JP2000077753A - Side excitation solid-state laser provided with anisotropic crystal - Google Patents

Side excitation solid-state laser provided with anisotropic crystal

Info

Publication number
JP2000077753A
JP2000077753A JP24659598A JP24659598A JP2000077753A JP 2000077753 A JP2000077753 A JP 2000077753A JP 24659598 A JP24659598 A JP 24659598A JP 24659598 A JP24659598 A JP 24659598A JP 2000077753 A JP2000077753 A JP 2000077753A
Authority
JP
Japan
Prior art keywords
axis
crystal
laser
excitation light
ylf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24659598A
Other languages
Japanese (ja)
Inventor
Takeshi Yokozawa
剛 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24659598A priority Critical patent/JP2000077753A/en
Publication of JP2000077753A publication Critical patent/JP2000077753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state laser device that is provided with an anisotropic crystal such as a YLF as a laser crystal and capable of efficiently exciting a laser crystal by applying exciting rays to its side face from all directions and outputting a high power. SOLUTION: This laser 10 is equipped with a cylindrical laser rod 12 which is formed of an anisotropic crystal (for instance, YLF crystal) that is possessed of two axes a and c which cross its growth axis (a axis) at right angles, the axis c is different from the growth axis is characteristics and the axis a is equal to the growth axis in characteristics, and whose center axis is the axis c and an exciting light irradiation means 14 which irradiates the side face of the laser rod 12 with exciting light. At this point, the exciting light irradiation 15 that is excited by the exciting light irradiator means 14 is made to irradiate ortho-gonally to the C-axis of the laser rod, and its polarization direction 16 is set in parallel with C-axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性結晶を用い
た側面励起型固体レーザに関する。
The present invention relates to a side-pumped solid-state laser using an anisotropic crystal.

【0002】[0002]

【従来の技術】YAG固体レーザは、YAG(Yttrium A
luminum Garnet) の結晶にNdをドープしたものを光励
起するものであり、1.06μmの赤外光で数10Wの
CW出力が得られる。また、第2高調波発生装置によ
り、0.53μmの緑色光も高い効率で変換され、レー
ザ工業用に利用されている。NdをドープしたYAG
(Nd:YAG)は、等方性の結晶であるため、その励
起には、図2に模式的に示す端面励起(A)と側面励起
(B)の2つの手段が従来から用いられている。端面励
起(A)は、円筒形のYAGレーザロッド1の端面から
励起光2を照射して励起するものであり、側面励起
(B)はYAGレーザロッド1の端面から励起光2を照
射して励起するものである。端面励起(A)は、励起光
2をレンズ3等でエネルギー密度を高めて端面から照射
できるため、高効率が得やすいが反面、照射面が制限さ
れるため小出力になりやすい。これに対して、側面励起
(B)では、効率は低いが照射面を広くできるので大出
力化が可能である特徴がある。そのため、従来主とし
て、YAG等の等方性結晶を用いた側面励起型固体レー
ザにより高出力化が図られている。
2. Description of the Related Art A YAG solid-state laser is a YAG (Yttrium A).
It excites a crystal of aluminum garnet (Nd) doped with Nd, and provides a CW output of several tens of watts with 1.06 μm infrared light. The second harmonic generator also converts green light of 0.53 μm with high efficiency and is used for the laser industry. Yd doped with Nd
Since (Nd: YAG) is an isotropic crystal, two means of edge excitation (A) and side excitation (B) schematically shown in FIG. 2 are conventionally used for its excitation. . The end surface excitation (A) is to excite by irradiating the excitation light 2 from the end surface of the cylindrical YAG laser rod 1, and the side excitation (B) is to irradiate the excitation light 2 from the end surface of the YAG laser rod 1. Exciting. In the end face excitation (A), since the excitation light 2 can be irradiated from the end face by increasing the energy density by the lens 3 or the like, high efficiency can be easily obtained, but on the other hand, the irradiation surface is limited, so that the output tends to be small. On the other hand, the side excitation (B) has a feature that although the efficiency is low, the irradiation surface can be widened so that the output can be increased. Therefore, conventionally, high power has been achieved mainly by a side-pumped solid-state laser using an isotropic crystal such as YAG.

【0003】一方、近年、YLF(Lithium Yttrium Flu
oride)の結晶にNdをドープしたYLFレーザが開発さ
れ一部で使用されている。このYLFレーザは、Ndを
ドープした燐酸ガラス(Phosphate and fluorophosphate
glass) のピークゲインに一致する1.05μmのレー
ザ光を発振するので、主にこれらのガラスを励起するた
めのマスター共振器、等に用いられている。このYLF
結晶は、YAG結晶に比べて、蛍光寿命(Fluorescent l
ifetime)が倍近くながく、従って長時間の励起ができ、
かつ耐熱性が高く、高出力化に適している特徴を有す
る。
On the other hand, in recent years, YLF (Lithium Yttrium Flu
oride) crystals have been developed and used in some YLF lasers. This YLF laser is composed of Nd-doped phosphate glass (Phosphate and fluorophosphate).
Since it oscillates a laser beam of 1.05 μm which matches the peak gain of glass, it is mainly used for a master resonator for exciting these glasses. This YLF
The crystal has a fluorescence lifetime (Fluorescent l
ifetime) is not nearly twice as long, so long-term excitation is possible,
It also has high heat resistance and is suitable for high output.

【0004】[0004]

【発明が解決しようとする課題】しかし、YLFの結晶
は、異方性結晶であり、図3に示すように、結晶の成長
軸(a軸)に対して、直交する2軸は成長軸と特性の等
しいa軸と特性の異なるc軸とがある。そのため、図3
の(A)(B)の矢印に示す方向の偏光を照射する場合
(それぞれπ偏光、σ偏光と呼ぶ)では、レーザ光の励
起特性(吸収率や利得等)に大きな相違がある。例え
ば、図4は、吸収率を比較したものであり、π偏光の吸
収率に対してσ偏光の吸収率が低い特性を有する。
However, the crystal of YLF is an anisotropic crystal. As shown in FIG. 3, two axes orthogonal to the crystal growth axis (a-axis) are different from the growth axis. There are an a-axis with the same characteristics and a c-axis with different characteristics. Therefore, FIG.
In the case of irradiating polarized light in the directions indicated by the arrows (A) and (B) (referred to as π-polarized light and σ-polarized light, respectively), there is a great difference in the excitation characteristics (absorbance, gain, etc.) of the laser light. For example, FIG. 4 shows a comparison of the absorptance, which has a characteristic that the absorptivity of σ polarized light is lower than that of π polarized light.

【0005】そのため、YLF結晶を用いるレーザ装置
では、図5に例示するように、YLFレーザロッド1の
端面にπ偏光の励起光2を照射することにより、高い吸
収率を確保して効率的にレーザ光を励起していた。すな
わち、端面に照射する照射光2の偏光方向4をYLF結
晶1のc軸に一致させることにより、励起光の吸収率を
高め効率的な励起を可能にしている。なお、この端面励
起型固体レーザでは、出力レーザ光6も励起光2と同一
の偏光方向7となる。
For this reason, in a laser device using a YLF crystal, as shown in FIG. 5, by irradiating the end face of a YLF laser rod 1 with excitation light 2 of π-polarized light, a high absorptance is ensured and efficient. Laser light was being excited. That is, by making the polarization direction 4 of the irradiation light 2 irradiating the end face coincide with the c-axis of the YLF crystal 1, the absorption rate of the excitation light is increased and efficient excitation is enabled. In this end-pumped solid-state laser, the output laser light 6 also has the same polarization direction 7 as the pump light 2.

【0006】しかし、かかる従来のYLFレーザは、端
面励起に限られるため、YAGレーザにおける側面励起
のように、更に大出力化を図ることができない問題点が
あった。すなわち、図5に示すYLFレーザロッド1の
側面(円筒面)に多方向から励起光2を照射しても、そ
の励起光2の偏光方向はYLF結晶1のc軸に向かない
ため、図4に示したように励起光2の吸収率が低く、そ
のため損失が大きくなって効率的な励起ができない問題
点があった。従って、従来、YLF結晶のような異方性
結晶を使用した側面励起型固体レーザの例がなく、すべ
て端面励起型レーザに使用されていた。
However, such a conventional YLF laser is limited to the end face pumping, and thus has a problem that it is not possible to further increase the output unlike the side face pumping of the YAG laser. That is, even if the side surface (cylindrical surface) of the YLF laser rod 1 shown in FIG. 5 is irradiated with the excitation light 2 from multiple directions, the polarization direction of the excitation light 2 is not directed to the c-axis of the YLF crystal 1. As described above, there is a problem that the absorption rate of the excitation light 2 is low, so that the loss becomes large and efficient excitation cannot be performed. Accordingly, there has been no example of a side-pumped solid-state laser using an anisotropic crystal such as a YLF crystal, and all have been used for edge-pumped lasers.

【0007】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、YL
F結晶のような異方性結晶をレーザ結晶として用い、側
面の多方向から効率よく励起ができ、これにより大出力
化を可能にする異方性結晶を用いた側面励起型固体レー
ザを提供することにある。
The present invention has been made to solve such a problem. That is, the object of the present invention is YL
Provided is a side-pumped solid-state laser using an anisotropic crystal, such as an F crystal, which can efficiently pump from multiple directions on a side surface by using an anisotropic crystal as a laser crystal, thereby increasing the output. It is in.

【0008】[0008]

【課題を解決するための手段】本発明によれば、結晶の
成長軸(a軸)に対して、直交する2軸は成長軸と特性
の等しいa軸と特性の異なるc軸とからなる異方性結晶
から成形され、かつc軸を軸心とする円筒形レーザロッ
ド(12)と、該レーザロッドの側面に励起光を照射す
る励起光照射手段(14)と、を備え、励起光照射手段
による励起光(15)が、レーザロッドのc軸に直交し
て照射され、かつその偏光方向(16)がc軸に平行に
設定されている、ことを特徴とする異方性結晶を用いた
側面励起型固体レーザが提供される。本発明の好ましい
実施形態によれば、前記異方性結晶はYLF結晶であ
る。
According to the present invention, two axes orthogonal to the crystal growth axis (a axis) are composed of an a axis having the same characteristics as the growth axis and a c axis having different characteristics. A cylindrical laser rod (12) formed of an isotropic crystal and having a c-axis as an axis; and an excitation light irradiating means (14) for irradiating excitation light to a side surface of the laser rod. An anisotropic crystal, characterized in that the excitation light (15) by the means is irradiated orthogonally to the c-axis of the laser rod and the polarization direction (16) is set parallel to the c-axis. A side-pumped solid state laser is provided. According to a preferred embodiment of the present invention, the anisotropic crystal is a YLF crystal.

【0009】上記本発明の構成によれば、円筒形レーザ
ロッド(12)が、異方性結晶(例えばYLF結晶)の
c軸を軸心とするように成形されているので、レーザロ
ッドの軸心に直交する2軸は共にa軸となる。従って、
励起光照射手段(14)によりレーザロッドの側面から
レーザロッドの軸心(c軸)に直交する向きに励起光
(15)を照射し、かつその励起光の偏光方向(16)
をc軸に平行(すなわち軸線方向)に設定することによ
り、各励起光の偏光面をYLF結晶のc軸に向けること
ができ、励起光の吸収率を高く維持して効率的な励起を
行うことができる。更に、端面励起に比べて側面励起で
は、励起光の照射面を広くできるので大出力化が可能で
ある。
According to the configuration of the present invention, since the cylindrical laser rod (12) is formed so as to have the c-axis of the anisotropic crystal (for example, YLF crystal) as the axis, the axis of the laser rod is formed. Both axes orthogonal to the heart are a-axis. Therefore,
The excitation light irradiating means (14) irradiates excitation light (15) from the side surface of the laser rod in a direction orthogonal to the axis (c-axis) of the laser rod, and the polarization direction of the excitation light (16).
Is set parallel to the c-axis (that is, in the axial direction), the polarization plane of each excitation light can be directed to the c-axis of the YLF crystal, and the excitation light is efficiently maintained while maintaining a high absorption rate of the excitation light. be able to. Furthermore, compared to the end face excitation, the side face excitation can make the irradiation surface of the excitation light wider, so that the output can be increased.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付し重複した説明を省略する。
図1は、異方性結晶を用いた本発明による側面励起型固
体レーザの構成図である。この図に示すように、本発明
の側面励起型固体レーザ10は、円筒形のレーザロッド
12と、このレーザロッド12の側面に励起光15を照
射する励起光照射手段14と、を備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a configuration diagram of a side-pumped solid-state laser according to the present invention using an anisotropic crystal. As shown in FIG. 1, a side-pumped solid-state laser 10 according to the present invention includes a cylindrical laser rod 12 and excitation light irradiating means 14 for irradiating a side surface of the laser rod 12 with excitation light 15.

【0011】円筒形レーザロッド12は、YLF結晶の
ような異方性結晶から成形されている。すなわち、YL
F結晶のような異方性結晶は、図3に示したように、結
晶の成長軸(a軸)に対して、直交する2軸は成長軸と
特性の等しいa軸と特性の異なるc軸とからなる。YL
F結晶の場合、このc軸が最も吸収率が高い軸となる。
本発明の円筒形レーザロッド12は、かかる異方性結晶
から、特性の特異なるc軸が軸心となるようにレーザロ
ッドを成形する。このように成形した本発明のレーザロ
ッド12は、その軸心がc軸である点で、図5に示した
従来の端面励起型固体レーザとは大きく相違する。
The cylindrical laser rod 12 is formed from an anisotropic crystal such as a YLF crystal. That is, YL
In an anisotropic crystal such as an F crystal, as shown in FIG. 3, two axes orthogonal to the crystal growth axis (a-axis) are a-axis having the same characteristics as the growth axis and c-axis having different characteristics. Consists of YL
In the case of F crystal, the c-axis is the axis having the highest absorptance.
The cylindrical laser rod 12 of the present invention forms a laser rod from such an anisotropic crystal such that the c-axis having unique characteristics becomes the axis. The laser rod 12 of the present invention formed in this way is significantly different from the conventional end-pumped solid-state laser shown in FIG. 5 in that its axis is the c-axis.

【0012】また、本発明の側面励起型固体レーザ10
では、励起光照射手段14による励起光15が、レーザ
ロッド12のc軸(すなわち軸心)に直交して照射さ
れ、かつその偏光方向16がc軸(軸心)に平行に設定
されている。
The side-pumped solid-state laser 10 of the present invention
In the above, the excitation light 15 by the excitation light irradiation means 14 is irradiated orthogonally to the c-axis (that is, the axis) of the laser rod 12, and the polarization direction 16 is set parallel to the c-axis (the axis). .

【0013】上述したように、本発明では、円筒形レー
ザロッド12が、異方性結晶(例えばYLF結晶)のc
軸を軸心とするように成形されているので、レーザロッ
ド12の軸心に直交する2軸は共にa軸となる。従っ
て、励起光照射手段14によりレーザロッド12の側面
からレーザロッドの軸心(c軸)に直交する向きに励起
光15を照射し、かつその励起光の偏光方向16をc軸
に平行(すなわち軸線方向)に設定することは、図1に
示すように無理なく容易にできる。また、励起光15の
照射方向は、この図に示すように、レーザロッド12の
軸心に直交する2軸方向に限定されず、軸心に直交する
多方向から行うことができる。
As described above, in the present invention, the cylindrical laser rod 12 is formed of an anisotropic crystal (for example, a YLF crystal).
The two axes perpendicular to the axis of the laser rod 12 are both a-axis because they are formed to have the axis as the axis. Therefore, the excitation light irradiating means 14 irradiates the excitation light 15 from the side surface of the laser rod 12 in a direction orthogonal to the axis (c-axis) of the laser rod, and changes the polarization direction 16 of the excitation light parallel to the c-axis (that is, the c-axis). It can be easily and easily set as shown in FIG. Further, the irradiation direction of the excitation light 15 is not limited to a two-axis direction orthogonal to the axis of the laser rod 12, as shown in this figure, but can be performed from multiple directions orthogonal to the axis.

【0014】この構成により、各励起光15の偏光面1
6を異方性結晶(YLF結晶)のc軸に向けることがで
き、励起光15の吸収率を高く維持して効率的な励起を
行うことができる。更に、端面励起に比べて側面励起で
は、励起光の照射面を広くできるので大出力化が可能で
ある。なお、本発明の側面励起型固体レーザ10では、
発振するレーザ光は原則として円偏光であり、この点は
従来の端面励起型と相違する。
With this configuration, the polarization plane 1 of each excitation light 15
6 can be directed to the c-axis of the anisotropic crystal (YLF crystal), and the absorption of the excitation light 15 can be kept high to perform efficient excitation. Furthermore, compared to the end face excitation, the side face excitation can make the irradiation surface of the excitation light wider, so that the output can be increased. In the side-pumped solid-state laser 10 of the present invention,
The oscillating laser light is, in principle, circularly polarized light, which is different from the conventional end-pumped type.

【0015】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the spirit of the present invention.

【0016】[0016]

【発明の効果】上述したように、本発明の側面励起型固
体レーザは、YLF結晶のような異方性結晶をレーザ結
晶として用い、側面の多方向から効率よく励起ができ、
これにより大出力化が可能になる、等の優れた効果を有
する。
As described above, the side-pumped solid-state laser of the present invention uses an anisotropic crystal such as a YLF crystal as a laser crystal, and can efficiently pump from multiple directions on the side.
This has an excellent effect that a large output can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】異方性結晶を用いた本発明による側面励起型固
体レーザの構成図である。
FIG. 1 is a configuration diagram of a side-pumped solid-state laser according to the present invention using an anisotropic crystal.

【図2】等方性結晶を用いた従来の端面励起(A)と側
面励起(B)の模式図である。
FIG. 2 is a schematic view of a conventional end face excitation (A) and a side face excitation (B) using an isotropic crystal.

【図3】異方性結晶の説明図である。FIG. 3 is an explanatory diagram of an anisotropic crystal.

【図4】π偏光とσ偏光の吸収率の比較図である。FIG. 4 is a comparison diagram of absorptivity of π-polarized light and σ-polarized light.

【図5】異方性結晶を用いた端面励起型固体レーザの構
成図である。
FIG. 5 is a configuration diagram of an edge-pumped solid-state laser using an anisotropic crystal.

【符号の説明】[Explanation of symbols]

1 レーザロッド 2 励起光 3 レンズ 4 偏光方向 6 出力レーザ光 7 偏光方向 10 側面励起型固体レーザ 12 円筒刑レーザロッド 14 励起光照射手段 15 励起光 16 偏光方向 DESCRIPTION OF SYMBOLS 1 Laser rod 2 Excitation light 3 Lens 4 Polarization direction 6 Output laser light 7 Polarization direction 10 Side-excitation solid laser 12 Cylindrical laser rod 14 Excitation light irradiation means 15 Excitation light 16 Polarization direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶の成長軸(a軸)に対して、直交す
る2軸は成長軸と特性の等しいa軸と特性の異なるc軸
とからなる異方性結晶から成形され、かつc軸を軸心と
する円筒形レーザロッド(12)と、該レーザロッドの
側面に励起光を照射する励起光照射手段(14)と、を
備え、 励起光照射手段による励起光(15)が、レーザロッド
のc軸に直交して照射され、かつその偏光方向(16)
がc軸に平行に設定されている、ことを特徴とする異方
性結晶を用いた側面励起型固体レーザ。
1. An anisotropic crystal having two axes perpendicular to a crystal growth axis (a-axis), comprising an a-axis having the same characteristics as the growth axis and a c-axis having different characteristics, and a c-axis. A cylindrical laser rod (12) having an axis as an axis, and excitation light irradiating means (14) for irradiating the side surface of the laser rod with excitation light, wherein the excitation light (15) by the excitation light irradiating means is a laser. Irradiated perpendicular to the c-axis of the rod and its polarization direction (16)
Is set parallel to the c-axis, wherein a side-pumped solid-state laser using an anisotropic crystal.
【請求項2】 前記異方性結晶はYLF結晶である、こ
とを特徴とする請求項1に記載の側面励起型固体レー
ザ。
2. The side-pumped solid-state laser according to claim 1, wherein the anisotropic crystal is a YLF crystal.
JP24659598A 1998-09-01 1998-09-01 Side excitation solid-state laser provided with anisotropic crystal Pending JP2000077753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24659598A JP2000077753A (en) 1998-09-01 1998-09-01 Side excitation solid-state laser provided with anisotropic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24659598A JP2000077753A (en) 1998-09-01 1998-09-01 Side excitation solid-state laser provided with anisotropic crystal

Publications (1)

Publication Number Publication Date
JP2000077753A true JP2000077753A (en) 2000-03-14

Family

ID=17150762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24659598A Pending JP2000077753A (en) 1998-09-01 1998-09-01 Side excitation solid-state laser provided with anisotropic crystal

Country Status (1)

Country Link
JP (1) JP2000077753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208002A (en) * 2006-02-01 2007-08-16 Ricoh Co Ltd Semiconductor laser-excited solid laser equipment
JP2011517066A (en) * 2008-03-31 2011-05-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Multipath optical power amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208002A (en) * 2006-02-01 2007-08-16 Ricoh Co Ltd Semiconductor laser-excited solid laser equipment
JP2011517066A (en) * 2008-03-31 2011-05-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Multipath optical power amplifier

Similar Documents

Publication Publication Date Title
US4756003A (en) Laser diode pumped solid state laser
JP2614440B2 (en) Laser diode pumped solid state laser
US4872177A (en) Laser diode pumped solid state laser
US4701929A (en) Laser diode pumped solid state laser
US6301275B2 (en) Self-frequency doubled Nd-doped YCOB laser
JP2008028379A (en) Mode-locked laser device
US7881348B2 (en) Mode-locked laser device
EP1482607B2 (en) Enhanced optical pumping of materials exhibiting polarization-dependent absorption
US5590141A (en) Method and apparatus for generating and employing a high density of excited ions in a lasant
US5323414A (en) Laser system and method employing a nonimaging concentrator
JP4047131B2 (en) Solid state laser equipment
JPS60189277A (en) Oscillatation for erbium laser and device thereof
JPH11261136A (en) Optical pulse generating element
JP2000077753A (en) Side excitation solid-state laser provided with anisotropic crystal
CN217485928U (en) Double-end pumping laser device, laser oscillation device and laser amplification device
CN114825010B (en) Double-end pumping laser device
EP0457523B1 (en) Apparatus for pumping of a weakly absorbing lasant material
JPH02185082A (en) Laser diode-excited solid state laser
JP2007266537A (en) Internal resonator-type sum frequency mixing laser
JPH06120586A (en) Solid state laser equipment
Knights et al. High-efficiency deep-red laser pumped by doubled Nd: YAG
Scheps et al. End-pumped Nd: BEL laser performance
JP2000252560A (en) Ld stimulated solid-state laser device
JPH07321394A (en) Crystal for solid state laser
JP2006203117A (en) Solid-state laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071115