JP2000079564A - Abrasive and its manufacture - Google Patents

Abrasive and its manufacture

Info

Publication number
JP2000079564A
JP2000079564A JP24889898A JP24889898A JP2000079564A JP 2000079564 A JP2000079564 A JP 2000079564A JP 24889898 A JP24889898 A JP 24889898A JP 24889898 A JP24889898 A JP 24889898A JP 2000079564 A JP2000079564 A JP 2000079564A
Authority
JP
Japan
Prior art keywords
abrasive
base material
polishing
component
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24889898A
Other languages
Japanese (ja)
Other versions
JP3752083B2 (en
Inventor
Takanori Ochiai
孝則 落合
Setsuo Tani
勢津夫 谷
Tsugunobu Shigenaga
次伸 重永
Noriyuki Motai
規至 馬渡
Hiromitsu Tagi
宏光 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKURA BUSSAN KK
Original Assignee
MIKURA BUSSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKURA BUSSAN KK filed Critical MIKURA BUSSAN KK
Priority to JP24889898A priority Critical patent/JP3752083B2/en
Publication of JP2000079564A publication Critical patent/JP2000079564A/en
Application granted granted Critical
Publication of JP3752083B2 publication Critical patent/JP3752083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an abrasive material having high polishing perfor mance by reducing cost, and attain the processing of abrasive waste and reduc tion of weight. SOLUTION: This method of manufacture comprises a physical treating process making an abrasive waste mixing spent abrasive and impurities as a base material to remove impurities except the base material of the abrasive, heat treatment process for heating the impurity removed base material in a range of 1000 to 1700 deg.C temperature, and a classification process for classifying into a grain size within a specified value by crushing the base material after the heat treatment process. In this way, the material can be manufactured with high manufacturing yield, productivity and mass productivity, and the abrasive of stable new quality with a low cost is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用シリコン
ウエハ−やエレクトロニクス用セラミックス、ガラス等
を研磨する研磨剤及びその製造方法。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive for polishing silicon wafers for semiconductors, ceramics for electronics, glass and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、工業用研磨剤として使用される研
磨剤(砥粒)は、被研磨物に応じてそれぞれ適した材料
の組成物から選ばれていた。例えば、溶融アルミナは汎
用的な研磨剤の一つであって、ボ−キサイトから直接作
られる褐色アルミナと、バイヤ−法で精錬された水酸化
アルミニウムを原料として作られた白色アルミナがあ
る。また、これらにジルコンが混合された研磨剤もあ
り、シリコンウエハ−、光学用ガラス、エレクトロニク
ス用セラミックスのラッピング剤の主流を占めている。
一般に研磨に使用される研磨剤の性能はその硬度、靭
性、粒径と分布、さらには粒子形状によって研削速度、
研削量、表面粗さ、スクラッチ等が決定づけられる。こ
のうち、硬度と靭性は研磨剤の材料が本来もっている性
質によって決まるものである。従って、同じ材料につい
ては、粒径とその分布、さらには粒子形状によって性能
を調整するようになっている。特に、粒径は研磨剤の性
能に最も大きな影響を持つ要因である。粒径が大きいと
研磨効率は高いが、研磨面が粗くなり、スクラッチ、チ
ッピング等の欠陥が多くなる。一方、粒径の小さいもの
は研磨面の粗さは良好になるが、研磨速度が落ちるため
通常粗研磨を施した後のいわゆる仕上げ研磨に使用され
る。
2. Description of the Related Art Heretofore, abrasives (abrasives) used as industrial abrasives have been selected from compositions of materials suitable for each object to be polished. For example, fused alumina is one of the general-purpose abrasives, and there are brown alumina made directly from bauxite and white alumina made from aluminum hydroxide refined by a via method. There are also abrasives in which zircon is mixed with these, and occupy the mainstream of lapping agents for silicon wafers, optical glass, and ceramics for electronics.
Generally, the performance of abrasives used for polishing depends on its hardness, toughness, particle size and distribution, and grinding speed depending on particle shape,
The grinding amount, surface roughness, scratch and the like are determined. Among these, the hardness and toughness are determined by the inherent properties of the abrasive material. Therefore, for the same material, the performance is adjusted according to the particle size and its distribution, and furthermore, the particle shape. In particular, the particle size is the factor that has the greatest effect on the performance of the abrasive. If the particle size is large, the polishing efficiency is high, but the polished surface becomes rough, and defects such as scratching and chipping increase. On the other hand, a material having a small particle diameter has a good polished surface roughness, but has a low polishing rate, so that it is usually used for so-called finish polishing after rough polishing.

【0003】さらに、実際に製造されている研磨剤は粒
度分布を持っており、粗粒から細粒までを含むものであ
るため、粒度分布も重要な要因である。粗大粒子の存在
はスクラッチ(引っ掻き傷)の原因となることが多く十
分な管理が必要である、また極端な細粒は研磨に寄与し
ないので不要であるばかりか、その量が多いと研磨作用
を阻害してむしろ悪い影響を及ぼす。従って一般的に粒
度分布はなるべく狭く安定なものが研磨速度と研磨面の
品質のバランスが良いとされており分級の大切さが重要
視されている。また、粒子形状の研磨性能に及ぼす影響
は重要であり、球形に近いものより扁平がかつたものあ
るいはエッジ、角を持ったものが研磨速度が大きいとさ
れている。
[0003] Further, since the actually manufactured abrasive has a particle size distribution and includes coarse particles to fine particles, the particle size distribution is also an important factor. The presence of coarse particles often causes scratches (scratches) and requires sufficient control. Extremely fine particles do not contribute to polishing and are not only unnecessary. Inhibits and has a rather bad effect. Therefore, it is generally considered that a narrow and stable particle size distribution has a good balance between the polishing rate and the quality of the polished surface, and the importance of classification is regarded as important. Further, the influence of the particle shape on the polishing performance is important, and it is said that those having a flat shape or those having edges and corners have a higher polishing rate than those having a shape close to a sphere.

【0004】なお、現在使用されている半導体用シリコ
ンウエハ−やエレクトロニクス用セラミックスを研磨す
る研磨剤の多くは、褐色アルミナ(Al2O3)とジル
コン(ZrSiO4)の混合物を用い規定値内の粒子径
として5ミクロン〜20ミクロンを設定し、それ以外の
微粒子と粗粒子のものを除去して製造され用いられてい
る。また、ガラス研磨用研磨剤として酸化ジルコニウム
を主成分としてアルミン酸カルシュウム、硫酸マグネシ
ゥムを添加したもの、あるいは板状アルミナ単結晶粉体
と上記研磨剤との混合物から成る研磨剤が提案されてい
る。(特開平08−113773号、特開平03−14
6584号)
Most of the polishing agents currently used for polishing silicon wafers for semiconductors and ceramics for electronics use a mixture of brown alumina (Al 2 O 3) and zircon (ZrSiO 4) and have a particle diameter within a specified value of 5%. It is manufactured and used by setting a micron to 20 microns and removing other fine particles and coarse particles. Further, a polishing agent has been proposed in which zirconium oxide is used as a main component and calcium aluminate or magnesium sulfate is added as a polishing agent for glass polishing, or a mixture of a plate-like alumina single crystal powder and the above polishing agent. (JP-A-08-113773, JP-A-03-14
No. 6584)

【0005】以上のように、粒子形状、粒径及びその分
布の組み合わせによつて、研磨速度と研磨面の品質がほ
ぼ決定されるが、本来両者は、研磨速度が大きくなれば
反対に研磨面が粗くなるという二律背反する性質を持つ
ものであるから、両者のバランスをとった最適な粒子形
状と粒径とが要求されている。
As described above, the polishing rate and the quality of the polished surface are substantially determined by the combination of the particle shape, the particle size and the distribution thereof. Therefore, there is a demand for an optimum particle shape and particle size that balance the two.

【0006】[0006]

【発明が解決しょうとする課題】前記のような従来の研
磨剤においては、種々の問題点を考慮しながら製造され
てきた。しかし、このような前記研磨剤は、研磨時にお
けるスクラッチ(引っ掻き傷)の発生を防止するため、
摩砕粉砕の時間を長く(過粉砕)して粒子表面の鋭角部
分を球状に成るように削っているが、その過粉砕が原因
で規定値内の粒子径の下限である5ミクロン以下の微粒
子が多量に発生、原料の約40%程度がムダになる。従
って、現在の研磨剤の多くは非常に高価で、しかも限り
ある貴重な資源を浪費してしまう問題点があった。
The above-mentioned conventional abrasives have been manufactured in consideration of various problems. However, such abrasives prevent scratches (scratches) from occurring during polishing.
The grinding time is long (over pulverization) to sharpen the sharp part of the particle surface into a sphere, but due to the over pulverization, the fine particles of 5 microns or less, which is the lower limit of the particle diameter within the specified value Is generated in large quantities, and about 40% of the raw material is wasted. Therefore, many of the current abrasives are very expensive, and there is a problem in that limited valuable resources are wasted.

【0007】一方、一旦使用された研磨剤は、研磨時に
被研磨物から発生するセラミツクスやシリコン等の切削
屑やラツプ盤から発生する鉄粉、さらには研磨剤自身が
摩耗して発生する微粒子等の不純物が混在した状態にな
っているため、廃棄物として処理されているのが現状で
あつた。そこでこれらの問題を解決するため、研磨剤の
回収方法も提案されている。(特開平08−00354
3号)
[0007] On the other hand, once used abrasives include ceramics and silicon or other cutting chips generated from the object to be polished during polishing, iron powder generated from a lapping disk, and fine particles generated by abrasion of the abrasive itself. At present, it is treated as waste because the impurities are mixed. Therefore, in order to solve these problems, a method of collecting an abrasive has been proposed. (Japanese Patent Application Laid-Open No. 08-003554)
No. 3)

【0008】前記特開平08−003543号の内容は
使用済みの研磨剤と研磨によって発生した不純物とが混
在する褐色アルミナとジルコンサンドを主体とした研磨
廃棄物を原材料として可溶性の不純物を化学的処理によ
って除去し、その後、粉砕処理して規定値外の微粒子を
取り除く方法が記載されており、廃棄物の再利用として
は優れている方法であった。
The content of the above-mentioned Japanese Patent Application Laid-Open No. 08-003543 is that a polishing waste mainly composed of brown alumina and zircon sand, in which used abrasives and impurities generated by polishing are mixed, is used as a raw material to chemically treat soluble impurities. And then pulverizing to remove fine particles outside the specified value, which is an excellent method for reusing waste.

【0009】しかしながら前記方法では化学処理として
塩酸、硫酸等の強酸を使用するため作業時における危険
性、さらにはこれらの排水処理の環境問題が大きくクロ
−ズアップされ再現性および作業性に多くの制約があっ
た。さらには原料自体の溶解時における成分比率の変化
が発生しその特性が大きく失なわれてしまうという問題
点を有していた。
However, in the above-mentioned method, since a strong acid such as hydrochloric acid or sulfuric acid is used as a chemical treatment, dangers at the time of work and environmental problems of these wastewater treatments are greatly increased, and reproducibility and workability are largely restricted. was there. Further, there is a problem that a change in the component ratio occurs when the raw material itself is dissolved, and the characteristics thereof are largely lost.

【0010】本発明は前記従来の問題点を解決するもの
で、その目的は、従来からの高い研磨性能を失うことな
く精度よく、かつ製造歩留りが高く生産性や量産性に優
れた研磨剤を安価に製造することが出来、さらには研磨
廃棄物の減量化に大きく貢献し得る研磨剤及びその製造
方法を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems. An object of the present invention is to provide a polishing agent which is high in accuracy without losing the conventional high polishing performance, has a high production yield, and is excellent in productivity and mass productivity. An object of the present invention is to provide an abrasive which can be manufactured at low cost and which can greatly contribute to reduction of polishing waste, and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、研磨剤の基材として、使用済みの溶融アル
ナ(Al2O3)成分とジルコン(ZrSiO4)成分
の混合物から成る研磨剤と研磨によって発生した不純物
とが混在する研磨材廃棄物を研磨剤の基材とし、研磨剤
廃棄物から研磨剤の基材以外の不純物を除去する物理的
処理工程と、温度1000〜1700℃の範囲内での熱
処理工程と、熱処理工程後の研磨剤廃棄物の基材を粉砕
処理し規定値内の粒子径に分ける分級工程を備えた構成
からなるものである。 これにより、従来研磨廃棄物と
して処理されていた使用済みの研磨剤を再生することが
可能に成り、未使用の研磨剤より優れた性能の研磨剤が
安価に得られる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a polishing agent comprising a mixture of a used molten alumina (Al2O3) component and a zircon (ZrSiO4) component as a polishing material base. Abrasive waste mixed with impurities generated by the above is used as a base material of the abrasive, a physical treatment step of removing impurities other than the base material of the abrasive from the abrasive waste, and a temperature in the range of 1000 to 1700 ° C. And a classification step of pulverizing the base material of the abrasive waste after the heat treatment step to divide the base material into particle diameters within a specified value. As a result, it is possible to regenerate a used abrasive which has been conventionally treated as polishing waste, and to obtain an abrasive having better performance than an unused abrasive at a lower cost.

【0012】また、使用済みの溶融アルナ(Al2O
3)成分とジルコン(ZrSiO4)成分の混合物から
成る研磨剤と研磨によって発生した不純物とが混在する
研磨剤廃棄物から研磨剤の基材以外の不純物を除去した
後、新しい無機成分を添加して従来に無い新規な研磨剤
を提供することを目的としたものである。
In addition, used molten alumina (Al2O)
3) After removing impurities other than the base material of the abrasive from the abrasive waste in which the abrasive comprising the mixture of the component and the zircon (ZrSiO4) component and the impurities generated by polishing are mixed, a new inorganic component is added. It is an object of the present invention to provide a novel polishing agent that has never existed before.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、研磨剤の基材として、使用済みの溶融アルナ(Al
2O3)成分とジルコン(ZrSiO4)成分の混合物
から成る研磨剤と研磨によって発生した不純物とが混在
する研磨剤廃棄物を研磨剤の基材とし、前記、研磨剤廃
棄物から研磨剤の基材以外の不純物を除去する物理的処
理工程と、前記、不純物を除去した研磨剤廃棄物の基材
を温度1000〜1700℃の範囲内での熱処理工程
と、前記、熱処理工程後の研磨剤廃棄物の基材を粉砕処
理し規定値内の粒子径に分ける分級工程を備えた構成か
ら成るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a method of using a used molten alumina (Al
A polishing slurry consisting of a mixture of a 2O3) component and a zircon (ZrSiO4) component and an abrasive waste mixed with impurities generated by polishing are used as a base material of the polishing slurry. A physical treatment step of removing impurities, a heat treatment step of treating the base material of the abrasive waste from which the impurities have been removed at a temperature in the range of 1000 to 1700 ° C., and removing the abrasive waste material after the heat treatment step. It has a configuration including a classification step of pulverizing the base material and dividing it into particle diameters within a specified value.

【0014】尚、溶融アルナ(Al2O3)成分とジル
コン(ZrSiO4)成分の混合物から成る研磨剤と研
磨によって発生した不純物とが混在する研磨剤廃棄物を
研磨剤の基材として用いることにより、研磨剤表面の鋭
角な部分がそのまま存在した微粒子になっており熱処理
時に於ける焼結反応が容易になり、目的とする反応生成
物を得るのに優れた作用効果を持った基材となる。研磨
剤の基材以外の不純物を除去する物理的処理を施すこと
により純度が高く再現性の有る安定した研磨剤としての
効果を持った基材となる。不純物を除去した研磨剤廃棄
物の基材を温度1000〜1700℃の範囲内で熱処理
を施すことにより新しい結晶相を持った新規な研磨剤の
基材を得る作用効果を有する。尚、温度1000℃以下
では粒子径が不安定であり研磨効果が小さく成るため好
ましくない。温度1700℃以上では結晶粒子が著しく
成長し粒子が脆くなるため安定した品質の研磨剤を得る
効果が弱く成り好ましくない。
By using, as a base material of the abrasive, an abrasive consisting of a mixture of a molten alumina (Al 2 O 3) component and a zircon (ZrSiO 4) component and an abrasive waste mixed with impurities generated by polishing, the polishing agent is used. The acute angle portion of the surface is fine particles as they are, and the sintering reaction at the time of heat treatment is facilitated, so that a base material having an excellent effect for obtaining a desired reaction product is obtained. By performing a physical treatment for removing impurities other than the base material of the abrasive, a base material having a high purity and a reproducible effect as a stable abrasive can be obtained. By subjecting the abrasive waste base material from which impurities have been removed to a heat treatment at a temperature in the range of 1000 to 1700 ° C., a new abrasive base material having a new crystal phase can be obtained. If the temperature is lower than 1000 ° C., the particle diameter is unstable and the polishing effect is reduced, which is not preferable. If the temperature is 1700 ° C. or higher, crystal grains grow remarkably and the particles become brittle, so that the effect of obtaining a stable quality abrasive is weakened, which is not preferable.

【0015】熱処理後の研磨剤廃棄物の基材を粉砕処理
し規定値内の粒子径に分ける分級を施すことにより廃棄
物から全く新しい安定した新規な規定値内の粒子径を持
った研磨剤を得る作用を有する。
An abrasive having a completely new stable particle size within a specified value by subjecting a substrate of the abrasive waste material after heat treatment to a pulverization treatment and classification into particles having a specified value within a specified value. Has the effect of obtaining

【0016】本発明の請求項2に記載の発明は、研磨剤
廃棄物から研磨剤の基材以外の不純物を除去する物理的
処理工程として、使用済みの研磨剤と研磨によって発生
した不純物とが混在する研磨剤廃棄物を湿式分散させ磁
力により金属不純物成分を除去する工程を備えた構成か
ら成るものである。
According to a second aspect of the present invention, as a physical treatment step for removing impurities other than the base material of the abrasive from the abrasive waste, the used abrasive and the impurities generated by polishing are removed. The method includes a step of wet-dispersing mixed abrasive waste and removing metal impurity components by magnetic force.

【0017】尚、使用済みの研磨剤と研磨によって発生
した不純物とが混在する研磨剤廃棄物を湿式分散させる
事により研磨剤と強固に付着していた金属不純物成分を
研磨剤から分離分散させることが容易に成り磁力を利用
する事によつて金属不純物を完全に除去する作用を有
し、純度が高く再現性の有る安定した研磨剤としての作
用効果を持った基材となる。
In addition, by dispersing abrasive waste in which used abrasive and impurities generated by polishing are mixed, the metal impurity component firmly attached to the abrasive is separated and dispersed from the abrasive. The base material has a function of completely removing metal impurities by utilizing magnetic force, has a high purity, and has a reproducible and stable function as a polishing agent.

【0018】本発明の請求項3に記載の発明は、研磨剤
の基材として、使用済みの研磨剤と研磨によって発生し
た不純物とが混在する溶融アルミナ(Al2O3)成分
とジルコン(ZrSiO4)成分の混合物を含む研磨剤
廃棄物を研磨剤の基材とし、前記、研磨剤廃棄物から研
磨剤の基材以外の不純物を除去後、前記、溶融アルミナ
(Al2O3)成分とジルコン(ZrSiO4)成分の
混合物を含む研磨剤基材100に対して、MgO、Ca
O、Al2O3、ZnO、NiO、ZrO2、SiO
2、CeO2、La2O3成分の内、1種または2種以
上の合計が1〜15.5wt%の範囲内で添加し温度1
000〜1700℃の範囲内で熱処理を施こすことを備
えた構成から成るものである。
According to a third aspect of the present invention, there is provided an abrasive material comprising a molten alumina (Al 2 O 3) component and a zircon (ZrSiO 4) component in which a used abrasive and impurities generated by polishing are mixed. The abrasive waste containing the mixture is used as the base material of the abrasive, and after removing impurities other than the base material of the abrasive from the abrasive waste, a mixture of the above-mentioned molten alumina (Al2O3) component and zircon (ZrSiO4) component MgO, Ca with respect to the abrasive substrate 100 containing
O, Al2O3, ZnO, NiO, ZrO2, SiO
2, one or two or more of CeO2 and La2O3 components are added within a range of 1 to 15.5 wt% and a temperature of 1
The heat treatment is performed in the range of 000 to 1700 ° C.

【0019】尚、前記添加成分を範囲内の添加量で添加
し1000〜1700℃の温度範囲で熱処理をすること
によつて新しい結晶相を持った新規な研磨剤を得ること
ができ、さらには研磨剤としての優れた硬度、粒子形の
物性特性を制御する作用を有し研磨剤の基材として良好
な作用効果がある。
A new abrasive having a new crystal phase can be obtained by adding the above-mentioned additional components in an added amount within the range and performing a heat treatment at a temperature range of 1000 to 1700 ° C. It has excellent hardness as an abrasive and has the effect of controlling the physical properties of particles, and has a good effect as a base material of the abrasive.

【0020】添加成分の動作として、MgOの添加は反
応生成物の温度幅を広げ安定した結晶粒子相の粒径を小
さくコントロ−ルすることができるので緻密質の研磨剤
粉末を得ることができる。CaOの添加は反応生成物の
焼結温度幅を広げることができる。Al2O3の添加は
反応生成物の焼結温度幅を広げ粉末粒子の硬度を高める
ことができる。ZnOの添加は反応生成物の焼結温度を
下げ結晶粒径の成長を抑えることができる。NiOの添
加は反応生成物の焼結温度幅を広げ焼結性を向上させる
とともに緻密質の粉末粒子を得ることができる。ZrO
2の添加は反応生成物の焼結温度幅を広げ焼結性を向上
させるとともに硬度の高い粉末粒子を得ることができ
る。SiO2の添加は反応生成物の焼結温度幅を広げ焼
結性を向上させるとともに硬度の高い粉末粒子を得るこ
とができる。CeO2の添加は焼結温度幅を広げ焼結性
を向上させるとともに緻密質の粉末粒子を得ることがで
きる。La2O3の添加は結晶粒径の成長を抑えること
ができ、その結果、緻密質の粉末粒子を得ることができ
る。
As an operation of the additional component, the addition of MgO can increase the temperature range of the reaction product and control the particle size of the stable crystal particle phase, thereby obtaining a fine abrasive powder. . The addition of CaO can widen the sintering temperature range of the reaction product. Addition of Al2O3 can increase the sintering temperature range of the reaction product and increase the hardness of the powder particles. Addition of ZnO can lower the sintering temperature of the reaction product and suppress the growth of the crystal grain size. Addition of NiO can increase the sintering temperature range of the reaction product, improve sinterability, and obtain dense powder particles. ZrO
Addition of 2 can increase the sintering temperature range of the reaction product, improve sinterability, and obtain powder particles having high hardness. Addition of SiO2 can increase the sintering temperature range of the reaction product, improve sinterability, and obtain powder particles having high hardness. Addition of CeO2 increases the sintering temperature range, improves sinterability, and can obtain dense powder particles. Addition of La2O3 can suppress the growth of the crystal grain size, and as a result, dense powder particles can be obtained.

【0021】尚、研磨剤基材100に対して、添加物と
してMgOが1wt%未満になるにつれ反応生成物の温
度幅を広げ安定した結晶粒子相の粒径を小さくコントロ
−ルすることができにくくなり、その結果、緻密質の研
磨剤粉末を得ることが困難になるため好ましくない。M
gOが15.5wt%を越えるにつれ粉末の焼結性が悪
化し気孔量が大きくなる傾向が生じ好ましくない。Ca
Oが1wt%未満になるにつれ反応生成物の焼結温度幅
を広げる効果が小さい。CaOが15.5wt%を越え
るにつれ緻密質の研磨剤粉末を得ることが困難になるた
め好ましくない。Al2O3が1wt%未満になるにつ
れ反応生成物の焼結温度を広げる効果が小さくなり、そ
の結果、硬度の高い粉末を得る効果が弱くなる。Al2
O3が15.5wt%を越えるにつれ粉末の焼結性が悪
化し気孔量が大きくなる傾向が生じ好ましくない。
Incidentally, as MgO as an additive becomes less than 1 wt% with respect to the abrasive base material 100, the temperature range of the reaction product can be widened and the particle size of the stable crystal particle phase can be controlled to be small. And it becomes difficult to obtain a dense abrasive powder, which is not preferable. M
As gO exceeds 15.5 wt%, the sinterability of the powder deteriorates and the amount of porosity tends to increase, which is not preferable. Ca
As O becomes less than 1 wt%, the effect of expanding the sintering temperature range of the reaction product is small. As CaO exceeds 15.5 wt%, it becomes difficult to obtain a dense abrasive powder, which is not preferable. As Al2O3 becomes less than 1 wt%, the effect of increasing the sintering temperature of the reaction product decreases, and as a result, the effect of obtaining a powder having high hardness decreases. Al2
As O3 exceeds 15.5 wt%, the sinterability of the powder deteriorates and the porosity tends to increase, which is not preferable.

【0022】ZnOが1wt%未満になるにつれ反応生
成物の焼結温度を下げ安定した結晶粒径を得る効果が小
さい。ZnOが15.5wt%を越えるにつれ粉末の焼
結温度を下げ緻密性を高める効果が弱い。NiOが1w
t%未満になるにつれ反応生成物の焼結温度幅を広げ焼
結性を向上させる効果が小さい。NiOが15.5wt
%を越えるにつれ緻密質の粉末粒子を得る効果が弱くな
り好ましくない。ZrO2が1wt%未満になるにつれ
反応生成物の焼結温度幅を広げ焼結性を向上させる効果
が弱くなり、その結果、硬度の高い粉末粒子を得ること
ができにくくなる。ZrO2が15.5wt%を越える
につれ粉末の気孔量が大きくなる傾向が生じ好ましくな
い。
As ZnO becomes less than 1 wt%, the effect of lowering the sintering temperature of the reaction product and obtaining a stable crystal grain size is small. As ZnO exceeds 15.5 wt%, the effect of lowering the sintering temperature of the powder and increasing the compactness is weak. NiO is 1w
The effect of increasing the sintering temperature range of the reaction product and improving the sinterability is small as the amount becomes less than t%. 15.5wt NiO
%, The effect of obtaining dense powder particles is undesirably weakened. As ZrO2 becomes less than 1 wt%, the effect of increasing the sintering temperature range of the reaction product and improving the sinterability is weakened, and as a result, it becomes difficult to obtain powder particles having high hardness. As ZrO2 exceeds 15.5% by weight, the porosity of the powder tends to increase, which is not preferable.

【0023】SiO2が1wt%未満になるにつれ反応
生成物の焼結温度幅を広げ焼結性を向上させる効果が小
さい。SiO2が15.5wt%を越えるにつれ粉末の
焼結性が不安定になり、その結果、硬度の高い粉末粒子
を得ることができにくくなるため好ましくない。CeO
2が1wt%未満になるにつれ焼結温度幅を広げ焼結性
を向上させる効果が小さい。CeO2が15.5wt%
を越えるにつれ粉末の焼結温度幅を広げる効果が小さく
なり緻密質の粉末粒子を得ることが困難になる傾向が生
じ好ましくない。La2O3が1wt%未満になるにつ
れ安定した結晶粒径を得る効果が弱くなる。La2O3
が15.5wt%を越えるにつれ安定した緻密質の粉末
粒子を得る効果が小さくなる傾向が生じ好ましくない
As the content of SiO 2 becomes less than 1 wt%, the effect of increasing the sintering temperature range of the reaction product and improving the sinterability is small. As the content of SiO2 exceeds 15.5 wt%, the sinterability of the powder becomes unstable, and as a result, it becomes difficult to obtain powder particles having high hardness, which is not preferable. CeO
As 2 becomes less than 1 wt%, the effect of expanding the sintering temperature range and improving the sinterability is small. CeO2 is 15.5wt%
As the temperature exceeds the range, the effect of widening the sintering temperature range of the powder decreases, and it becomes difficult to obtain dense powder particles, which is not preferable. As La2O3 becomes less than 1 wt%, the effect of obtaining a stable crystal grain size becomes weaker. La2O3
As the content exceeds 15.5 wt%, the effect of obtaining stable and dense powder particles tends to decrease, which is not preferable.

【0024】尚、上記成分を範囲内添加した研磨剤基材
の熱処理において焼成温度が1000℃未満になるにつ
れ粉末の焼結が十分に進行しなく良好な粉末粒子が得ら
れないので研磨効果が小さく成るため好ましくない。ま
た、温度が1700℃以上では結晶粒子が著しく成長す
る傾向になるため粒子が脆くなり目的の諸特性が悪化す
るため好ましくなく品質の安定した研磨剤が得られない
ので生産性が劣り好ましくない。
In the heat treatment of the abrasive substrate to which the above components are added within the range, as the firing temperature becomes lower than 1000 ° C., the sintering of the powder does not proceed sufficiently and good powder particles cannot be obtained. It is not preferable because it becomes smaller. On the other hand, if the temperature is 1700 ° C. or higher, the crystal grains tend to grow remarkably, and the grains become brittle, thus deteriorating various desired properties.

【0025】本発明の請求項4に記載の発明は、温度1
000〜1700℃の範囲内の熱処理後の研磨剤の主成
分結晶相が、溶融アルミナ(Al2O3)とジルコン
(ZrSiO4)の混合物相、また、ジルコニゥム(Z
rO2)とムライト(Al2SiO5)の混合物相を備
えた構成より成なるものである。
The invention according to claim 4 of the present invention is characterized in that the temperature is 1
The main component crystal phase of the abrasive after heat treatment in the range of 000 to 1700 ° C. is a mixed phase of fused alumina (Al 2 O 3) and zircon (ZrSiO 4), and a zirconium (Z
rO2) and mullite (Al2SiO5).

【0026】尚、主成分結晶相が、溶融アルミナ(Al
2O3)とジルコン(ZrSiO4)の混合物相の研磨
剤は粒子が比較的硬く、研磨物の研削スピ−ドを高める
作用を有する。また、ジルコニゥム(ZrO2)とムラ
イト(Al2SiO5)の混合物相の研磨剤は粒子が比
較的柔らかく、研磨物の表面品質を良好にする作用を有
する。
The main component crystal phase is fused alumina (Al
Abrasives in the mixed phase of 2O3) and zircon (ZrSiO4) have relatively hard particles, and have the effect of increasing the grinding speed of the polished material. Further, the abrasive in the mixed phase of zirconium (ZrO2) and mullite (Al2SiO5) has an effect that the particles are relatively soft and the surface quality of the polished material is improved.

【0027】本発明の請求項5に記載の発明は、熱処理
工程後の研磨剤廃棄物の基材を粉砕処理し規定値内の粒
子径として、5.0〜30.0ミクロンに分ける分級工
程を施すことにより廃棄物から全く新しい安定した新規
な規定値内の粒子径を持った幅の広い研磨剤を得る作用
を有する。
According to a fifth aspect of the present invention, there is provided a classification step of pulverizing a base material of abrasive waste after a heat treatment step and dividing the base material into particles having a particle diameter within a specified value of 5.0 to 30.0 microns. The effect of the present invention is to obtain an entirely new, stable abrasive having a particle diameter within a new specified value from waste.

【0028】本発明の請求項6に記載の発明は、請求項
1〜5記載の製造方法で形成された研磨剤であって半導
体用シリコンウエハ−やエレクトロニクス用セラミック
ス、ガラス等を研磨する研磨剤として性能と品質の安定
した作用効果を有する。
According to a sixth aspect of the present invention, there is provided an abrasive formed by the manufacturing method according to the first to fifth aspects, which is used for polishing silicon wafers for semiconductors, ceramics for electronics, glass and the like. As a result, it has a stable working effect of performance and quality.

【0029】以下、本発明の実施の形態について、(表
1)(表2)(表3)を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to (Table 1), (Table 2), and (Table 3).

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【実施例】次に、本発明の具体例を説明する。本実施例
における研磨剤の製造方法を実施例1及び2について説
明する。実施例1として、研磨剤の基材として、シリコ
ンウエハ−を研磨して出来た使用済みの溶融アルナ(A
l2O3、約56重量%)成分とジルコン(ZrSiO
4、約42重量%)成分の混合物から成る研磨剤と研磨
によって発生した不純物(約2重量%)とが混在する研
磨剤廃棄物を研磨剤の基材として用いた。その研磨剤廃
棄物は半固形状の(水分20%以下)であり、研磨剤が
約65重量%以上で、且つ、溶融アルミナ(Al2O
3)成分とジルコン(ZrSiO4)成分の混合物が約
65重量%以上含まれており、また、混在する不純物は
ラップ盤より発生した約1重量%以下のFe成分(磁力
で除去出来る物)と、1重量%以下のSi成分及びゴミ
類等である。
Next, specific examples of the present invention will be described. A method for producing an abrasive in the present embodiment will be described with reference to Examples 1 and 2. In Example 1, as a base material of an abrasive, a used molten alumina (A) formed by polishing a silicon wafer was used.
l2O3, about 56% by weight) and zircon (ZrSiO
Abrasive waste containing a mixture of (4, about 42% by weight) components and impurities (about 2% by weight) generated by polishing was used as a base material of the abrasive. The abrasive waste is semi-solid (less than 20% water), contains more than about 65% by weight of abrasive, and contains fused alumina (Al2O3).
3) A mixture of a component and a zircon (ZrSiO4) component is contained in an amount of about 65% by weight or more, and the mixed impurities are about 1% by weight or less of an Fe component (a substance that can be removed by magnetic force) generated from a lapping machine. 1% by weight or less of Si components and dusts.

【0034】まず、研磨剤廃棄物から研磨剤の基材以外
の不純物を除去する物理的処理工程として、研磨剤廃棄
物の基材を湿式分散させ50ミクロン以上のシリコンウ
エハ−、チップやゴミ類の不純物を篩いにかけ不純物を
除去し、次いで約4500ガウス程度の磁力を有する永
久磁石を用いFe成分を完全に取り除き、それをウレタ
ン製ボ−ルミル中に投入しジルコニヤ玉石と水を加えた
後12時間湿式混合で摩砕粉砕を行った。
First, as a physical treatment step for removing impurities other than the base material of the abrasive from the abrasive waste, the base material of the abrasive waste is wet-dispersed to form a silicon wafer, chips and dusts of 50 μm or more. To remove the impurities, then completely remove the Fe component using a permanent magnet having a magnetic force of about 4500 gauss, put it into a urethane ball mill, add zirconia balls and water, and add Grinding and pulverization were performed by wet mixing for hours.

【0035】この摩砕粉砕物を熱風式の噴霧型乾燥スプ
レドライヤ−を用い乾燥粉末を得た。次ぎに、熱処理工
程として、この乾燥粉末を高純度のアルミナ製サヤ鉢の
中に入れカンタルヒ−タを用いた電気炉により温度98
0〜1720℃の範囲内で熱処理を施した。次ぎに、分
級工程として、熱処理が施こされた焼成粉末物を粉砕し
分級機にて分級を行い規定値内(5.0ミクロン、1
1.0ミクロン、17.0ミクロン)の粒子径に分け研
磨剤を得た。
A dry powder was obtained from the crushed and crushed material by using a hot-air spray-type drying spray dryer. Next, as a heat treatment step, the dried powder was placed in a high-purity alumina jar, and heated to a temperature of 98% by an electric furnace using a kanthal heater.
Heat treatment was performed in the range of 0 to 1720 ° C. Next, as a classification step, the calcined powder that has been subjected to the heat treatment is pulverized and classified by a classifier, and within a specified value (5.0 microns, 1 μm).
(1.0 micron, 17.0 micron) to obtain an abrasive.

【0036】上記のようにして得られた再生品研磨剤と
比較のため未使用の新品研磨剤の化学成分およびX線回
折分析を施した結果を表1に示した。尚、範囲外の実施
例には*印を付与した。表1より明らかなようにNO1
〜NO5の熱処理温度が比較的低い980〜1400℃
の温度範囲ではアルミナ系結晶形(コランダム、Al2
O3)とジルコン系結晶形(ZrSiO4)とSiO
2,不明相の混合物形で形成されている。また、No2
〜No5はSiO2及び不明相がほとんど消失されてい
ることが判明した。また、NO6〜NO10の熱処理温
度が高い1500〜1720℃の温度範囲ではジルコニ
ヤ系結晶形(ZrO2)とムライト系結晶形(Al2S
iO5)の2相の混合物形で形成されていることが判明
した。また、化学成分結果より明らかなように再生品研
磨剤NO2〜9は、新品研磨剤と比較して、化学成分値
においても同等であり、全く遜色の無いことが確認でき
た。しかし、NO1の熱処理温度が980℃と低い試料
ではFe成分が多く含まれており、そしてX線回折結果
では不明相が析出し好ましくない傾向にあった。また、
NO10の熱処理温度が1720℃と高い試料では粉末
の粉砕が著しく困難になり実用的ではなかった。
For comparison with the reclaimed abrasive obtained in the above manner, the chemical composition of an unused new abrasive and the result of X-ray diffraction analysis are shown in Table 1. In addition, the example which is out of the range was given * mark. As is clear from Table 1, NO1
950 to 1400 ° C where the heat treatment temperature of ~ NO5 is relatively low
In the temperature range of Alumina crystal form (corundum, Al2
O3), zircon crystal form (ZrSiO4) and SiO
2, formed as a mixture of unknown phases. In addition, No2
No. to No. 5 were found to have almost completely lost SiO2 and unknown phases. In a temperature range of 1500 to 1720 ° C. where the heat treatment temperature of NO 6 to NO 10 is high, a zirconia crystal form (ZrO 2) and a mullite crystal form (Al 2 S
It was found to be formed in the form of a two-phase mixture of iO5). Also, as is clear from the results of the chemical components, the recycled abrasives NO2 to NO9 have the same chemical component values as the new abrasives, and it can be confirmed that there is no inferiority at all. However, a sample in which the heat treatment temperature of NO1 was as low as 980 ° C. contained a large amount of Fe component, and the X-ray diffraction results tended to precipitate an unknown phase, which was not preferable. Also,
In a sample in which the heat treatment temperature of NO10 was as high as 1720 ° C., the pulverization of the powder became extremely difficult, which was not practical.

【0037】次ぎに、再生品研磨剤と新品研磨剤を用い
研磨性能テストを行い表2に示した。テスト方法として
は再生品研磨剤を粒度約17ミクロンおよび約10ミク
ロンおよび約5ミクロンに分け各々水とラッピングオイ
ルに懸濁(スラリ−)させ、ラップ盤を用いて被研磨物
(3インチφシリコンウエハ−を20枚を用い)を研磨
して性能テスト(研削速度、表面粗さ、スクラッチ)を
次の要領で実施した。研削速度−ラッピング機械として
SPEED FAM社製マシンを用い、3インチφ用の
キャリアを加重100g/cm2、回転数60rpm、
スラリ−注入量100ml/分で研磨した。研磨用スラ
リ−の組成は、研磨剤600gに対してラッピングオイ
ル450ml、水2250mlである。表面粗さ−粗さ
計(東京精密製)を用い被研磨物表面の粗さを測定し
た。スクラッチ−50倍の光学顕微鏡用い表面のスクラ
ッチを測定した。
Next, a polishing performance test was carried out using a recycled abrasive and a new abrasive, and the results are shown in Table 2. As a test method, the reclaimed abrasive was divided into particles having a particle size of about 17 μm, about 10 μm, and about 5 μm, each of which was suspended (slurry) in water and wrapping oil. The performance test (grinding speed, surface roughness, scratch) was performed by polishing the wafer (using 20 wafers) in the following manner. Grinding speed-Using a machine manufactured by SPEED FAM Co. as a lapping machine, loading a carrier for 3 inches φ with a load of 100 g / cm 2 , a rotation speed of 60 rpm,
Polishing was performed at a slurry injection rate of 100 ml / min. The composition of the polishing slurry is 450 g of lapping oil and 2250 ml of water with respect to 600 g of the abrasive. Surface roughness-The roughness of the surface of the object to be polished was measured using a roughness meter (manufactured by Tokyo Seimitsu). Scratch—Scratch on the surface was measured using an optical microscope at a magnification of × 50.

【0038】表2の結果より明らかなように、再生品研
磨剤NO1〜NO2の熱処理温度が低い980℃では研
磨剤の粒度に多少は関係しているが研磨速度が遅く、ス
クラッチでは20枚中3〜5枚が不良となり好ましくな
い傾向にあった。しかし、範囲内のNO3〜NO10で
は研磨速度、表面粗さ、スクラッチ等全ての特性におい
て良好な結果が得られた。特にNO5〜NO6の熱処理
温度が1300℃の試料が著しく安定で良好な特性を示
しており、NO12の比較例と比べ、むしろ研磨速度は
良好な結果が得られた。
As is clear from the results in Table 2, when the heat treatment temperature of the reclaimed abrasives NO1 to NO2 is low at 980 ° C., the polishing rate is low, though slightly related to the particle size of the abrasive. Three to five sheets tended to be defective and unfavorable. However, with NO3 to NO10 within the range, good results were obtained in all characteristics such as polishing rate, surface roughness, and scratch. In particular, the samples having heat treatment temperatures of NO5 to NO6 at 1300 ° C. showed remarkably stable and good characteristics, and the polishing rate was better than that of the comparative example of NO12.

【0039】尚、NO7〜NO10で熱処理温度が高い
試料では研磨速度が比較的遅くなる傾向にあった、しか
し、表面粗さは良好であった。これらの結果から、おそ
らく生成する結晶相との関係があるものと考えられる。
即ち、NO3〜NO6ではアルミナ系結晶形(Al2O
3)とジルコン系結晶形(ZrSiO4)の2相の混合
物形で形成(表1を参照)されているが、NO7〜NO
10の熱処理温度が高い1500〜1700℃ではジル
コニヤ系結晶形(ZrO2)とムライト系結晶形(Al
2SiO5)の2相の混合物形で形成(表1を参照)さ
れていることに起因するものと考えられる。これらの結
果より、粉末の粒度との関係もあるが被研磨物の表面仕
上げには熱処理温度の高い研磨剤を使用することが好ま
しい。またNo13〜No14の粒度が範囲外である3
μm及び35μmでは、特性が悪いものであった。
Incidentally, the samples having high heat treatment temperatures of NO7 to NO10 tended to have a relatively low polishing rate, but had good surface roughness. From these results, it is considered that there is probably a relationship with the formed crystal phase.
That is, for NO3 to NO6, the alumina-based crystal form (Al2O
3) and a zircon-based crystal form (ZrSiO4) in the form of a mixture of two phases (see Table 1).
At a high heat treatment temperature of 1500 to 1700 ° C., a zirconia crystal form (ZrO 2) and a mullite crystal form (Al
2SiO5) (see Table 1). From these results, although there is a relationship with the particle size of the powder, it is preferable to use an abrasive having a high heat treatment temperature for the surface finish of the object to be polished. Also, the particle size of No13 to No14 is out of the range 3
At μm and 35 μm, the characteristics were poor.

【0040】実施例2として、実施例1で得た研磨剤廃
棄物から研磨剤の基材以外の不純物を除去した基材10
0に対して、MgO、CaCO3、Al2O3、Zn
O、NiO、ZrO2、SiO2、CeO2、La2O
3成分等を用い表3の添加量になるように秤量し配合し
た。配合された原料をウレタン製ボ−ルミル中に投入し
ジルコニヤ玉石と水を加えた後12時間湿式混合で摩砕
粉砕を行った。この摩砕粉砕物を熱風式の噴霧型乾燥ス
プレドライヤ−を用い乾燥粉末を得た。次ぎに、熱処理
工程として、この乾燥粉末を高純度のアルミナ製サヤ鉢
の中に入れカンタルヒ−タを用いた電気炉により温度9
80〜1720℃の範囲内で熱処理を施した。尚、熱処
理を施した粉末にX線回折分析を施した結果も表3に示
した。
As Example 2, the base material 10 obtained by removing impurities other than the base material of the abrasive from the abrasive waste obtained in Example 1 was used.
0, MgO, CaCO3, Al2O3, Zn
O, NiO, ZrO2, SiO2, CeO2, La2O
Using the three components and the like, they were weighed and blended so as to have the amounts shown in Table 3. The blended raw materials were put into a urethane ball mill, and zirconia cobblestone and water were added. Thereafter, the mixture was ground by wet mixing for 12 hours. A dry powder was obtained from the crushed and crushed material by using a hot-air spray-type drying spray dryer. Next, as a heat treatment step, the dried powder was placed in a high-purity alumina squirrel pot and placed in an electric furnace using a Kanthal heater at a temperature of 9 ° C.
Heat treatment was performed in the range of 80 to 1720 ° C. Table 3 also shows the results of X-ray diffraction analysis of the heat-treated powder.

【0041】次ぎに、分級工程として、熱処理が施こさ
れた焼成粉末物を粉砕し乾式型分級機にて分級を行い規
定値内(5.0〜30.0ミクロン )の粒子径に分け
研磨剤を得た。以上のようにして得られた粒度約11ミ
クロンの試料を用い、研磨テスト(テスト方法しとして
は実施例1と同様な方法で実施した)を行い表3に示し
た。表3の結果より明らかなように、試料NO1〜NO
4は添加物であるAl2O3成分の添加量を変化させ熱
処理温度を1300℃一定とした。その結果、NO2〜
NO3は特性的にも安定した値であるが添加量の少ない
NO1および添加量の多いNO4は特性的にも不安定な
値であった。
Next, as a classification step, the heat-treated calcined powder is pulverized and classified by a dry-type classifier to obtain a particle diameter within a specified value (5.0 to 30.0 microns) and polished. Agent was obtained. Using a sample having a particle size of about 11 μm obtained as described above, a polishing test was performed (testing was performed in the same manner as in Example 1), and the results are shown in Table 3. As is clear from the results in Table 3, samples NO1 to NO
In No. 4, the heat treatment temperature was kept constant at 1300 ° C. by changing the amount of the Al 2 O 3 component as an additive. As a result, NO2
NO3 was a characteristically stable value, but NO1 with a small amount of addition and NO4 with a large amount of addition were unstable values in terms of characteristics.

【0042】試料NO5〜NO12は添加物であるAl
2O3成分2.5wt%、ZrO2成分2.5wt%と
添加量を一定にして熱処理温度を980℃〜1720℃
に変化させた。その結果、NO5〜NO9では結晶相が
アルミナ系結晶形(Al2O3)とジルコン系結晶形
(ZrO2・SiO2)の2相の混合物形で形成されて
いることが判明した、研磨テストではNO6〜NO9が
良好であり、特にNO8の熱処理温度が1300℃の試
料は研磨速度が早く顕著であった。NO10〜NO12
の熱処理温度が高い所の結晶相はジルコニヤ系結晶形
(ZrO2)とムライト系結晶形(Al2SiO5)の
2相の混合物形で形成されていることが判明した、研磨
テストにおいて研磨速度は遅くなるが表面粗さは良好で
あった、しかし範囲外のNO12では悪い特性であっ
た。
Samples NO5 to NO12 are the additives Al
The heat treatment temperature is 980 ° C. to 1720 ° C. with the addition amounts of the 2O3 component 2.5 wt% and the ZrO 2 component 2.5 wt% constant.
Was changed to. As a result, it was found that in NO5 to NO9, the crystal phase was formed as a mixture of two phases of an alumina-based crystal form (Al2O3) and a zircon-based crystal form (ZrO2.SiO2). The polishing rate was good for the sample in which the heat treatment temperature of NO8 was 1300 ° C., and the polishing rate was remarkable. NO10-NO12
It was found that the crystal phase at a high heat treatment temperature was formed as a mixture of two phases of a zirconia-based crystal form (ZrO2) and a mullite-based crystal form (Al2SiO5). The surface roughness was good, but NO12 outside the range had poor properties.

【0043】また、NO13〜NO14、NO16〜N
O17の試料に於いても良好な特性を示しており、特に
添加物としてLa2O3成分3.0Wt%、Al2O3
成分3.0Wt%、SiO2成分3.0Wt%、ZrO
2成分3.0Wt%を添加したNO16の粉末は結晶粒
形が鋭く緻密質で良好な研磨剤であり研磨テストも良好
な特性であった。しかし、添加量が15.5Wt%を越
えている、範囲外のNO15では、表面粗さが著しく悪
く、また、スクラッチテストにおいて、20枚中3枚の
不良であった。これらの結果より範囲内の実施例では研
磨剤として十分な機能を果たすものであることが確認で
きた。以上本発明の実施例について説明をしたが、もち
ろん本発明は上記実施例に限定されるものではなく、例
えば実施例2で添加物として酸化物を用いたが他の塩類
あるいは化合物を用いることも可能である。
NO13-NO14, NO16-N
The sample of O17 also showed good characteristics, and in particular, La2O3 component 3.0 Wt%, Al2O3
Component 3.0Wt%, SiO2 component 3.0Wt%, ZrO
The NO16 powder to which two components of 3.0 Wt% were added was a sharp abrasive having a sharp crystal grain shape and a good abrasive, and also had a good polishing test characteristic. However, NO15 out of the range, in which the addition amount exceeded 15.5 Wt%, had remarkably poor surface roughness, and in the scratch test, 3 out of 20 sheets were defective. From these results, it could be confirmed that the examples within the range fulfilled a sufficient function as an abrasive. Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, in Example 2, an oxide was used as an additive, but other salts or compounds may be used. It is possible.

【0044】[0044]

【発明の効果】以上から明らかなように本発明によれ
ば、従来廃棄物として処理されていた使用済みの溶融ア
ルナ(Al2O3)成分とジルコン(ZrSiO4)成
分の混合物から成る研磨剤と研磨によって発生した不純
物とが混在する研磨剤廃棄物を研磨剤の基材とし、研磨
剤の基材以外の不純物を除去する物理的処理工程と、不
純物を除去した研磨剤の基材を熱処理する熱処理工程
と、熱処理工程後の研磨剤の基材を粉砕処理し規定値内
の粒子径に分ける分級工程を備えた構成より成る研磨剤
の製造方法であり、廃棄物から全く新しい安定した新規
な研磨剤を得る作用を持った有効な効果がある。
As is apparent from the above, according to the present invention, the abrasive generated by the polishing and polishing made of the mixture of the used molten alumina (Al2O3) component and the zircon (ZrSiO4) component which has been conventionally treated as waste. The abrasive waste mixed with the impurities as a base material of the abrasive, a physical treatment step of removing impurities other than the base material of the abrasive, and a heat treatment step of heat-treating the base material of the abrasive with the impurities removed. , A method for producing an abrasive comprising a classification step of pulverizing the base material of the abrasive after the heat treatment step and dividing it into particle diameters within a specified value, and producing a completely new stable novel abrasive from waste. There is an effective effect that has the effect of gaining.

【0045】また、使用済みの研磨剤と研磨によって発
生した不純物とが混在する研磨剤廃棄物を湿式分散させ
磁力を利用する工程を備えた事によつて金属不純物を完
全に除去する作用を有し、純度が高く再現性の有る安定
した研磨剤としての効果を持った基材となる。また、不
純物が混在する研磨剤廃棄物から研磨剤の基材以外の不
純物を除去した後、新しい無機成分を添加し、さらに熱
処理と熱処理工程後の研磨剤の基材を粉砕処理し規定値
内の粒子径に分ける分級工程を備えたことにより新規な
結晶相を持った新しい安定した研磨剤を得る有効な効果
がある。
Further, a process for wet-dispersing abrasive waste in which used abrasive and impurities generated by polishing are mixed and utilizing magnetic force is provided, so that metal impurities can be completely removed. In addition, the base material has a high purity and a reproducible effect as a stable abrasive. In addition, after removing impurities other than the abrasive base material from the abrasive waste containing impurities, a new inorganic component is added, and further, the abrasive base material after the heat treatment and the heat treatment step is pulverized to be within a specified value. By providing a classification process for dividing the particle size into particles, there is an effective effect of obtaining a new stable abrasive having a new crystal phase.

【0046】そして、従来の汎用の研磨剤より研磨速度
と研磨面の品質を改善した性能の特性を持ち、しかも資
源を有効に利用することが出来、さらに製造歩留が高
く、安定した信頼性の高い生産性や量産性高く製造する
ことができる有効な効果を有する。そして、得られた研
磨剤は安価で安定した新しい品質の研磨剤であるという
効果を有する。また、廃棄処理が必要な研磨剤廃棄物を
大幅に減少することが出来るため、環境問題の改善に貢
献すると共に、廃棄物処理に要するムダなコストを削減
することも出来る。
Further, it has the characteristics of improved polishing speed and quality of the polished surface as compared with conventional general-purpose abrasives, and can use resources effectively, and has a high production yield and stable reliability. It has an effective effect that it can be manufactured with high productivity and high mass productivity. And the obtained abrasive has an effect that it is a cheap and stable new-quality abrasive. Further, since the amount of abrasive waste that needs to be disposed of can be significantly reduced, it is possible to contribute to improvement of environmental problems, and it is also possible to reduce wasteful costs required for waste disposal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多木 宏光 宮崎県宮崎市大字島之内7078番地2 Fターム(参考) 3C058 AA07 AA09 CA04 CA05 CA06 DA02 3C063 BB01 BB03 BB07 BB19 CC04 EE10 EE15 EE16 FF23  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiromitsu Taki 7078-2, Shimanouchi, Oaza, Miyazaki City, Miyazaki Prefecture 3C058 AA07 AA09 CA04 CA05 CA06 DA02 3C063 BB01 BB03 BB07 BB19 CC04 EE10 EE15 EE16 FF23

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 研磨剤の基材として、使用済みの溶融ア
ルナ(Al2O3)成分とジルコン(ZrSiO4)成
分の混合物から成る研磨剤と研磨によって発生した不純
物とが混在する研磨剤廃棄物を研磨剤の基材とし、前
記、研磨剤廃棄物から研磨剤の基材以外の不純物を除去
する物理的処理工程と、前記、不純物を除去した研磨剤
廃棄物の基材を温度1000〜1700℃の範囲内での
熱処理工程と、前記、熱処理工程後の研磨剤廃棄物の基
材を粉砕処理し規定値内の粒子径に分ける分級工程から
成る事を特徴とした研磨剤の製造方法。
An abrasive material comprising a mixture of a used molten alumina (Al 2 O 3) component and a zircon (ZrSiO 4) component and an impurity generated by polishing are used as an abrasive substrate. And a physical treatment step of removing impurities other than the base material of the abrasive from the abrasive waste, and subjecting the base material of the abrasive waste from which the impurities have been removed to a temperature of 1000 to 1700 ° C. And a classification step of pulverizing the base material of the abrasive waste after the heat treatment step and dividing the substrate into a particle diameter within a specified value.
【請求項2】 前記、研磨剤廃棄物から研磨剤の基材以
外の不純物を除去する物理的処理工程として、使用済み
の研磨材と研磨によって発生した不純物とが混在する研
磨剤廃棄物を湿式分散させ磁力により金属不純物成分を
除去する事を特徴とした請求項1記載の研磨剤の製造方
法。
2. The method according to claim 1, wherein the polishing step includes removing the abrasive waste other than the base material of the abrasive from the abrasive waste. 2. The method for producing an abrasive according to claim 1, wherein the metal impurity component is removed by dispersing and using a magnetic force.
【請求項3】 研磨剤の基材として、使用済みの研磨剤
と研磨によって発生した不純物とが混在する溶融アルミ
ナ(Al2O3)成分とジルコン(ZrSiO4)成分
の混合物を含む研磨剤廃棄物を研磨剤の基材とし、前
記、研磨剤廃棄物から研磨剤の基材以外の不純物を除去
後、前記、溶融アルミナ(Al2O3)成分とジルコン
(ZrSiO4)成分の混合物を含む研磨剤基材100
に対して、MgO、CaO、Al2O3、ZnO、Ni
O、ZrO2、SiO2、CeO2、La2O3成分の
内、1種または2種以上の合計が1〜15.5wt%の
範囲内で添加し温度1000〜1700℃の範囲内で熱
処理を施した事を特徴とした研磨剤の製造方法。
3. A polishing slurry containing a mixture of a fused alumina (Al2O3) component and a zircon (ZrSiO4) component in which a used polishing agent and impurities generated by polishing are mixed is used as a polishing agent base material. After removing impurities other than the abrasive substrate from the abrasive waste, the abrasive substrate 100 containing the mixture of the molten alumina (Al2O3) component and the zircon (ZrSiO4) component
For MgO, CaO, Al2O3, ZnO, Ni
One or more of O, ZrO2, SiO2, CeO2, and La2O3 components are added within a range of 1 to 15.5 wt% and heat-treated at a temperature of 1000 to 1700C. Method for producing an abrasive.
【請求項4】 温度1000〜1700℃の範囲内の熱
処理後の研磨剤の主成分結晶相が、溶融アルミナ(Al
2O3)とジルコン(ZrSiO4)の混合物相また
は、ZrO2とAl2SiO5相より成っている事を特
徴とした請求項1〜3記載の研磨剤の製造方法。
4. The main component crystal phase of the abrasive after heat treatment at a temperature in the range of 1000 to 1700 ° C. is fused alumina (Al
The method for producing an abrasive according to any one of claims 1 to 3, wherein the polishing slurry comprises a mixed phase of 2O3) and zircon (ZrSiO4) or a ZrO2 and Al2SiO5 phase.
【請求項5】 熱処理工程後の研磨剤廃棄物の基材を粉
砕処理し規定値内の粒子径として、5.0〜30.0ミ
クロンに分ける分級工程から成る事を特徴とした、請求
項1及び請求項3記載の研磨剤の製造方法
5. The method according to claim 1, further comprising a classification step of crushing the base material of the abrasive waste after the heat treatment step and dividing the base material into particles having a particle size within a specified value of 5.0 to 30.0 microns. The method for producing an abrasive according to claim 1 or claim 3.
【請求項6】 請求項1〜5記載の製造方法で形成され
た研磨剤。
6. An abrasive formed by the production method according to claim 1.
JP24889898A 1998-09-03 1998-09-03 Abrasive and production method thereof Expired - Lifetime JP3752083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24889898A JP3752083B2 (en) 1998-09-03 1998-09-03 Abrasive and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24889898A JP3752083B2 (en) 1998-09-03 1998-09-03 Abrasive and production method thereof

Publications (2)

Publication Number Publication Date
JP2000079564A true JP2000079564A (en) 2000-03-21
JP3752083B2 JP3752083B2 (en) 2006-03-08

Family

ID=17185084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24889898A Expired - Lifetime JP3752083B2 (en) 1998-09-03 1998-09-03 Abrasive and production method thereof

Country Status (1)

Country Link
JP (1) JP3752083B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301655A (en) * 2001-04-05 2002-10-15 Showa Denko Kk Abrasive slurry and polishing fine powder
JP2005153093A (en) * 2003-11-27 2005-06-16 Kansai Electric Power Co Inc:The Method for manufacturing blast material for metal
US7378348B2 (en) 2002-09-06 2008-05-27 Asahi Glass Company, Limited Polishing compound for insulating film for semiconductor integrated circuit and method for producing semiconductor integrated circuit
JP2012079364A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium
WO2012086679A1 (en) * 2010-12-24 2012-06-28 新東工業株式会社 Inorganic medium for barrel polishing
KR20150002658A (en) * 2012-03-19 2015-01-07 가부시키가이샤 후지미인코퍼레이티드 Polishing material for lapping and method for manufacturing substrate using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301655A (en) * 2001-04-05 2002-10-15 Showa Denko Kk Abrasive slurry and polishing fine powder
US7378348B2 (en) 2002-09-06 2008-05-27 Asahi Glass Company, Limited Polishing compound for insulating film for semiconductor integrated circuit and method for producing semiconductor integrated circuit
JP2005153093A (en) * 2003-11-27 2005-06-16 Kansai Electric Power Co Inc:The Method for manufacturing blast material for metal
JP2012079364A (en) * 2010-09-30 2012-04-19 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium
WO2012086679A1 (en) * 2010-12-24 2012-06-28 新東工業株式会社 Inorganic medium for barrel polishing
KR20150002658A (en) * 2012-03-19 2015-01-07 가부시키가이샤 후지미인코퍼레이티드 Polishing material for lapping and method for manufacturing substrate using same

Also Published As

Publication number Publication date
JP3752083B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3080873B2 (en) Abrasion resistant alumina ceramics and method for producing the same
CN101594966A (en) Submicron alpha-alpha alumina high temperature bonded abrasives
JP2000336344A (en) Abrasive
JPH06104817B2 (en) Alumina-zirconia lap abrasive, method for producing the same, and polishing composition
US5304226A (en) Abrasive grain and manufacture for the same
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
JP2013531085A (en) Abrasive grains based on zirconium corundum
US20110039684A1 (en) Fused ceramic product, method of fabrication and uses
JP3752083B2 (en) Abrasive and production method thereof
CN112500801B (en) Cerium-based rare earth polishing powder and preparation method and application thereof
JP7325275B2 (en) Wear-resistant alumina sintered body
EP0409991A1 (en) Abrasive grain and method of producing same
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP4927292B2 (en) Alumina ceramics with excellent wear and corrosion resistance
CN108821324A (en) A kind of nano-cerium oxide and its preparation method and application
JP5619515B2 (en) Cerium oxide abrasive and method for producing glass hard disk substrate
KR101701005B1 (en) Cerium oxide based polishing particle, slurry comprising the same and the manufacturing method thereof
JPH06321534A (en) Production of crystallite alumina abrasive powder
JP4471072B2 (en) Method of grinding cerium oxide using a ball mill device
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
Zhang et al. A novel strategy for the synthesis of CeO 2/CeF 3 composite powders with improved suspension stability and chemical mechanical polishing (CMP) performance
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
CN100445343C (en) Slurry for cmp and method of polishing substrate using same
JP2587767B2 (en) Crusher components
JPH07206514A (en) Abrasion-resistant alumina ceramic

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term