JP2000080489A - Method for decomposing harmful organic compounds - Google Patents

Method for decomposing harmful organic compounds

Info

Publication number
JP2000080489A
JP2000080489A JP10286070A JP28607098A JP2000080489A JP 2000080489 A JP2000080489 A JP 2000080489A JP 10286070 A JP10286070 A JP 10286070A JP 28607098 A JP28607098 A JP 28607098A JP 2000080489 A JP2000080489 A JP 2000080489A
Authority
JP
Japan
Prior art keywords
harmful organic
organic compounds
electrolytic cell
dissolved
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10286070A
Other languages
Japanese (ja)
Inventor
Fumihiro Kojima
文博 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PBM KK
Original Assignee
PBM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PBM KK filed Critical PBM KK
Priority to JP10286070A priority Critical patent/JP2000080489A/en
Publication of JP2000080489A publication Critical patent/JP2000080489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and perfectly detoxicate harmful compds. by electrochemical decomposition by dissolving harmful compds. contained in the material to be treated into an aprotic solvent and executing energizing by the plus oxidation potential or minus reduction potential in an electrolytic cell. SOLUTION: Various harmful organic compds. are preferably once extracted with an organic solvent, are concentrated and dissolved into an aprotic solvent such as acetonitrile or the like. This solution is added with perchlorate as supporting salt to obtain an electrolytic soln. This electrolytic soln. 20 is stored into an electrolytic cell such as a double layer type electrolytic cell 15 in which the electrolytic soln. 20 is divided by a diaphragm 14, or an electrolytic cell of a three layer system, the one with no diaphragms or the like, at the electrolytic cell 18 on the side of the anode, a platinum electrode 11 and an Ag/Ag+ reference electrode 12 as working poles are arranged, and, at the electrolytic cell 19 on the side of the cathode, a carbon platinum electrode 13 as the counter pole is arranged. On the space between the electrodes, energizing by the oxidation potential of about >=+1.5V or the reduction potential of about <=2.0 V is executed, and electrochemical decomposition is executed. In this way, the harmful organic chemical substance is decomposed and is converted into the perfectly harmless substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有害有機化合物の無
害化電気化学的分解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of electrochemically detoxifying harmful organic compounds.

【0002】[0002]

【従来の技術】従来、有害物質として使用が禁止されて
いたり、環境ホルモンとして地球上の生物にとって非常
に危険性が取りざたされている化学物質が数多く存在
し、それらの処理に対する問題が多く、一種の社会問題
にまで発展している。例を挙げると、ゴミ焼却場の焼却
排ガスより検出されるダイオキシン類、電気機器のトラ
ンスに使用され、廃棄された後の不適切な処理によって
漏出し、環境汚染の恐れが指摘されているPCB類、農
業用殺虫剤に使用されているDDT、ディルドリン、ア
ルドリン、エンドリン、クロルデン等、発泡ポリスチレ
ンの製造工程の副産物である、スチレンダイマー、スチ
レントリマー等、環境ホルモンと呼ばれている物質は現
在70種類もあるといわれている。
2. Description of the Related Art Heretofore, there have been many chemical substances that have been banned from being used as harmful substances, and have been regarded as extremely dangerous for living organisms on the earth as environmental hormones. Social problems. For example, dioxins detected from incineration exhaust gas from garbage incineration plants, PCBs used in transformers of electrical equipment and leaked due to improper disposal after being disposed of, and the risk of environmental pollution being pointed out There are currently 70 types of substances called environmental hormones, such as styrene dimer and styrene trimer, which are by-products of the expanded polystyrene manufacturing process, such as DDT, dieldrin, aldrin, endrin, and chlordane used in agricultural pesticides. It is said that there is also

【0003】これらの問題は有害物質の除去方法や分解
方法の確立によって、解決していくが、PCBに代表さ
れる有害物質の特徴として挙げられることは、化学的に
非常に安定している物質なので、簡単に分解をして無害
化するということは容易ではなく、現段階の分解技術の
確立といえば、非常に高コストのPCB分解技術がある
のみである。
[0003] These problems can be solved by establishing a method for removing or decomposing harmful substances. However, one of the characteristics of harmful substances represented by PCBs is that they are chemically very stable substances. Therefore, it is not easy to simply disassemble and detoxify the harmful substance, and only the very high-cost PCB decomposition technique can be used to establish the decomposition technique at the present stage.

【0004】例えばPCBを例に挙げると、PCBに紫
外線を照射してPCBを分解する方法として、特開昭6
1−68281やPCB含有培地に微生物を培養しPC
Bを分解する方法として特開平4−370097に挙げ
るような技術がある。その他PCB含有の絶縁油を固体
加熱炉に入れ1100℃未満の温度で加熱しPCBを蒸
発分離し、着火燃焼させPCBの燃焼ガスを1200℃
以上1500℃以下の高温に保持された別の熱分解炉に
より高温熱分解させて無害化を行う技術、特開平2−2
32027があり一般的な分解方法として公知されてい
る。
For example, taking a PCB as an example, a method for decomposing a PCB by irradiating the PCB with ultraviolet rays is disclosed in
1-68281 or culturing microorganisms in PCB-containing medium
As a method for decomposing B, there is a technique described in JP-A-4-37097. In addition, the insulating oil containing PCB is put into a solid heating furnace, heated at a temperature of less than 1100 ° C., and the PCB is evaporated and separated, ignited and burned, and the combustion gas of PCB is 1200 ° C.
Japanese Patent Application Laid-Open No. Hei 2-2: A technology for detoxifying by pyrolysis at a high temperature in another pyrolysis furnace maintained at a high temperature of 1500 ° C. or lower.
32027, which is known as a general decomposition method.

【0005】[0005]

【発明が解決しようとする課題】その他、有害物質とい
われる物には一般的な分解方法すらなく、一般的に存在
するのはPCBの分解方法のみである。しかも有害物質
といわれる物の多くは塩素化合物であり難分解性で生物
濃縮性も強いため分解技術が難しく、従来の高温高圧の
ような大がかりな装置を使用するしかないのが実状であ
り、簡便な装置が必要になっており、また、PCB以外
の有害有機化合物に関する分解技術のが確立されていな
いため、それらの開発を行う必要があることが問題点で
あった。
In addition, there is no general method for decomposing substances called harmful substances, and only a method for decomposing PCB is generally present. In addition, many of the harmful substances are chlorine compounds, are difficult to decompose, and have strong bioconcentration properties, making it difficult to decompose them, and the reality is that only large-scale equipment, such as conventional high-temperature and high-pressure equipment, has to be used. However, there is a problem in that a simple apparatus is required, and there is no established technique for decomposing harmful organic compounds other than PCBs.

【0006】[0006]

【課題を解決するための手段】この発明に関する方法
は、様々な有害物質を一旦有機溶媒で抽出濃縮した物を
非プロトン性溶媒中に溶解させ、過塩素酸塩を支持塩と
して+1.5V以上の酸化電位もしくは−2.0V以下
の還元電位による通電を行うことによって、いかなる被
処理物中の有害物質も完全に無害な物質に変換させるこ
とを特長とする、有害有機化合物類の分解方法である。
According to the method of the present invention, various harmful substances once extracted and concentrated with an organic solvent are dissolved in an aprotic solvent, and the perchlorate is used as a supporting salt to at least +1.5 V. A method for decomposing harmful organic compounds, characterized in that harmful substances in any object to be treated are completely converted to harmless substances by conducting electricity at an oxidation potential or a reduction potential of -2.0 V or less. is there.

【0007】[0007]

【発明の実施の形態】本発明の方法を好ましく実施する
ためには、電気分解のための電解槽は陽極側と陰極側を
分ける隔膜を有する2層式電解槽もしくは3層式電解槽
もしくは、無隔膜電解槽の物がよい。有害有機化合物類
の抽出・濃縮物を溶解する電解溶液には、アセトニトリ
ルやN,N−ジメチルホルムアミド(DMF)のような
非プロトン性溶媒が好ましく、支持電解質には過塩素酸
リチウムや過塩素酸ナトリウム、過塩素酸テトラエチル
アンモニウム等の過塩素酸塩、電極には炭素電極や白金
電極等を用いることが望ましい。通常、通電量が10〜
100F(ファラデー)/mol(モル)で有害有機化
合物類の98%以上が分解される。
BEST MODE FOR CARRYING OUT THE INVENTION In order to carry out the method of the present invention preferably, an electrolytic cell for electrolysis is a two-layer electrolytic cell or a three-layer electrolytic cell having a diaphragm separating an anode side and a cathode side, or A non-diaphragm electrolytic cell is preferred. An aprotic solvent such as acetonitrile or N, N-dimethylformamide (DMF) is preferable for the electrolytic solution for dissolving the extract / concentrate of harmful organic compounds, and lithium perchlorate or perchloric acid for the supporting electrolyte. It is desirable to use sodium, a perchlorate such as tetraethylammonium perchlorate, and a carbon electrode or a platinum electrode as the electrode. Usually, the amount of electricity
At 100 F (Faraday) / mol (mol), 98% or more of the harmful organic compounds are decomposed.

【0008】上記のようにして得られた被処理物を支持
電解質を溶解した電解溶液に溶解し、隔膜付き2層電解
槽又は3層電解槽、又は無隔膜電解槽に流し込み、酸化
電位、もしくは還元電位で電解を行う。その際、電圧設
定のための参照電極を分解電解槽側に設置することが望
ましいが、使用する電源によっては参照電極を設置せず
に通電を行っても、有害有機化合物を電気化学的に分解
することが可能である。このことが通電のための電源に
幅広い適用性を付与することになる。
[0008] The object to be treated obtained as described above is dissolved in an electrolytic solution in which a supporting electrolyte is dissolved, and poured into a two-layer electrolytic cell or a three-layer electrolytic cell with a diaphragm or a non-diaphragm electrolytic cell to obtain an oxidation potential or Electrolysis is performed at the reduction potential. At this time, it is desirable to install a reference electrode for voltage setting on the decomposition electrolytic cell side.However, depending on the power supply used, even if power is supplied without installing the reference electrode, harmful organic compounds can be electrochemically decomposed It is possible to This gives the power supply for energization a wide range of applicability.

【0009】以下、この発明の実施の形態1を図にのっ
とり説明する。図1において15は2層式電解槽であ
り、陽極側電解槽18と陰極側電解槽19に分けるため
に隔膜14を設け、陽極側電解槽18には白金電極11
を設置し、陰極側電解槽には炭素電極13を設置する。
その各電極は気孔付き栓17を介して2層式電気分解層
15に取り付けてある。陽極側電解槽18と陰極側電解
槽19にはそれぞれ攪拌子16を設け有害有機化合物と
電解溶液20を効率よく均一化する。また参照電極とし
てAg/Ag+電極12を陽極側電解槽18に気孔付き
栓17を介して設ける。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 15 denotes a two-layer electrolytic cell. A diaphragm 14 is provided to divide the electrolytic cell into an anode-side electrolytic cell 18 and a cathode-side electrolytic cell 19.
Is installed, and the carbon electrode 13 is installed in the cathode-side electrolytic cell.
Each of the electrodes is attached to the two-layered electrolytic layer 15 via a plug 17 having a pore. A stirrer 16 is provided in each of the anode-side electrolytic cell 18 and the cathode-side electrolytic cell 19 so that the harmful organic compound and the electrolytic solution 20 are efficiently uniformized. Also, an Ag / Ag + electrode 12 is provided as a reference electrode in the anode-side electrolytic cell 18 via a plug 17 with a pore.

【0010】他の実施例としては、図2において説明す
ると、30は1層式無隔膜電解槽であり、作用極として
白金電極11と対極として炭素電極13を設け、それぞ
れの電極を固定するための気孔付き栓17を介して1層
式無隔膜電解槽30に取り付ける。電解槽中には攪拌子
16を設け有害有機化合物と電解溶液20を効率よく均
一化する。また参照電極としてAg/Ag+電極12を
1層式無隔膜電解槽30に気孔付き栓17を介して設け
る。
As another embodiment, referring to FIG. 2, reference numeral 30 denotes a single-layer type non-diaphragm electrolytic cell, in which a platinum electrode 11 is provided as a working electrode and a carbon electrode 13 is provided as a counter electrode to fix each electrode. Is attached to the one-layer type non-diaphragm electrolytic cell 30 through the stopper 17 with a hole. A stirrer 16 is provided in the electrolytic bath to efficiently homogenize the harmful organic compound and the electrolytic solution 20. Further, an Ag / Ag + electrode 12 is provided as a reference electrode in a single-layer type non-diaphragm electrolytic cell 30 via a plug 17 with a pore.

【0011】具体的に実施する方法について説明する
と、過塩素酸テトラエチルアンモニウム0.1149g
を溶解したアセトニトリル溶液5.0mlを2層式電解
槽に均等に入れ、陽極側にアルドリン470μgを添加
して攪拌溶解させた。これにAg/Ag+を参照電極と
して白金の陽極に+2.10Vの酸化電位をかけて、一
定の電位で電気分解を行った。その結果通電量が2.4
9クローン(20F/mol)の時にアルドリンの9
9.5%以上が分解されることが、UV−Vis吸光検
出器を接続した高速液体クロマトグラフィーを用いて確
認できた。尚、この際の検出波長は193nmで、通電
(上記分解)に要した時間は60分であった。
[0011] The method for carrying out the method will be described in detail. 0.1149 g of tetraethylammonium perchlorate
Was dissolved uniformly in a two-layer electrolytic cell, and 470 μg of aldrin was added to the anode side to dissolve with stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, the amount of electricity is 2.4.
When 9 clones (20 F / mol), 9
Decomposition of 9.5% or more could be confirmed by using high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 193 nm, and the time required for energization (decomposition) was 60 minutes.

【0012】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にエンドリン480μ
gを添加して攪拌溶解させた。これにAg/Ag+を参
照電極として白金の陽極に+2.10Vの酸化電位をか
けて、一定の電位で電気分解を行った。その結果通電量
が2.43クローン(20F/mol)の時にエンドリ
ンの99.0%以上が分解されることが、UV−Vis
吸光検出器を接続した高速液体クロマトグラフィーを用
いて確認できた。尚、この際の検出波長は193nm
で、通電(上記分解)に要した時間は59分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell, and put 480μ of endrin on the anode side.
g was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, 99.0% or more of the endrin was degraded when the amount of electricity was 2.43 clones (20 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an absorption detector. In this case, the detection wavelength is 193 nm.
The time required for energization (disassembly) was 59 minutes.

【0013】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にクロルデン500μ
gを添加して攪拌溶解させた。これにAg/Ag+を参
照電極として白金の陽極に+2.10Vの酸化電位をか
けて、一定の電位で電気分解を行った。その結果通電量
が2.35クローン(20F/mol)の時にクロルデ
ンの99.2%以上が分解されることが、UV−Vis
吸光検出器を接続した高速液体クロマトグラフィーを用
いて確認できた。尚、この際の検出波長は193nm
で、通電(上記分解)に要した時間は57分であった。
[0013] Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell and put 500μ
g was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, 99.2% or more of chlordane was decomposed when the amount of electricity was 2.35 clones (20 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an absorption detector. In this case, the detection wavelength is 193 nm.
The time required for energization (disassembly) was 57 minutes.

【0014】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にディルドリン480
μgを添加して攪拌溶解させた。これにAg/Ag+
参照電極として白金の陽極に+2.10Vの酸化電位を
かけて、一定の電位で電気分解を行った。その結果通電
量が2.43クローン(20F/mol)の時にディル
ドリンの99.0%以上が分解されることが、UV−V
is吸光検出器を接続した高速液体クロマトグラフィー
を用いて確認できた。尚、この際の検出波長は193n
mで、通電(上記分解)に要した時間は59分であっ
た。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Place evenly in a layered electrolytic cell and place dieldrin 480 on the anode side.
μg was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, 99.0% or more of dieldrin was decomposed when the amount of electricity was 2.43 clones (20 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an is absorption detector. The detection wavelength at this time is 193n.
m, the time required for energization (decomposition) was 59 minutes.

【0015】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にヘプタクロル470
μgを添加して攪拌溶解させた。これにAg/Ag+
参照電極として白金の陽極に+2.10Vの酸化電位を
かけて、一定の電位で電気分解を行った。その結果通電
量が2.43クローン(20F/mol)の時にヘプタ
クロルの99.5%以上が分解されることが、UV−V
is吸光検出器を接続した高速液体クロマトグラフィー
を用いて確認できた。尚、この際の検出波長は193n
mで、通電(上記分解)に要した時間は59分であっ
た。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell and put heptachlor 470 on the anode side.
μg was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, 99.5% or more of heptachlor was decomposed when the amount of electricity was 2.43 clones (20 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an is absorption detector. The detection wavelength at this time is 193n.
m, the time required for energization (decomposition) was 59 minutes.

【0016】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,4,5−トリク
ロロフェノキシ酢酸320μgを添加して攪拌溶解させ
た。これにAg/Ag+を参照電極として白金の陽極に
+2.10Vの酸化電位をかけて、一定の電位で電気分
解を行った。その結果通電量が2.42クローン(20
F/mol)の時に2,4,5−トリクロロフェノキシ
酢酸の98.5%以上が分解されることが、UV−Vi
s吸光検出器を接続した高速液体クロマトグラフィーを
用いて確認できた。尚、この際の検出波長は256nm
で、通電(上記分解)に要した時間は58分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The solution was uniformly placed in a layered electrolytic cell, and 320 μg of 2,4,5-trichlorophenoxyacetic acid was added to the anode side and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, the current flow was 2.42 clones (20
(F / mol), 98.5% or more of 2,4,5-trichlorophenoxyacetic acid was decomposed by UV-Vi
It could be confirmed using high performance liquid chromatography connected to an s absorption detector. In this case, the detection wavelength is 256 nm.
The time required for energization (disassembly) was 58 minutes.

【0017】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にジクロロジフェニル
トリクロロエタン570μgを添加して攪拌溶解させ
た。これにAg/Ag+を参照電極として白金の陽極に
+2.10Vの酸化電位をかけて、一定の電位で電気分
解を行った。その結果通電量が1.55クローン(10
F/mol)の時にジクロロジフェニルトリクロロエタ
ンの98.5%以上が分解されることが、UV−Vis
吸光検出器を接続した高速液体クロマトグラフィーを用
いて確認できた。尚、この際の検出波長は256nm
で、通電(上記分解)に要した時間は37分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 570 μg of dichlorodiphenyltrichloroethane was added to the anode side and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, the amount of electricity was 1.55 clones (10
(F / mol), 98.5% or more of dichlorodiphenyltrichloroethane was decomposed in UV-Vis
It could be confirmed by using high performance liquid chromatography connected to an absorption detector. In this case, the detection wavelength is 256 nm.
The time required for energization (disassembly) was 37 minutes.

【0018】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にメトキシクロル55
0μgを添加して攪拌溶解させた。これにAg/Ag+
を参照電極として白金の陽極に+2.10Vの酸化電位
をかけて、一定の電位で電気分解を行った。その結果通
電量が1.54クローン(10F/mol)の時にアル
ドリンの98.0%以上が分解されることが、UV−V
is吸光検出器を接続した高速液体クロマトグラフィー
を用いて確認できた。尚、この際の検出波長は256n
mで、通電(上記分解)に要した時間は37分であっ
た。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell, and put methoxychlor 55 on the anode side.
0 μg was added and dissolved by stirring. Ag / Ag +
Was used as a reference electrode, an oxidation potential of +2.10 V was applied to the platinum anode, and electrolysis was performed at a constant potential. As a result, 98.0% or more of aldrin was decomposed when the amount of electricity was 1.54 clones (10 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an is absorption detector. The detection wavelength at this time is 256n
m, the time required for energization (decomposition) was 37 minutes.

【0019】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にビフェニル200μ
gを添加して攪拌溶解させた。これにAg/Ag+を参
照電極として白金の陽極に+2.10Vの酸化電位をか
けて、一定の電位で電気分解を行った。その結果通電量
が1.25クローン(10F/mol)の時にビフェニ
ルの99.0%以上が分解されることが、UV−Vis
吸光検出器を接続した高速液体クロマトグラフィーを用
いて確認できた。尚、この際の検出波長は256nm
で、通電(上記分解)に要した時間は30分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell and put 200μ of biphenyl on the anode side.
g was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, 99.0% or more of biphenyl was decomposed when the amount of electricity was 1.25 clones (10 F / mol).
It could be confirmed by using high performance liquid chromatography connected to an absorption detector. In this case, the detection wavelength is 256 nm.
The time required for energization (the above decomposition) was 30 minutes.

【0020】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,2−ジヒドロキ
シビフェニル210μgを添加して攪拌溶解させた。こ
れにAg/Ag+を参照電極として白金の陽極に+2.
10Vの酸化電位をかけて、一定の電位で電気分解を行
った。その結果通電量が1.63クローン(15F/m
ol)の時に2,2−ジヒドロキシビフェニルの98.
5%以上が分解されることが、UV−Vis吸光検出器
を接続した高速液体クロマトグラフィーを用いて確認で
きた。尚、この際の検出波長は256nmで、通電(上
記分解)に要した時間は39分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 210 μg of 2,2-dihydroxybiphenyl was added to the anode side and dissolved by stirring. Ag / Ag + as a reference electrode and +2.
Electrolysis was performed at a constant potential by applying an oxidation potential of 10V. As a result, the current flow was 1.63 clones (15 F / m
ol) at the time of 2,2-dihydroxybiphenyl.
Decomposition of 5% or more could be confirmed by using high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 39 minutes.

【0021】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,3−ジヒドロキ
シビフェニル210μgを添加して攪拌溶解させた。こ
れにAg/Ag+を参照電極として白金の陽極に+2.
10Vの酸化電位をかけて、一定の電位で電気分解を行
った。その結果通電量が1.63クローン(15F/m
ol)の時に2,3−ジヒドロキシビフェニルの98.
5%以上が分解されることが、UV−Vis吸光検出器
を接続した高速液体クロマトグラフィーを用いて確認で
きた。尚、この際の検出波長は256nmで、通電(上
記分解)に要した時間は39分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 210 μg of 2,3-dihydroxybiphenyl was added to the anode side and dissolved by stirring. Ag / Ag + as a reference electrode and +2.
Electrolysis was performed at a constant potential by applying an oxidation potential of 10V. As a result, the current flow was 1.63 clones (15 F / m
ol) at the time of 2,3-dihydroxybiphenyl.
Decomposition of 5% or more could be confirmed by using high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 39 minutes.

【0022】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に1,2−ベンゾピレ
ン250μgを添加して攪拌溶解させた。これにAg/
Ag+を参照電極として白金の陽極に+2.10Vの酸
化電位をかけて、一定の電位で電気分解を行った。その
結果通電量が1.91クローン(20F/mol)の時
に1,2−ベンゾピレンの98.5%以上が分解される
ことが、UV−Vis吸光検出器を接続した高速液体ク
ロマトグラフィーを用いて確認できた。尚、この際の検
出波長は256nmで、通電(上記分解)に要した時間
は46分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 250 µg of 1,2-benzopyrene was added to the anode side and dissolved by stirring. Ag /
Electrolysis was performed at a constant potential by applying an oxidation potential of +2.10 V to the platinum anode using Ag + as a reference electrode. As a result, 98.5% or more of 1,2-benzopyrene was decomposed when the amount of electricity passed was 1.91 clones (20 F / mol), using high performance liquid chromatography connected to a UV-Vis absorption detector. It could be confirmed. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 46 minutes.

【0023】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にスチレン190μg
を添加して攪拌溶解させた。これにAg/Ag+を参照
電極として白金の陽極に+2.10Vの酸化電位をかけ
て、一定の電位で電気分解を行った。その結果通電量が
3.52クローン(20F/mol)の時にスチレンの
98.0%以上が分解されることが、UV−Vis吸光
検出器を接続した高速液体クロマトグラフィーを用いて
確認できた。尚、この際の検出波長は256nmで、通
電(上記分解)に要した時間は85分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in a layered electrolytic cell, 190 μg of styrene on the anode side
Was added and dissolved by stirring. An oxidation potential of +2.10 V was applied to the platinum anode using Ag / Ag + as a reference electrode, and electrolysis was performed at a constant potential. As a result, it was confirmed that 98.0% or more of styrene was decomposed when the amount of electricity passed was 3.52 clones (20 F / mol), using high-performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 85 minutes.

【0024】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にビスフェノールA2
30μgを添加して攪拌溶解させた。これにAg/Ag
+を参照電極として白金の陽極に+2.10Vの酸化電
位をかけて、一定の電位で電気分解を行った。その結果
通電量が0.972クローン(10F/mol)の時に
ビスフェノールAの99.5%以上が分解されること
が、UV−Vis吸光検出器を接続した高速液体クロマ
トグラフィーを用いて確認できた。尚、この際の検出波
長は256nmで、通電(上記分解)に要した時間は2
3分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Bisphenol A2 is placed evenly in a layered electrolytic cell
30 μg was added and dissolved by stirring. Ag / Ag
+ Over an oxidation potential of + 2.10 V to platinum anode as the reference electrode, it was electrolyzed at a constant potential. As a result, 99.5% or more of bisphenol A was decomposed when the amount of electricity was 0.972 clones (10 F / mol), which could be confirmed by using high performance liquid chromatography connected to a UV-Vis absorption detector. . The detection wavelength at this time was 256 nm, and the time required for energization (the above decomposition) was 2
3 minutes.

【0025】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,4−ジクロロフ
ェノール200μgを添加して攪拌溶解させた。これに
Ag/Ag+を参照電極として白金の陽極に+2.10
Vの酸化電位をかけて、一定の電位で電気分解を行っ
た。その結果通電量が2.37クローン(20F/mo
l)の時に2,4−ジクロロフェノールの99.0%以
上が分解されることが、UV−Vis吸光検出器を接続
した高速液体クロマトグラフィーを用いて確認できた。
尚、この際の検出波長は256nmで、通電(上記分
解)に要した時間は57分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 200 μg of 2,4-dichlorophenol was added to the anode side and dissolved by stirring. In addition, +2.10 was applied to the platinum anode using Ag / Ag + as a reference electrode.
Electrolysis was performed at a constant potential by applying an oxidation potential of V. As a result, the amount of electricity was 2.37 clones (20 F / mo).
It was confirmed that 99.0% or more of 2,4-dichlorophenol was decomposed in 1) by using high performance liquid chromatography connected to a UV-Vis absorption detector.
The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 57 minutes.

【0026】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,5−ジクロロフ
ェノール200μgを添加して攪拌溶解させた。これに
Ag/Ag+を参照電極として白金の陽極に+2.10
Vの酸化電位をかけて、一定の電位で電気分解を行っ
た。その結果通電量が2.37クローン(20F/mo
l)の時に2,5−ジクロロフェノールの99.0%以
上が分解されることが、UV−Vis吸光検出器を接続
した高速液体クロマトグラフィーを用いて確認できた。
尚、この際の検出波長は256nmで、通電(上記分
解)に要した時間は57分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 200 μg of 2,5-dichlorophenol was added to the anode side and dissolved by stirring. In addition, +2.10 was applied to the platinum anode using Ag / Ag + as a reference electrode.
Electrolysis was performed at a constant potential by applying an oxidation potential of V. As a result, the amount of electricity was 2.37 clones (20 F / mo).
At 1), it was confirmed that 99.0% or more of 2,5-dichlorophenol was decomposed by using high performance liquid chromatography connected to a UV-Vis absorption detector.
The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 57 minutes.

【0027】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,6−ジクロロフ
ェノール200μgを添加して攪拌溶解させた。これに
Ag/Ag+を参照電極として白金の陽極に+2.10
Vの酸化電位をかけて、一定の電位で電気分解を行っ
た。その結果通電量が2.37クローン(20F/mo
l)の時に2,6−ジクロロフェノールの99.0%以
上が分解されることが、UV−Vis吸光検出器を接続
した高速液体クロマトグラフィーを用いて確認できた。
尚、この際の検出波長は256nmで、通電(上記分
解)に要した時間は57分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 200 μg of 2,6-dichlorophenol was added to the anode side and dissolved by stirring. In addition, +2.10 was applied to the platinum anode using Ag / Ag + as a reference electrode.
Electrolysis was performed at a constant potential by applying an oxidation potential of V. As a result, the amount of electricity was 2.37 clones (20 F / mo).
It was confirmed that 99.0% or more of 2,6-dichlorophenol was decomposed in 1) by using high performance liquid chromatography connected to a UV-Vis absorption detector.
The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 57 minutes.

【0028】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に3,4−ジクロロフ
ェノール200μgを添加して攪拌溶解させた。これに
Ag/Ag+を参照電極として白金の陽極に+2.10
Vの酸化電位をかけて、一定の電位で電気分解を行っ
た。その結果通電量が2.37クローン(20F/mo
l)の時に3,4−ジクロロフェノールの99.0%以
上が分解されることが、UV−Vis吸光検出器を接続
した高速液体クロマトグラフィーを用いて確認できた。
尚、この際の検出波長は256nmで、通電(上記分
解)に要した時間は57分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 200 μg of 3,4-dichlorophenol was added to the anode side and dissolved by stirring. In addition, +2.10 was applied to the platinum anode using Ag / Ag + as a reference electrode.
Electrolysis was performed at a constant potential by applying an oxidation potential of V. As a result, the amount of electricity was 2.37 clones (20 F / mo).
At 1), it was confirmed that 99.0% or more of 3,4-dichlorophenol was decomposed using high performance liquid chromatography connected to a UV-Vis absorption detector.
The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 57 minutes.

【0029】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に3,5−ジクロロフ
ェノール200μgを添加して攪拌溶解させた。これに
Ag/Ag+を参照電極として白金の陽極に+2.10
Vの酸化電位をかけて、一定の電位で電気分解を行っ
た。その結果通電量が2.37クローン(20F/mo
l)の時に3,5−ジクロロフェノールの99.0%以
上が分解されることが、UV−Vis吸光検出器を接続
した高速液体クロマトグラフィーを用いて確認できた。
尚、この際の検出波長は256nmで、通電(上記分
解)に要した時間は57分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The solution was uniformly placed in a layered electrolytic cell, and 200 μg of 3,5-dichlorophenol was added to the anode side and dissolved by stirring. In addition, +2.10 was applied to the platinum anode using Ag / Ag + as a reference electrode.
Electrolysis was performed at a constant potential by applying an oxidation potential of V. As a result, the amount of electricity was 2.37 clones (20 F / mo).
At 1), it was confirmed that 99.0% or more of 3,5-dichlorophenol was decomposed by using high performance liquid chromatography connected with a UV-Vis absorption detector.
The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 57 minutes.

【0030】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,4,5−トリク
ロロフェノール200μgを添加して攪拌溶解させた。
これにAg/Ag+を参照電極として白金の陽極に+
2.10Vの酸化電位をかけて、一定の電位で電気分解
を行った。その結果通電量が1.95クローン(20F
/mol)の時に2,4,5−トリクロロフェノールの
98.5%以上が分解されることが、UV−Vis吸光
検出器を接続した高速液体クロマトグラフィーを用いて
確認できた。尚、この際の検出波長は256nmで、通
電(上記分解)に要した時間は47分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
200 μg of 2,4,5-trichlorophenol was added uniformly to the anode side and dissolved by stirring.
Ag / Ag + is used as a reference electrode, and +
Electrolysis was performed at a constant potential by applying an oxidation potential of 2.10 V. As a result, the energization amount was 1.95 clones (20F
/ Mol), 98.5% or more of 2,4,5-trichlorophenol was decomposed by high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 47 minutes.

【0031】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側に2,4,6−トリク
ロロフェノール200μgを添加して攪拌溶解させた。
これにAg/Ag+を参照電極として白金の陽極に+
2.10Vの酸化電位をかけて、一定の電位で電気分解
を行った。その結果通電量が1.95クローン(20F
/mol)の時に2,4,6−トリクロロフェノールの
98.5%以上が分解されることが、UV−Vis吸光
検出器を接続した高速液体クロマトグラフィーを用いて
確認できた。尚、この際の検出波長は256nmで、通
電(上記分解)に要した時間は47分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 200 μg of 2,4,6-trichlorophenol was added to the anode side and dissolved by stirring.
Ag / Ag + is used as a reference electrode, and +
Electrolysis was performed at a constant potential by applying an oxidation potential of 2.10 V. As a result, the energization amount was 1.95 clones (20F
/ Mol), 98.5% or more of 2,4,6-trichlorophenol was decomposed by high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 47 minutes.

【0032】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にテトラクロロエチレ
ン350μgを添加して攪拌溶解させた。これにAg/
Ag+を参照電極として白金の陽極に+2.10Vの酸
化電位をかけて、一定の電位で電気分解を行った。その
結果通電量が2.04クローン(10F/mol)の時
にテトラクロロエチレンの99.0%以上が分解される
ことが、UV−Vis吸光検出器を接続した高速液体ク
ロマトグラフィーを用いて確認できた。尚、この際の検
出波長は210nmで、通電(上記分解)に要した時間
は49分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The mixture was uniformly placed in a layered electrolytic cell, and 350 μg of tetrachloroethylene was added to the anode side and dissolved by stirring. Ag /
Electrolysis was performed at a constant potential by applying an oxidation potential of +2.10 V to the platinum anode using Ag + as a reference electrode. As a result, 99.0% or more of tetrachloroethylene was decomposed when the amount of electricity passed was 2.04 clones (10 F / mol), using high-performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 210 nm, and the time required for energization (decomposition) was 49 minutes.

【0033】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にトリクロロエチレン
350μgを添加して攪拌溶解させた。これにAg/A
+を参照電極として白金の陽極に+2.10Vの酸化
電位をかけて、一定の電位で電気分解を行った。その結
果通電量が2.57クローン(10F/mol)の時に
トリクロロエチレンの99.0%以上が分解されること
が、UV−Vis吸光検出器を接続した高速液体クロマ
トグラフィーを用いて確認できた。尚、この際の検出波
長は210nmで、通電(上記分解)に要した時間は6
2分であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
The solution was uniformly placed in a layered electrolytic cell, and 350 μg of trichlorethylene was added to the anode side and dissolved by stirring. Ag / A
Electrolysis was performed at a constant potential by applying an oxidation potential of +2.10 V to the platinum anode using g + as a reference electrode. As a result, 99.0% or more of trichlorethylene was decomposed when the amount of electricity was 2.57 clones (10 F / mol), which could be confirmed by using high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 210 nm, and the time required for energization (the above decomposition) was 6 nm.
Two minutes.

【0034】過塩素酸テトラエチルアンモニウム0.1
149gを溶解したアセトニトリル溶液5.0mlを2
層式電解槽に均等に入れ、陽極側にPCB(混合物)4
10μgを添加して攪拌溶解させた。これにAg/Ag
+を参照電極として白金の陽極に+2.10Vの酸化電
位をかけて、一定の電位で電気分解を行った。その結果
通電量が3.65クローン(30F/mol)の時にP
CB(混合物)の98.0%以上が分解されることが、
UV−Vis吸光検出器を接続した高速液体クロマトグ
ラフィーを用いて確認できた。尚、この際の検出波長は
256nmで、通電(上記分解)に要した時間は88分
であった。
Tetraethylammonium perchlorate 0.1
149 g of acetonitrile solution (5.0 ml) was dissolved in 2
Put evenly in the layered electrolytic cell and put PCB (mixture) 4 on the anode side.
10 μg was added and dissolved by stirring. Ag / Ag
+ Over an oxidation potential of + 2.10 V to platinum anode as the reference electrode, it was electrolyzed at a constant potential. As a result, when the amount of electricity was 3.65 clones (30 F / mol), P
More than 98.0% of the CB (mixture) is decomposed,
It could be confirmed using high performance liquid chromatography connected to a UV-Vis absorption detector. The detection wavelength at this time was 256 nm, and the time required for energization (decomposition) was 88 minutes.

【0035】各有害物質の電気分解を図2に示したよう
な無隔膜電解槽を用いて行った場合にも各有害物質の分
解に要する電気量(通電量)はほとんど変わらず、分解
率も同様であることがわかった。よって、先に記した有
害物質に関して2層式の電解槽を用いて電気分解を行う
場合と、1層式の無隔膜電解槽を用いて電気分解を行う
場合の2方法が可能である。適用しやすい方法を選択し
て、電気分解を行うことが望ましい。
Even when the electrolysis of each harmful substance is carried out using a non-diaphragm electrolytic cell as shown in FIG. 2, the amount of electricity required to decompose each harmful substance (the amount of electricity) hardly changes and the decomposition rate also increases. It turned out to be the same. Therefore, two methods are possible for performing the electrolysis of the harmful substances described above using a two-layer electrolytic cell and performing electrolysis using a one-layer non-diaphragm electrolytic cell. It is desirable to perform the electrolysis by selecting a method that is easy to apply.

【0036】[0036]

【発明の効果】昨今、問題になっているPCBは先の実
施例のように2層式電解槽のみならず、1層式の無隔膜
電解槽でも同様に電気分解できることから、特に高濃度
のPCBで汚染された旧トランスの絶縁油中のPCBの
効率的な1次分解方法として最適である。例えば、トラ
ンス中の絶縁油に支持電解質として過塩素酸塩を0.0
5〜1.0mol/l(M)程度の濃度に溶解させ、炭
素電極2本を絶縁油中に挿入し、2極間の電位差が2V
程度になるように保って電流を流すかあるいは参照電極
を設けて陽極と参照電極との電位差が2V程度になるよ
うにして電流を流すことによって、効率よく高濃度のP
CBをもとの1/10以下の濃度まで低下させることが
可能である。
As described above, the problematic PCB can be electrolyzed not only in a two-layer electrolytic cell as in the previous embodiment but also in a single-layer electrolytic cell. It is optimal as an efficient primary decomposition method of PCB in insulating oil of old transformer contaminated with PCB. For example, perchlorate is added as a supporting electrolyte to insulating oil in a transformer at 0.0
After dissolving at a concentration of about 5 to 1.0 mol / l (M), two carbon electrodes are inserted into insulating oil, and the potential difference between the two electrodes is 2 V
Or a reference electrode is provided to supply a current so that the potential difference between the anode and the reference electrode is about 2 V.
It is possible to reduce CB to a concentration of 1/10 or less of the original.

【0037】その他各電気分解の時間は、電流値が0.
7mA程度におさえて行った場合の時間である。電極面
積を大きくしたり支持電解質を増やしたり、基質濃度を
高めたりすることによって、電気分解の時間は短縮が可
能である。例えば、1層式電解槽で電解槽自体をガラス
製からカーボン製に変えて、電解槽自体を電極として使
用した場合には分解時間にして約5分の1に短縮された
が、この場合、電解槽自体を電極として使用することは
同時間に5倍量の基質を電気分解するための方法にもな
ることも可能である。
In addition, during the time of each electrolysis, the electric current value is set to 0.
This is the time when the operation is performed at about 7 mA. The electrolysis time can be reduced by increasing the electrode area, increasing the supporting electrolyte, or increasing the substrate concentration. For example, in a single-layer electrolytic cell, when the electrolytic cell itself was changed from glass to carbon and the electrolytic cell itself was used as an electrode, the decomposition time was reduced to about one-fifth, but in this case, Using the electrolytic cell itself as an electrode can also be a method for electrolyzing 5 times the amount of substrate at the same time.

【0038】又、各有害有機化合物は非プロトン性電解
溶液中での環開裂がおこり、毒性のほとんどない低分子
化合物に分解される。この分解は不可逆的であることか
ら、2層式電解槽の場合は、陽極側、陰極側の電極負荷
電位をリバースしてやることによって、両電解溶液中の
有害有機化合物類を分解できることになる。又、1層式
無隔膜電解槽の場合は、作用極である白金電極と対極で
ある炭素電極の電極負荷電位をリバースしてやることに
よって、両電解溶液中の有害有機化合物類を分解できる
ことになる。又、本発明は短時間的にも、また省エネル
ギー的にも有害有機化合物を安全な低分子化合物に電気
化学的に分解することが可能である。装置が小型で、か
つ特殊な使用条件(高温・高圧)を必要としないため、
工業用としても、一般家庭用としても適用可能である。
Further, each harmful organic compound undergoes ring cleavage in an aprotic electrolytic solution and is decomposed into a low molecular weight compound having almost no toxicity. Since this decomposition is irreversible, in the case of a two-layer electrolytic cell, harmful organic compounds in both electrolytic solutions can be decomposed by reversing the electrode load potential on the anode side and the cathode side. In the case of a single-layer type non-diaphragm electrolytic cell, the harmful organic compounds in both electrolytic solutions can be decomposed by reversing the electrode load potential of the platinum electrode as the working electrode and the carbon electrode as the counter electrode. In addition, the present invention can electrochemically decompose harmful organic compounds into safe low-molecular compounds in a short time and in energy saving. Since the equipment is small and does not require special use conditions (high temperature and high pressure),
It is applicable for industrial use and general household use.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す有害有機化合物の分解
方法を示すの2層式電解槽の説明図である。
FIG. 1 is an explanatory view of a two-layer electrolytic cell showing a method for decomposing harmful organic compounds according to one embodiment of the present invention.

【図2】本発明の一実施例を示す有害有機化合物の分解
方法を示すの1層式無隔膜電解槽の説明図である。
FIG. 2 is an explanatory view of a one-layer type diaphragm-free electrolytic cell showing a method for decomposing harmful organic compounds according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 白金電極(作用極) 12 参照電極(Ag/Ag+) 13 炭素白金電極(対極) 14 隔膜 15 2層式電解槽 16 撹拌子 17 気孔付き栓 18 陽極側電解槽 19 陰極側電解槽 20 電解溶液 30 1層式無隔膜電解槽DESCRIPTION OF SYMBOLS 11 Platinum electrode (working electrode) 12 Reference electrode (Ag / Ag + ) 13 Carbon platinum electrode (counter electrode) 14 Diaphragm 15 Two-layer electrolytic tank 16 Stirrer 17 Porous plug 18 Anode-side electrolytic tank 19 Cathodic-side electrolytic tank 20 Electrolysis Solution 30 1-layer type non-diaphragm electrolytic cell

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】有害有機化合物類を含有する被処理物を非
プロトン性溶媒中に溶解し、電解槽に陽極側と陰極側を
分ける隔膜を有する2層式電解槽もしくは3層式電解槽
とし、プラスの酸化電位もしくはマイナスの還元電位に
よる通電を行うことによって電気化学的分解を行う、有
害有機化合物類を分解することを特徴とする有害有機化
合物類の分解方法。
An object to be treated containing a harmful organic compound is dissolved in an aprotic solvent to form a two-layer electrolytic cell or a three-layer electrolytic cell having a diaphragm dividing an anode side and a cathode side. A method for decomposing harmful organic compounds, comprising decomposing harmful organic compounds by conducting electrochemical decomposition by applying a current at a positive oxidation potential or a negative reduction potential.
【請求項2】有害有機化合物類を含有する被処理物を非
プロトン性溶媒中に溶解し、電解槽に陽極側と陰極側を
分ける隔膜を有さない無隔膜電解槽とし、プラスの酸化
電位もしくはマイナスの還元電位による通電を行うこと
によって電気化学的分解を行う、有害有機化合物類を分
解することを特徴とする有害有機化合物類の分解方法。
2. An object to be treated containing harmful organic compounds is dissolved in an aprotic solvent to form a non-diaphragm electrolytic cell having no diaphragm separating an anode side and a cathode side in an electrolytic cell, and having a positive oxidation potential. Alternatively, a method for decomposing harmful organic compounds, characterized in that harmful organic compounds are decomposed, wherein electrochemical decomposition is performed by applying an electric current with a negative reduction potential.
【請求項3】有害有機化合物類を含有する被処理物を非
プロトン性溶媒中に溶解し、電解槽に陽極側と陰極側を
分ける隔膜を有する2層式電解槽もしくは3層式電解槽
とし、電圧設定のため参照電極を設け、プラスの酸化電
位もしくはマイナスの還元電位による通電を行うことに
よって電気化学的分解を行う、有害有機化合物類を分解
することを特徴とする有害有機化合物類の分解方法。
3. An object to be treated containing a harmful organic compound is dissolved in an aprotic solvent to form a two-layer electrolytic cell or a three-layer electrolytic cell having a diaphragm separating an anode side and a cathode side in an electrolytic cell. Decompose harmful organic compounds characterized by decomposing harmful organic compounds by providing a reference electrode for voltage setting and conducting electrochemical decomposition by applying a positive oxidation potential or a negative reduction potential. Method.
【請求項4】有害有機化合物類を含有する被処理物を非
プロトン性溶媒中に溶解し、電解槽に陽極側と陰極側を
分ける隔膜を有さない無隔膜電解槽とし、電圧設定のた
め参照電極を設け、プラスの酸化電位もしくはマイナス
の還元電位による通電を行うことによって電気化学的分
解を行う、有害有機化合物類を分解することを特徴とす
る有害有機化合物類の分解方法。
4. An object to be treated containing a harmful organic compound is dissolved in an aprotic solvent to form a non-diaphragm electrolytic cell having no diaphragm for separating an anode side and a cathode side in an electrolytic cell. A method for decomposing harmful organic compounds, comprising decomposing harmful organic compounds by performing electrochemical decomposition by providing a reference electrode and applying a current at a positive oxidation potential or a negative reduction potential.
【請求項5】有害有機化合物類を含有する被処理物がポ
リカーボネート樹脂やエポキシ樹脂を製造する原料等と
して使用される、ビスフェノールAであることを特徴と
する請求項1乃至4に記載の有害有機化合物類の分解方
法。
5. The harmful organic substance according to claim 1, wherein the object containing the harmful organic compound is bisphenol A used as a raw material for producing a polycarbonate resin or an epoxy resin. A method for decomposing compounds.
【請求項6】有害有機化合物類を含有する被処理物が発
泡ポリスチレンの製造工程の副産物である、スチレンで
あることを特徴とする請求項1乃至4に記載の有害有機
化合物類の分解方法。
6. The method for decomposing harmful organic compounds according to claim 1, wherein the object to be treated containing harmful organic compounds is styrene, which is a by-product of a process for producing expanded polystyrene.
【請求項7】有害有機化合物類を含有する被処理物がコ
ールタール処理、石油精製、コークス製造、灯油処理、
発電等の製造工程から発生する1,2−ベンゾピレンで
あることを特徴とする請求項1乃至4に記載の有害有機
化合物類の分解方法。
7. An object to be treated containing harmful organic compounds is coal tar treatment, petroleum refining, coke production, kerosene treatment,
The method for decomposing harmful organic compounds according to any one of claims 1 to 4, wherein the harmful organic compound is 1,2-benzopyrene generated from a manufacturing process such as power generation.
【請求項8】有害有機化合物類を含有する被処理物が界
面活性剤の原料であるアルキルフェノール類、ノニルフ
ェノールであることを特徴とする請求項1乃至4に記載
の有害有機化合物類の分解方法。
8. The method for decomposing harmful organic compounds according to claim 1, wherein the object to be treated containing harmful organic compounds is an alkylphenol or nonylphenol which is a raw material of a surfactant.
【請求項9】有害有機化合物類を含有する被処理物が有
機塩素系化合物の農業用殺虫剤である、ジクロロジフェ
ニルトリクロロエタン、メトキシクロル等のDDT類、
その他、アルドリン、エンドリン、クロルデン、ディル
ドリン、ヘプタクロル、ヘプタクロルエポキサイド、
又、2,4,5−トリクロロフェノキシ酢酸であること
を特徴とする請求項1乃至4に記載の有害有機化合物類
の分解方法。
9. DDTs such as dichlorodiphenyltrichloroethane and methoxychlor, wherein the object to be treated containing harmful organic compounds is an organochlorine compound agricultural pesticide;
In addition, aldrin, endrin, chlordane, dieldrin, heptachlor, heptachlor epoxide,
5. The method for decomposing harmful organic compounds according to claim 1, wherein the method is 2,4,5-trichlorophenoxyacetic acid.
【請求項10】有害有機化合物類を含有する被処理物が
コプラナーPCBを含むポリ塩化ビフェニル類であるこ
とを特徴とする請求項1乃至4に記載の有害有機化合物
類の分解方法。
10. The method for decomposing harmful organic compounds according to claim 1, wherein the object to be treated containing harmful organic compounds is polychlorinated biphenyls containing coplanar PCB.
【請求項11】有害有機化合物類を含有する被処理物が
工業廃水汚染物質である、テトラクロロエチレン、トリ
クロロエチレン、又冷却用に使用されるフロンガス類で
あることを特徴とする請求項1乃至4に記載の有害有機
化合物類の分解方法。
11. The process according to claim 1, wherein the object to be treated containing harmful organic compounds is tetrachloroethylene, trichloroethylene, which is an industrial wastewater pollutant, or chlorofluorocarbons used for cooling. Decomposition method of harmful organic compounds.
【請求項12】有害有機化合物類を含有する被処理物が
ビフェニル、2,2−ジヒドロキシビフェニル、2,3
−ジヒドロキシビフェニル等のビフェニル類であること
を特徴とする請求項1乃至4に記載の有害有機化合物類
の分解方法。
12. The object to be treated containing harmful organic compounds is biphenyl, 2,2-dihydroxybiphenyl, 2,3
The method for decomposing harmful organic compounds according to any one of claims 1 to 4, wherein the method is a biphenyl such as dihydroxybiphenyl.
【請求項13】有害有機化合物類を含有する被処理物が
2,4−ジクロロフェノール、2,5−ジクロロフェノ
ール、2,6−ジクロロフェノール、3,4−ジクロロ
フェノール、3,5−ジクロロフェノール2,4,5−
トリクロロフェノール、2,4,6−トリクロロフェノ
ール、2,4,5,6テトラクロロフェノール、ペンタ
クロロフェノール等のポリクロロフェノール類であるこ
とを特徴とする請求項1乃至4に記載の有害有機化合物
類の分解方法。
13. The object to be treated containing harmful organic compounds is 2,4-dichlorophenol, 2,5-dichlorophenol, 2,6-dichlorophenol, 3,4-dichlorophenol, 3,5-dichlorophenol. 2,4,5-
The harmful organic compound according to any one of claims 1 to 4, which is a polychlorophenol such as trichlorophenol, 2,4,6-trichlorophenol, 2,4,5,6 tetrachlorophenol, and pentachlorophenol. How to decompose.
【請求項14】有害有機化合物類を含有する被処理物が
クロロベンゼン類、クロロアニリン類、クロロアニソー
ル類、クロロニトロベンゼン類、であることを特徴とす
る請求項1乃至4に記載の有害有機化合物類の分解方
法。
14. The harmful organic compound according to claim 1, wherein the object to be treated containing the harmful organic compound is chlorobenzene, chloroaniline, chloroanisole, chloronitrobenzene. Decomposition method.
JP10286070A 1998-06-30 1998-09-22 Method for decomposing harmful organic compounds Pending JP2000080489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286070A JP2000080489A (en) 1998-06-30 1998-09-22 Method for decomposing harmful organic compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20117298 1998-06-30
JP10-201172 1998-06-30
JP10286070A JP2000080489A (en) 1998-06-30 1998-09-22 Method for decomposing harmful organic compounds

Publications (1)

Publication Number Publication Date
JP2000080489A true JP2000080489A (en) 2000-03-21

Family

ID=26512620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286070A Pending JP2000080489A (en) 1998-06-30 1998-09-22 Method for decomposing harmful organic compounds

Country Status (1)

Country Link
JP (1) JP2000080489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094382A1 (en) * 2001-05-23 2002-11-28 Ait Co., Ltd. Pcb treating device and pcb treating method by electrolysis
WO2005092448A1 (en) * 2004-03-29 2005-10-06 Ait Co., Ltd. Method and apparatus for dehalogenating organic halide through electrolysis
JP2009041882A (en) * 2007-08-10 2009-02-26 Sharp Corp Humidifying device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094382A1 (en) * 2001-05-23 2002-11-28 Ait Co., Ltd. Pcb treating device and pcb treating method by electrolysis
WO2005092448A1 (en) * 2004-03-29 2005-10-06 Ait Co., Ltd. Method and apparatus for dehalogenating organic halide through electrolysis
JPWO2005092448A1 (en) * 2004-03-29 2008-07-31 鈴木 健二 Method and apparatus for dehalogenating halogenated organic matter by electrolysis
JP2009041882A (en) * 2007-08-10 2009-02-26 Sharp Corp Humidifying device

Similar Documents

Publication Publication Date Title
Mu et al. Decolorization of azo dyes in bioelectrochemical systems
Li et al. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment
Jiang et al. A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity
Li et al. Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate
Rajkumar et al. Electrochemical degradation of cresols for wastewater treatment
Fernando et al. The use of bioelectrochemical systems in environmental remediation of xenobiotics: a review
Karim et al. Boron-doped diamond electrodes for the mineralization of organic pollutants in the real wastewater
Liu et al. Continuous electrochemical oxidation of methyl orange waste water using a three-dimensional electrode reactor
US4702804A (en) Methods for electrochemical reduction of halogenated organic compounds
Clematis et al. Electrochemical oxidation of organic pollutants in low conductive solutions
CN110184623B (en) Pd/C electrocatalyst modified by quaternary ammonium salt, electrode, preparation method and application thereof
Lei et al. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment
US20060231415A1 (en) Electrolysis cell and method
Cheng et al. Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions: I. Material Aspects
EP0876831B1 (en) Process for electrochemical decomposition of organic pollutants
Maharana et al. Electrochemical Degradation of Rhodamine B over Ti/SnO2‐Sb Electrode
Mo et al. Enhanced anodic oxidation and energy saving for dye removal by integrating O2-reducing biocathode into electrocatalytic reactor
Zhao et al. Heterotopic formaldehyde biodegradation through UV/H2O2 system with biosynthetic H2O2
Huang et al. Indirect electrochemical oxidation of chlorophenols in dilute aqueous solutions
Zhang et al. Designing NAZO@ BC electrodes for enhanced elimination of hydrophilic organic pollutants in heterogeneous electro-Fenton system: Insights into the detoxification mediated by 1O2 and• OH
Ren et al. Potential for selective oxidation of aniline in soil washing effluent by active chlorine and testing its practicality
de Melo Henrique et al. Enhancing electrokinetic soil flushing with air stripping for the treatment of soil polluted with phenol and o-chlorophenol
EP0027745A1 (en) A process for the electrochemical degradation of persistent organic compounds, with harmful or potentially harmful properties
JP2000080489A (en) Method for decomposing harmful organic compounds
Rondinini et al. Hydrodehalogenation of Polychloromethanes on Silver‐Based Gas Diffusion Electrodes

Legal Events

Date Code Title Description
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608