening in accordance with the deviation; and sets a plurality of abnormal vibration regions in advance due to a plurality of abnormal factors of the hydroelectric power plant based on a vibration function of a generator output. In addition, a maximum value and a minimum value of the actual output are obtained in real time, and an abnormal signal is issued when a pair of a peak deviation and a peak cycle (time difference) based on the maximum value and the minimum value enters any of the abnormal vibration regions. An output adjustment control device for a hydroelectric power plant, comprising:
【請求項2】 請求項1において、 前記異常検出部は、リアルタイムに求めた前記出力指令
の変化が所定値以下で、かつ前記実出力のピーク偏差と
ピーク周期の対が前記異常振動領域に入るときに、前記
異常信号を発行することを特徴とする水力発電所の出力
調整制御装置。
2. The abnormal detection unit according to claim 1, wherein the change of the output command obtained in real time is equal to or less than a predetermined value, and a pair of a peak deviation and a peak cycle of the actual output enters the abnormal vibration region. The output adjustment control device of the hydroelectric power plant, wherein the abnormality signal is issued at times.
【請求項3】 請求項1において、 前記異常要因に送電線の遠隔遮断による発電機の単独運
転(以下、単独運転)、水力発電所の水系のサージング
(以下、サージング)および前記出力指令の急変(以
下、指令急変)が含まれ、各々の異常振動領域が周期
(または、周波数)特性により差別化されて設定されて
いる場合、 前記異常検出部は、発行する異常信号の異常要因を前記
実出力のピーク周期に基づいて弁別することを特徴とす
る水力発電所の出力調整制御装置。
3. The method according to claim 1, wherein the abnormal factors include a single operation of the generator (hereinafter, referred to as “single operation”), a surging of a water system of the hydroelectric power plant (hereinafter, “surging”), and a sudden change of the output command. (Hereinafter referred to as a command sudden change), and when each abnormal vibration region is set to be differentiated by a cycle (or frequency) characteristic, the abnormality detection unit determines the cause of the abnormality of the abnormal signal to be issued by the actual condition. An output adjustment control device for a hydroelectric power plant, which performs discrimination based on a peak cycle of output.
【請求項4】 請求項3において、 前記異常要因に応じた異常対応制御部を設け、前記単独
運転の場合は前記ガイドベーンを操作する制御ゲインの
低減、前記サージングの場合は前記増減指令のロック、
前記指令急変の場合は前記出力指令の前回値にホールド
するとともに前記給電所に警報を発行、の少なくとも1
つを実施することを特徴とする水力発電所の出力調整制
御装置。
4. The control device according to claim 3, further comprising an abnormality handling control unit corresponding to the cause of the abnormality, wherein the control gain for operating the guide vane is reduced in the case of the single operation, and the increase / decrease command is locked in the case of the surging. ,
In the case of the command sudden change, the output command is held at the previous value and an alarm is issued to the power supply station.
An output adjustment control device for a hydroelectric power plant, comprising:
【請求項5】 請求項3または4において、 前記異常検出部は、リアルタイムに前記出力指令の最大
値と最小値を求め、前記最大値と最小値によるピーク偏
差とピーク周期の対が前記指令急変の異常振動領域に入
るか否かを判定し、入る場合は前記実出力による異常信
号の出力を抑止するとともに前記給電所に警報を発行す
ることを特徴とする水力発電所の出力調整制御装置。
5. The abnormality detection unit according to claim 3, wherein the abnormality detection unit obtains a maximum value and a minimum value of the output command in real time, and a pair of a peak deviation and a peak cycle based on the maximum value and the minimum value is the command sudden change. And determining whether or not the vehicle enters an abnormal vibration region. If the vehicle enters, suppresses the output of the abnormal signal based on the actual output, and issues an alarm to the power supply station.
【請求項6】 請求項1〜5のいずれかにおいて、 前記異常検出部は、前記実出力のピーク偏差とピーク周
期の対が前記異常振動領域に入り、かつ前記ピーク偏差
が前回値から増大している場合に、前記異常信号を発行
することを特徴とする水力発電所の出力調整制御装置。
6. The abnormality detection unit according to claim 1, wherein a pair of a peak deviation and a peak cycle of the actual output enters the abnormal vibration region, and the peak deviation increases from a previous value. The output adjustment control device of the hydroelectric power plant, wherein the abnormal signal is issued when the power is on.
JP10252625A 1998-09-07 1998-09-07 Output adjustment controller for hydroelectric power plant Pending JP2000080972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10252625A JP2000080972A (en) 1998-09-07 1998-09-07 Output adjustment controller for hydroelectric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10252625A JP2000080972A (en) 1998-09-07 1998-09-07 Output adjustment controller for hydroelectric power plant

Publications (1)

Publication Number Publication Date
JP2000080972A true JP2000080972A (en) 2000-03-21

Family

ID=17239973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10252625A Pending JP2000080972A (en) 1998-09-07 1998-09-07 Output adjustment controller for hydroelectric power plant

Country Status (1)

Country Link
JP (1) JP2000080972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242478A (en) * 2019-06-19 2019-09-17 浙江中新电力工程建设有限公司自动化分公司 Distribution net work earthing fault detection processing analysis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242478A (en) * 2019-06-19 2019-09-17 浙江中新电力工程建设有限公司自动化分公司 Distribution net work earthing fault detection processing analysis system
CN110242478B (en) * 2019-06-19 2024-02-27 浙江中新电力工程建设有限公司自动化分公司 Distribution network ground fault detection processing analysis system

Similar Documents

Publication Publication Date Title
RU2562340C2 (en) Steam turbine control system and steam turbine operation mode at high unsteady exhaust pressure
US4440715A (en) Method of controlling nuclear power plant
JP2010229962A (en) Hydraulic turbine and speed governing controller for pump turbine
EP0057402B1 (en) Apparatus for controlling the operation of a water turbine or a pump turbine and a method thereof
JP2000080972A (en) Output adjustment controller for hydroelectric power plant
JPH04355628A (en) Dc transmission line short circuit detector
US5793594A (en) Predictive control circuit and method for circuit interrupter
JPH0370088B2 (en)
JP3404480B2 (en) Turbine control device
JPH0654439A (en) Digital type transformer protection relay device
JP2982496B2 (en) Method of detecting abnormal overheating of gas insulated switchgear
JPS6371503A (en) Overspeed preventing device for turbine
JPH04308442A (en) Controller for generator refrigrant of power generating facility
JP3315253B2 (en) Pressure control device
CN117905590A (en) Control method for maximum power operation mode of gas turbine generator set
JPS6057413A (en) Abnormality detector
JPH11164468A (en) Inverter device
JP3747257B2 (en) Power generation control device
JPH04359622A (en) Protector of synchronous phase modifier
JPH09117063A (en) Protective system for system interconnection
JPH11287176A (en) Abnormal pressure generation preventing device for hydraulic machine
JPH0654599A (en) Single operation detector for hydraulic turbine generator
JPH08251823A (en) Stabilization method of local system
CN115021223A (en) Line protection method for power distribution system
JPS6180095A (en) Controller for water level of nuclear reactor