JP2000076694A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JP2000076694A
JP2000076694A JP10253336A JP25333698A JP2000076694A JP 2000076694 A JP2000076694 A JP 2000076694A JP 10253336 A JP10253336 A JP 10253336A JP 25333698 A JP25333698 A JP 25333698A JP 2000076694 A JP2000076694 A JP 2000076694A
Authority
JP
Japan
Prior art keywords
information recording
recording medium
optical
photodetector
spherical aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10253336A
Other languages
Japanese (ja)
Inventor
Rika Narumi
理香 鳴海
Noriyuki Yamazaki
敬之 山崎
Norikazu Arai
則一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP10253336A priority Critical patent/JP2000076694A/en
Publication of JP2000076694A publication Critical patent/JP2000076694A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To record/reproduce excellently plural kinds of recording media by specifying a mean operational distance of an area most parting from an optical axis among the areas considering substrate thickness of a first recording medium and correcting spherical aberration and the mean operational distance of the area most parting from the optical axis among the areas considering the substrate thickness of a second recording medium and correcting the spherical aberration. SOLUTION: The relation of 0.05 mm<|(fb1+t1/n1)-(fb2+t2/n2)|<0.2 mm is satisfied between the mean operational distance fb1 of the area most parting from the optical axis among the areas considering the substrate thickness of the first recording medium and correcting the spherical aberration and a second similar mean operational distance fb2. Where, t1, t2 and n1, n2 show respectively the thickness and the refractive indexes of the first substrate and the second substrate. An objective lens 7 is divided to plural areas zonally around the optical axis, and the spherical aberration of the first area is corrected considering the substrate thickness of the first optical information recording medium and the second optical information recording medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ピックアップ装置用対
物レンズ、特に記録密度の異なる複数の光情報記録媒体
の記録再生を可能とする対物レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens for an optical pickup device, and more particularly to an objective lens which enables recording and reproduction of a plurality of optical information recording media having different recording densities.

【0002】[0002]

【従来の技術】光ディスクなどを光情報記録媒体とし、
レーザー光源からの光束を透明基盤を介して記録面上に
集光する光ピックアップ装置において、透明基盤の厚
さ、情報の記録密度の異なる複数の光情報記録媒体、例
えばDVDとCDとを、同一対物レンズで記録再生する
ものが種々提案されている。それらのうち、複数種の光
情報記録媒体を同一対物レンズで記録再生できるもの
は、光ピックアップの構成を簡単にし、小型化、低コス
ト化のために望ましい。このような対物レンズとして、
屈折面を複数の輪帯上領域に分割し、各領域ごとに、対
応する光情報記録媒体に適した収差補正を行うものが知
られている。
2. Description of the Related Art An optical information recording medium is used for an optical disc or the like.
2. Description of the Related Art In an optical pickup device that focuses a light beam from a laser light source on a recording surface via a transparent substrate, a plurality of optical information recording media having different thicknesses of the transparent substrate and information recording densities, for example, DVD and CD, are the same. Various types of recording and reproducing with an objective lens have been proposed. Among them, those capable of recording and reproducing a plurality of types of optical information recording media with the same objective lens are desirable for simplifying the configuration of the optical pickup, reducing the size and cost. As such an objective lens,
It is known that a refraction surface is divided into a plurality of zones above the orbicular zone, and for each area, aberration correction suitable for a corresponding optical information recording medium is performed.

【0003】同一対物レンズで複数種の光情報記録媒体
の再生を行う光ピックアップ装置の1例を図9に示す。
光ピックアップ装置10は、光源である半導体レーザー
11、偏光ビームスプリッタ12、コリメータレンズ1
3、1/4λ板14、絞り17、対物レンズ16、非点
収差素子であるシリンドリカルレンズ18、光検出器3
0、およびフォーカス制御およびトラッキング制御のた
めの2次元アクチュエータ15などからなる。光源であ
る半導体レーザー11からの光束は、偏光ビームスプリ
ッタ12、コリメータレンズ13および1/4λ板14
を透過して円偏光の平行光束となり、絞り17により絞
られ、対物レンズ16によって光ディスク20の透明基
板21を介して情報記録面22上に集光される。情報記
録面22で情報ピットにより変調された反射光束は、再
び対物レンズ16、1/4λ板14、コリメータレンズ
13により収束光となり、偏光ビームスプリッタ12で
反射し、シリンドリカルレンズ18を経て光検出器30
に入射する。その出力信号を用いて光ディスク20に情
報記録された情報の読み取り信号が得られる。一方、光
検出器30上でのスポットの形状変化による光量分布変
化を検出して合焦検出やトラック検出を行なう。光検出
器30からの出力を用いて周知のように図示しない演算
回路によってフォーカスエラー信号およびトラッキング
エラー信号が生成され、このフォーカスエラー信号に基
づいて2次元アクチュエータ15が、光束を情報記録面
22上に結像するように対物レンズ16を光軸方向に移
動させ、同時にトラッキングエラー信号に基づいて光束
を所定のトラックに結像するように対物レンズ16を光
軸と垂直な方向に移動させる。
FIG. 9 shows an example of an optical pickup device for reproducing a plurality of types of optical information recording media with the same objective lens.
The optical pickup device 10 includes a semiconductor laser 11, which is a light source, a polarization beam splitter 12, and a collimator lens 1.
3, 1 / 4.lambda. Plate 14, stop 17, objective lens 16, cylindrical lens 18 as astigmatic element, photodetector 3.
0, and a two-dimensional actuator 15 for focus control and tracking control. A light beam from a semiconductor laser 11 serving as a light source is supplied to a polarization beam splitter 12, a collimator lens 13, and a λλ plate 14.
, Is converted into a parallel light beam of circularly polarized light, is stopped by the stop 17, and is condensed on the information recording surface 22 via the transparent substrate 21 of the optical disc 20 by the objective lens 16. The reflected light flux modulated by the information pits on the information recording surface 22 becomes convergent light again by the objective lens 16, the 4λ plate 14, and the collimator lens 13, is reflected by the polarization beam splitter 12, passes through the cylindrical lens 18, and passes through the photodetector. 30
Incident on. Using the output signal, a signal for reading information recorded on the optical disk 20 is obtained. On the other hand, a change in the light amount distribution due to a change in the spot shape on the photodetector 30 is detected to perform focus detection and track detection. As is well known, a focus error signal and a tracking error signal are generated by an arithmetic circuit (not shown) using the output from the photodetector 30, and based on the focus error signal, the two-dimensional actuator 15 causes the light flux on the information recording surface 22. The objective lens 16 is moved in the optical axis direction so as to form an image at the same time, and at the same time, the objective lens 16 is moved in a direction perpendicular to the optical axis so as to form a light beam on a predetermined track based on the tracking error signal.

【0004】このような光ピックアップ装置に用いられ
る対物レンズの1例の断面図と収差図を図10と図11
に示す。対物レンズの1面S1はSd1〜Sd4の4つ
の輪帯状領域に分けられ、透過基板の厚の差により発生
する球面収差を利用して、第1の光情報記録媒体21に
対しては領域Sd1、Sd2、Sd4を透過した光束が
集光され、第2の光情報記録媒体21’に対しては領域
Sd1、Sd3を透過した光束が集光される。利用され
ない輪帯の光束、例えば第2光情報記録媒体の記録再生
時、第1の光情報記録媒体用の輪帯領域Sd2、Sd4
を透過した光束はフレアとなり、光検出器30に入射す
れば、トラッキング信号やフォーカスエラー信号の誤差
の原因となる。
FIGS. 10 and 11 show a sectional view and an aberration diagram of an example of an objective lens used in such an optical pickup device.
Shown in One surface S1 of the objective lens is divided into four orbicular zones Sd1 to Sd4, and the region Sd1 for the first optical information recording medium 21 by utilizing spherical aberration generated by a difference in thickness of the transmission substrate. , Sd2 and Sd4 are converged, and the light transmitted through the regions Sd1 and Sd3 is converged on the second optical information recording medium 21 '. A luminous flux of an unused annular zone, for example, at the time of recording / reproducing on the second optical information recording medium, the annular zones Sd2 and Sd4 for the first optical information recording medium.
The light beam transmitted through becomes a flare, and if it enters the photodetector 30, it causes an error in the tracking signal and the focus error signal.

【0005】このとき、光検出器の受光部の一辺の大き
さをL、情報記録面と光検出器までの集光光学系の倍率
をMとしたとき、|L/M|が6〜18μmの範囲にあ
れば、このフレアを効果的に除去できることが知られて
いる(特開平10−55564号)。図7のピックアッ
プにおいては、4分割受光素子が用いられ、その大きさ
を十分に小さくすることが可能であり、また、シリンド
リカルレンズ18と共にレンズを付加することによって
倍率Mを適当に選択することも可能である。
At this time, assuming that the size of one side of the light receiving portion of the photodetector is L and the magnification of the focusing optical system from the information recording surface to the photodetector is M, | L / M | is 6 to 18 μm. It is known that the flare can be effectively removed if the thickness is within the range described in Japanese Patent Application Laid-Open No. H10-55564. In the pickup of FIG. 7, a four-divided light receiving element is used, and the size thereof can be sufficiently reduced. Further, by adding a lens together with the cylindrical lens 18, the magnification M can be appropriately selected. It is possible.

【0006】しかし、近年、光源と、光検出器と、光源
からの光束と光情報記録媒体からの反射光を分離するホ
ログラム素子を一体化した素子(以下ホロレーザーとい
う)が、特にCD用光ピックアップ装置に広く用いられ
ている。このホロレーザーはつぎのような特徴を有す
る。 ホログラムと光源、光検出器の位置精度の実用的な
限界から、光検出器は短冊状の複数の素子によって構成
され、各素子の長辺の長さLは200μmから800μ
mと長い。 光源の効率を高めるため、光源と光情報記録媒体の
情報記録面までの倍率は5〜7倍と小さい。 光源と光検出器がほぼ同一平面上にあるため、光情
報記録媒体の情報記録面と光検出器の倍率Mも同様に5
〜7倍である。 このため、L/Mが大となり、特にCD記録再生時には
フレアによるノイズの発生、フォーカスエラー信号の劣
化が顕著となる。
However, in recent years, an element (hereinafter referred to as a “holo laser”) integrating a light source, a photodetector, and a hologram element for separating the light flux from the light source and the reflected light from the optical information recording medium has been used especially for CD light. Widely used for pickup devices. This holo laser has the following features. Due to the practical limits of the position accuracy of the hologram, the light source, and the photodetector, the photodetector is composed of a plurality of strip-shaped elements, and the length L of each element is 200 μm to 800 μm.
m and long. In order to increase the efficiency of the light source, the magnification between the light source and the information recording surface of the optical information recording medium is as small as 5 to 7 times. Since the light source and the photodetector are substantially on the same plane, the magnification M between the information recording surface of the optical information recording medium and the photodetector is also 5
~ 7 times. For this reason, L / M becomes large, and noise generation due to flare and deterioration of a focus error signal become remarkable, particularly during CD recording and reproduction.

【0007】このフレアは、開口絞りを挿入したり、液
晶シャッタを配設することによってカットすることが出
来る。しかし、それによってホロレーザーの利点が失わ
れることとなる。すなわち、ホロレーザーはホログラ
ム、光源、光検出器が一体にユニット化されており、集
光光学系は、ホロレーザー、対物レンズあるいはホロレ
ーザー、コリメーターレンズ、対物レンズと2あるいは
3のユニットで組み立てることが出来るが、絞りなどの
部品を付加することにより、ピックアップの構造が複雑
になり、また、信頼性も低下してしまう。光源として波
長の異なる2つ以上のレーザーを用いる場合は、各光源
ごとに対処することも出来るが、単一の光源によって複
数種の光情報記録媒体を記録再生する場合は、特に問題
となる。
[0007] The flare can be cut by inserting an aperture stop or disposing a liquid crystal shutter. However, this would lose the benefits of the holo laser. That is, the hologram, the hologram, the light source, and the photodetector are integrally unitized, and the condensing optical system is assembled with a hologram, an objective lens or a hologram laser, a collimator lens, and two or three units with the objective lens. However, the addition of components such as a diaphragm complicates the structure of the pickup and lowers the reliability. When two or more lasers having different wavelengths are used as light sources, it is possible to cope with each of the light sources. However, when recording and reproducing a plurality of types of optical information recording media with a single light source, there is a particular problem.

【0008】[0008]

【発明が解決しようとする課題】本発明は、対物レンズ
それ自身に、上記のフレアのカット機能を持たせること
により、極めて単純な構成であるにもかかわらず、上記
の問題を含まず、複数種の光情報記録媒体の良好な記録
再生をを可能とする光ピックアップ装置を得ようとす
る。
According to the present invention, the objective lens itself is provided with the above-mentioned flare cutting function, so that the above-mentioned problem is not included in spite of the extremely simple structure. An optical pickup device that enables good recording and reproduction of various kinds of optical information recording media is intended.

【0009】[0009]

【課題を解決するための手段】この発明の光ピックアッ
プ装置においては、フレアのカットは、第1の光情報記
録媒体の再生用の光束の集光点と第2の光情報記録媒体
の再生用の光束の集光点を大きくずらすことにより、記
録面からの反射光が、光検出器から外れた位置に入射
し、フレアは光検出器へ影響を及ぼさないようにされ
る。あるいは、第2の光情報記録媒体の再生時に、必要
な開口数の外側で、記録面からの反射光が光検出器に入
射する領域の光束をカットするように、対物レンズ面上
に光の遮蔽層を形成する。透明基板の厚さがt1で屈折
率がn1の第1の光情報記録媒体に情報記録された情報
と、透明基板の厚さがt2で屈折率がn2の第2の光情
報記録媒体に情報記録された情報とを光源から出射した
光束を1つの対物レンズで透明基板を介して情報記録面
に集光させ、情報記録面からの反射光を光検出器により
検出することにより記録再生する光ピックアップ装置に
おいて、該光検出器はほぼ平行に配置された複数の短冊
状のセンサー素子によって構成され、該対物レンズは、
光軸を中心に輪帯上に複数の領域に分割されており、少
なくとも1つずつの第1の光情報記録媒体の基板厚を考
慮して球面収差を補正した領域と第2の光情報記録媒体
の基板厚を考慮して球面収差を補正した領域とを含み、
第1の光情報記録媒体の基板厚を考慮して球面収差を補
正した領域のうち、最も光軸から離れた領域の平均作動
距離をfb1、第2の光情報記録媒体の基板厚を考慮し
て球面収差を補正した領域のうち、最も光軸から離れた
領域の平均作動距離をfb2としたとき、 0.05mm<|(fb1+t1/n1)−(fb2+
t2/n2)|<0.2mm の条件を満たすことをを特徴とする。ただし、平均作動
距離とは、対物レンズの光情報記録媒体側の面と光軸と
の接平面を基準に、各輪帯状の領域を通る光束が光軸と
交わる位置までの距離を面積平均した量から基板厚を差
し引いた量である。
In the optical pickup device according to the present invention, the flare is cut by the focus point of the light beam for reproducing the first optical information recording medium and the condensing point of the light beam for reproducing the second optical information recording medium. The light reflected from the recording surface is incident on a position deviated from the photodetector, so that the flare does not affect the photodetector. Alternatively, at the time of reproduction of the second optical information recording medium, the light on the objective lens surface is cut outside the necessary numerical aperture so as to cut off the light flux in the area where the reflected light from the recording surface enters the photodetector. Form a shielding layer. Information recorded on a first optical information recording medium having a transparent substrate thickness of t1 and a refractive index of n1 and information recorded on a second optical information recording medium of a transparent substrate having a thickness of t2 and a refractive index of n2. A light beam for recording and reproducing the recorded information and a light beam emitted from a light source through one transparent lens through a transparent substrate to an information recording surface, and detecting reflected light from the information recording surface with a photodetector. In the pickup device, the photodetector is configured by a plurality of strip-shaped sensor elements arranged substantially in parallel, and the objective lens includes:
The second optical information recording area is divided into a plurality of areas on an annular zone centered on the optical axis, wherein at least one of the areas has a spherical aberration corrected in consideration of the substrate thickness of the first optical information recording medium. Including a region in which spherical aberration has been corrected in consideration of the substrate thickness of the medium,
Among the areas where the spherical aberration is corrected in consideration of the substrate thickness of the first optical information recording medium, the average working distance of the area farthest from the optical axis is fb1, and the substrate thickness of the second optical information recording medium is considered. When the average working distance of the region farthest from the optical axis in the region in which the spherical aberration has been corrected is fb2, 0.05 mm <| (fb1 + t1 / n1)-(fb2 +
t2 / n2) | <0.2 mm. However, the average working distance is the area average of the distance to the position where the light beam passing through each annular zone intersects the optical axis, based on the tangent plane between the optical information recording medium side surface of the objective lens and the optical axis. This is the amount obtained by subtracting the substrate thickness from the amount.

【0010】または、該対物レンズは、光軸を中心に輪
帯状に複数の領域に分割されており、光軸上の第1輪帯
領域は第1の光情報記録媒体と第2の光情報記録媒体の
基板厚を考慮して球面収差を補正され、第2の輪帯領域
は第2の光情報記録媒体の基板厚を考慮して球面収差を
補正され、第3輪帯領域は遮蔽領域とされ、第4輪帯領
域は第1の光情報記録媒体の基板厚を考慮して球面収差
を補正された領域とされている。この対物レンズの遮蔽
領域はNA0.3〜0.4であることが望ましい。
[0010] Alternatively, the objective lens is divided into a plurality of regions in an annular shape around the optical axis, and a first annular region on the optical axis has a first optical information recording medium and a second optical information recording medium. Spherical aberration is corrected in consideration of the substrate thickness of the recording medium, spherical aberration is corrected in the second annular zone in consideration of the substrate thickness of the second optical information recording medium, and third annular zone is shielded. The fourth annular zone area is an area in which spherical aberration has been corrected in consideration of the substrate thickness of the first optical information recording medium. It is desirable that the shielding area of the objective lens has an NA of 0.3 to 0.4.

【0011】[0011]

【発明の実施の態様】以下、本発明の実施の態様の光ピ
ックアップ装置について、図面によって説明する。図1
において、光ピックアップ装置1は、光源である半導体
レーザー2、光検出器3およびホログラム4からなるホ
ロレーザー5、コリメータレンズ6および対物レンズ7
からなり、半導体レーザー2からの光束は、ホログラム
4、コリメータレンズ13を透過して絞り8により絞ら
れ、対物レンズ7によって光ディスクの透明基板を介し
て情報記録面9上に集光される。情報記録面9で情報ピ
ットにより変調された反射光束は、再び対物レンズ7、
コリメータレンズ6により収束光となり、ホログラム4
によりレーザー2からの光路と分離され、光検出器3に
入射し、その出力信号を用いて光ディスク9に記録され
た情報の読み取り信号が得られる。一方、光検出器3上
でのスポットの形状変化による光量分布変化を検出して
合焦検出やトラック検出を行なうが、その方法は周知で
あるので、説明は省略する。本発明の光ピックアップ装
置は、複数種の光情報記録媒体を単一のホロレーザーに
よって再生するタイプのものであることが特に好まし
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an optical pickup device according to an embodiment of the present invention will be described with reference to the drawings. FIG.
, An optical pickup device 1 includes a semiconductor laser 2 as a light source, a hollow laser 5 including a photodetector 3 and a hologram 4, a collimator lens 6, and an objective lens 7.
The light beam from the semiconductor laser 2 passes through the hologram 4 and the collimator lens 13 and is stopped down by the stop 8, and is focused on the information recording surface 9 via the transparent substrate of the optical disc by the objective lens 7. The reflected light flux modulated by the information pits on the information recording surface 9 again
The light is converged by the collimator lens 6 and the hologram 4
As a result, the signal is separated from the optical path from the laser 2, enters the photodetector 3, and a read signal of information recorded on the optical disc 9 is obtained using the output signal. On the other hand, a change in the light amount distribution due to a change in the shape of the spot on the photodetector 3 is detected to perform focus detection and track detection. It is particularly preferable that the optical pickup device of the present invention is of a type that reproduces a plurality of types of optical information recording media with a single holo laser.

【0012】[0012]

【実施例】以下、対物レンズの実施例を示す。 (実施例1)対物レンズは3つの領域に分割され、第1
領域(NA0〜0.20)および第3領域(NA0.3
8〜0.6)は第1の光情報記録媒体の基板厚を考慮し
て球面収差を補正した領域であり、第2領域(NA0.
2〜0.38)は第2の光情報記録媒体の基板厚を考慮
して球面収差を補正した領域である。光源波長650n
mにおいて、第1領域の焦点距離は3.36mmであ
り、第1の光情報記録媒体の基板厚を考慮して球面収差
を補正した領域のうち、もっとも光軸から離れた領域の
平均作動距離をfb1、第2の光情報記録媒体の基板厚
を考慮して球面収差を補正した領域のうち、もっとも光
軸から離れた領域の平均作動距離をfb2としたとき、 fb1=1.757mm, fb2=1.307mm 第1の光情報記録媒体に対するときの収差図を図3
(a)に、第2の光情報記録媒体に対するときの収差図
を図3(b)に示す。基準位置(横軸の0位置)は対物
レンズの光情報記録媒体側の面と光軸との接平面から光
情報記録媒体に向かってfb1+t1およびfb2+t
2離れた位置である。この実施例における光ピックアッ
プ光学系の他の諸元は 第1の光情報記録媒体(DVD) t1=0.6mm n1=1.58 第2の光情報記録媒体(CD) t2=1.2mm n2=1.58 コリメータレンズの焦点距離fc=20mm 記録面と光検出期間の倍率 M=fc/fo=20/3.36=5.95 センサーの長さ L=250μm であるから (fb1+t1/n1)−(fb2+t2/n2)=
0.070mm
Embodiments of the present invention will be described below. (Example 1) The objective lens is divided into three regions,
Area (NA0 to 0.20) and third area (NA0.3
8 to 0.6) are areas where spherical aberration is corrected in consideration of the substrate thickness of the first optical information recording medium, and the second area (NA0.
2 to 0.38) are areas where spherical aberration has been corrected in consideration of the substrate thickness of the second optical information recording medium. Light source wavelength 650n
m, the focal length of the first area is 3.36 mm, and the average working distance of the area farthest from the optical axis among the areas in which the spherical aberration is corrected in consideration of the substrate thickness of the first optical information recording medium. Where fb1 is the average working distance of the region farthest from the optical axis in the region where the spherical aberration is corrected in consideration of the substrate thickness of the second optical information recording medium, fb1 = 1.57 mm, fb2 = 1.307 mm FIG. 3 is an aberration diagram for the first optical information recording medium.
FIG. 3A shows an aberration diagram for the second optical information recording medium. The reference position (0 position on the horizontal axis) is fb1 + t1 and fb2 + t from the tangent plane between the optical information recording medium side surface of the objective lens and the optical axis toward the optical information recording medium.
Two positions away. Other specifications of the optical pickup optical system in this embodiment are: a first optical information recording medium (DVD) t1 = 0.6 mm n1 = 1.58 a second optical information recording medium (CD) t2 = 1.2 mm n2 = 1.58 Focal length of collimator lens fc = 20 mm Magnification between recording surface and photodetection period M = fc / fo = 20 / 3.36 = 5.95 Sensor length L = 250 μm (fb1 + t1 / n1) − (Fb2 + t2 / n2) =
0.070mm

【0013】対物レンズの光情報記録媒体側の開口数N
Aの光線の収差量をSA(NA)としたときに、その光
線が光検出器に戻ってきたときのセンサーの中心からの
距離H(NA)は、以下の式で表される。 H(NA)=|SA(NA)|×tan{sin-1(N
A)}×|M| CD記録再生時、第2領域からの光束は光検出器の中心
を通る。このとき、第3領域の光軸より最も遠い部分を
通った光線が光検出器に戻ってきたときのセンサーの中
心からの距離Hは H(0.6)=132(μm)×tan{sin
-1(0.6)}×5.95=589(μm) 第3領域の光軸から最も近い部分を通った光線が光検出
器に戻ってきたときのセンサーの中心からの距離Hは H(0.38)=91(μm)×tan{sin
-1(0.38)}×5.95=222(μm) であり、いずれも、L/2以上なので、第3領域の光は
センサーに入射することはない。第1領域の光軸から最
も遠い部分を通った光線が光検出器に戻ってきたときの
センサーの中心からの距離Hは H(0.2)=76(μm)×tan{sin-1(0.
2)}×5.95=92(μm) であり、L/2以下なのでセンサーに入射するが、この
部分の光量は全体の10%程度と少なく、また、結像位
置も大きく異なるので問題は生じない。
The numerical aperture N of the objective lens on the optical information recording medium side
When the amount of aberration of the light beam A is SA (NA), the distance H (NA) from the center of the sensor when the light beam returns to the photodetector is represented by the following equation. H (NA) = | SA (NA) | × tan @ sin -1 (N
A)} × | M | At the time of CD recording / reproduction, a light beam from the second area passes through the center of the photodetector. At this time, the distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the third area returns to the photodetector is H (0.6) = 132 (μm) × tan {sin
-1 (0.6)} × 5.95 = 589 (μm) The distance H from the center of the sensor when the light beam passing through the portion closest to the optical axis of the third region returns to the photodetector is H (0.38) = 91 (μm) × tan @ sin
−1 (0.38)} × 5.95 = 222 (μm) Since both are L / 2 or more, the light in the third area does not enter the sensor. The distance H from the center of the sensor when the light beam passing through the part farthest from the optical axis of the first area returns to the photodetector is H (0.2) = 76 (μm) × tan {sin −1 ( 0.
2)} × 5.95 = 92 (μm), which is less than L / 2, and is incident on the sensor. However, the amount of light in this portion is as small as about 10% of the whole, and the imaging position is also greatly different. Does not occur.

【0014】DVD記録再生時、第1領域および第3領
域からの光束は、光検出器に戻ってきたときのセンサー
の中心を通る。このとき、第2領域の光軸から最も遠い
部分を通った光線が光検出器に戻ってきたときのセンサ
ーの中心からの距離Hは H(0.38)=|−91(μm)|×tan{sin
-1(0.38)}×5.95=222(μm) また、第2領域の光軸に最も近い部分を通った光線が光
検出器に戻ってきたときのセンサーの中心からの距離H
は H(0.2)=|−76(μm)|×tan{sin-1
(0.2)}×5.95=92(μm) H(0.38)はL/2以上なのでセンサーに入射しな
いが、H(0.2)はL/2以下なのでセンサーに入射
してしまう。しかし、第2領域の大部分の光はセンサー
の外を通り、その上、第2領域の光量は第1領域および
第3領域に比べて小さいので、問題は生じない。従っ
て、DVD、CDの双方とも、フレアが少なく良好な記
録再生が可能である。
At the time of DVD recording and reproduction, the light flux from the first and third areas passes through the center of the sensor when returning to the photodetector. At this time, the distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the second area returns to the photodetector is H (0.38) = | -91 (μm) | × tan @ sin
−1 (0.38)} × 5.95 = 222 (μm) Further, the distance H from the center of the sensor when the light ray passing through the portion closest to the optical axis of the second area returns to the photodetector.
Is H (0.2) = | −76 (μm) | × tan {sin −1
(0.2)} × 5.95 = 92 (μm) H (0.38) is not incident on the sensor because it is L / 2 or more, but H (0.2) is incident on the sensor because it is L / 2 or less. I will. However, most of the light in the second region passes outside the sensor, and furthermore, the amount of light in the second region is smaller than in the first and third regions, so that no problem occurs. Therefore, favorable recording and reproduction can be performed on both DVD and CD with little flare.

【0015】(実施例2)この実施例においては、対物
レンズは4つの領域に分割され、第1領域(NA0〜
0.15)および第3領域(NA0.25〜0.40)
は第2の光情報記録媒体の基板厚を考慮して球面収差を
補正した領域であり、第2領域(NA0.15〜0.2
5)および第4領域(0.40〜0.60)は第1の光
情報記録媒体の基板厚を考慮して球面収差を補正した領
域である。光源波長650nmにおいて、第1領域の焦
点距離は3.36mmであり、 fb1=1.604mm, fb2=1.377mm 第1の光情報記録媒体を挿入したときの収差図を図5
(a)に、第2の光情報記録媒体を挿入したときの収差
図を図5(b)に示す。基準位置(横軸の0位置)は対
物レンズの光情報記録媒体側の面と光軸との接平面から
光情報記録媒体に向かってfb1+t1およびfb2+
t2離れた位置である。この実施例における光ピックア
ップ光学系の他の諸元は 第1の光情報記録媒体(DVD) t1=0.6mm n1=1.58 第2の光情報記録媒体(CD) t2=1.2mm n2=1.58 コリメータレンズの焦点距離fc=20mm 記録面と光検出期間の倍率 M=fc/fo=20/3.36=5.95 センサーの長さ L=250μm であるから (fb1+t1/n1)−(fb2+t2/n2)=−
0.153mm
(Embodiment 2) In this embodiment, the objective lens is divided into four regions, and the first region (NA0 to NA0) is divided into four regions.
0.15) and the third region (NA 0.25 to 0.40)
Is a region where spherical aberration is corrected in consideration of the substrate thickness of the second optical information recording medium, and the second region (NA 0.15 to 0.2
5) and the fourth area (0.40 to 0.60) are areas where spherical aberration has been corrected in consideration of the substrate thickness of the first optical information recording medium. At a light source wavelength of 650 nm, the focal length of the first region is 3.36 mm, and fb1 = 1.604 mm, fb2 = 1.377 mm. FIG. 5 is an aberration diagram when the first optical information recording medium is inserted.
FIG. 5B shows an aberration diagram when the second optical information recording medium is inserted in FIG. The reference position (0 position on the horizontal axis) is fb1 + t1 and fb2 + from a tangent plane between the optical information recording medium side surface of the objective lens and the optical axis toward the optical information recording medium.
It is a position separated by t2. Other specifications of the optical pickup optical system in this embodiment are: a first optical information recording medium (DVD) t1 = 0.6 mm n1 = 1.58 a second optical information recording medium (CD) t2 = 1.2 mm n2 = 1.58 Focal length of collimator lens fc = 20 mm Magnification between recording surface and photodetection period M = fc / fo = 20 / 3.36 = 5.95 Sensor length L = 250 μm (fb1 + t1 / n1) − (Fb2 + t2 / n2) = −
0.153mm

【0016】CD記録再生時、第2領域からの光束は光
検出器の中心を通る。このとき、第4領域の光軸から最
も遠い部分を通った光線が光検出器に戻ってきたときの
センサーの中心からの距離Hは H(0.6)=|−91(μm)|×tan{sin-1
(0.6)}×5.95=406(μm) 第4領域の光軸に最も近い部分を通った光線が光検出器
に戻ってきたときのセンサーの中心からの距離Hは H(0.4)=|−129(μm)×tan{sin-1
(0.4)}×5.95=335(μm) であり、いずれも、L/2以上なので、第4領域の光は
センサーに入射することはない。第2領域の光軸から最
も遠い部分を通った光線が光検出器に戻ってきたときの
センサーの中心からの距離Hは H(0.25)=|−144(μm)|×tan{si
-1(0.25)}×5.95=221(μm) 第2領域の光軸に最も近い部分を通った光線が光検出器
に戻ってきたときのセンサーの中心からの距離Hは H(0.15)=|−150(μm)×tan{sin
-1(0.15)}×5.95=135(μm) であり、いずれも、L/2以上なので、第2領域の光は
センサーに入射することはない。
At the time of CD recording / reproduction, a light beam from the second area passes through the center of the photodetector. At this time, the distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the fourth area returns to the photodetector is H (0.6) = | −91 (μm) | × tan @ sin -1
(0.6)} × 5.95 = 406 (μm) The distance H from the center of the sensor when the light beam passing through the portion closest to the optical axis of the fourth region returns to the photodetector is H (0 .4) = | -129 (μm) × tan @ sin −1
(0.4)} × 5.95 = 335 (μm) Since both are L / 2 or more, the light in the fourth region does not enter the sensor. The distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the second region returns to the photodetector is H (0.25) = | -144 (μm) | × tan {si
n −1 (0.25)} × 5.95 = 221 (μm) The distance H from the center of the sensor when the light ray passing through the portion closest to the optical axis of the second area returns to the photodetector is H (0.15) = | -150 (μm) × tan @ sin
−1 (0.15)} × 5.95 = 135 (μm) Since both are L / 2 or more, the light in the second region does not enter the sensor.

【0017】DVD記録再生時、第2領域および第4領
域からの光束は、光検出器に戻ってきたときのセンサー
の中心を通る。このとき、第3領域の光軸から最も遠い
部分を通った光線が光検出器に戻ってきたときのセンサ
ーの中心からの距離Hは H(0.40)=129(μm)×tan{sin
-1(0.4)}×5.95=335(μm) また、第3領域の光軸に最も近い部分を通った光線が光
検出器に戻ってきたときのセンサーの中心からの距離H
は H(0.25)=144(μm)×tan{sin
-1(0.25)}×5.95=221(μm) で、いずれもL/2以上なのでセンサーに入射しない。
第1領域の光軸から最も遠い部分を通った光線が光検出
器に戻ってきたときのセンサーの中心からの距離Hは H(0.15)=150(μm)×tan{sin
-1(0.15)}×5.95=135(μm) であり、H(0.15)はL/2以上なのでセンサーに
入射しないが、H(0)は光軸上の光なので当然に入射
する。しかし、第1領域の光量は第2領域および第4領
域に比べて小さいので、問題は生じない。従って、、D
VD、CDの双方とも、フレアが少なく良好な記録再生
が可能である。
At the time of DVD recording / reproducing, light beams from the second area and the fourth area pass through the center of the sensor when returning to the photodetector. At this time, the distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the third region returns to the photodetector is H (0.40) = 129 (μm) × tan {sin
−1 (0.4)} × 5.95 = 335 (μm) Further, the distance H from the center of the sensor when the light ray passing through the portion closest to the optical axis of the third area returns to the photodetector.
Is H (0.25) = 144 (μm) × tan {sin
−1 (0.25)} × 5.95 = 221 (μm), and all are L / 2 or more, so that they do not enter the sensor.
The distance H from the center of the sensor when the light beam passing through the portion farthest from the optical axis of the first area returns to the photodetector is H (0.15) = 150 (μm) × tan {sin
−1 (0.15)} × 5.95 = 135 (μm), and H (0.15) is L / 2 or more and does not enter the sensor. However, since H (0) is light on the optical axis, it is natural. Incident on. However, since the amount of light in the first area is smaller than that in the second and fourth areas, no problem occurs. Therefore, D
In both VD and CD, good recording and reproduction are possible with little flare.

【0018】(実施例3)この実施例においては、対物
レンズは4つの領域に分割され、第1領域(NA0〜
0.297)は第1、第2光情報記録媒体の基板厚を考
慮して球面収差を補正した領域であり、第2領域(NA
0.297〜0.344)は第2の光情報記録媒体の基
板厚を考慮して球面収差を補正した領域であり、第3領
域(NA0.344〜0.386)は本実施例の特徴で
ある遮蔽部分とされ、第4領域(0.386〜0.6
0)は第1の光情報記録媒体の基板厚を考慮して球面収
差を補正した領域である。光源波長λ=635nmであ
り、レンズデータを以下に示す。 面番号 r d d’ n 1 2.114 2.2 2.1991 1.5383 2 −7.963 1.757 1.377 3 ∞ 0.6 1.2 1.58 4 ∞ 表中(’)が附されているのはCDR対応時である。
d’は、第2輪帯の形状を非球面形状式に従って光軸ま
で延長したときの光軸との交点と、第3面との光軸上の
間隔を示している。
(Embodiment 3) In this embodiment, the objective lens is divided into four regions, and the first region (NA0 to NA0) is divided into four regions.
0.297) is a region where spherical aberration is corrected in consideration of the substrate thicknesses of the first and second optical information recording media, and the second region (NA
0.297 to 0.344) is a region where spherical aberration is corrected in consideration of the substrate thickness of the second optical information recording medium, and the third region (NA 0.344 to 0.386) is a feature of this embodiment. And a fourth region (0.386 to 0.6).
0) is a region where spherical aberration is corrected in consideration of the substrate thickness of the first optical information recording medium. The light source wavelength λ is 635 nm, and lens data is shown below. Surface number rdd'n1 2.114 2.2 2.1991 1.5383 2 -7.963 1.757 1.377 3 {0.6 1.2 1.584} {() in the table It is attached when CDR is supported.
d ′ indicates the distance between the intersection with the optical axis and the third surface on the optical axis when the shape of the second annular zone is extended to the optical axis according to the aspherical shape equation.

【0019】それぞれの輪帯の非球面データは以下のよ
うである。
The aspherical surface data of each ring zone is as follows.

【表1】 非球面データ 第1面 第1 0≦H<1.00(第1領域),1.30≦H(第4領域) 非球面 κ = -0.97700 A1 = 0.63761×10-3 P1= 3.0 A2 = 0.36688×10-3 P2= 4.0 A3 = 0.83511×10-2 P3= 5.0 A4 = -0.37296×10-2 P4= 6.0 A5 = 0.46548×10-3 P5= 8.0 A6 = -0.43124×10-4 P6=10.0 第2 1.00≦H<1.159(第2領域) 非球面 κ = -0.11481×10 A1 = 0.70764×10-2 P1= 3.0 A2 = -0.13388×10-1 P2= 4.0 A3 = 0.24084×10-1 P3= 5.0 A4 = -0.97636×10-2 P4= 6.0 A5 = 0.93136×10-3 P5= 8.0 A6 = -0.68008×10-4 P6=10.0 第2面 κ = -0.24914×102 A1 = 0.13775×10-2 P1= 3.0 A2 = -0.41269×10-2 P2= 4.0 A3 = 0.21236×10-1 P3= 5.0 A4 = -0.13895×10-1 P4= 6.0 A5 = 0.16631×10-2 P5= 8.0 A6 = -0.12138×10-3 P6=10.0 また、非球面は次式に基づくものである。[Table 1] Aspherical surface data First surface First 10 ≦ H <1.00 (first region), 1.30 ≦ H (fourth region) Aspheric surface κ = −0.97700 A 1 = 0.63761 × 10 -3 P 1 = 3.0 A 2 = 0.36688 × 10 -3 P 2 = 4.0 A 3 = 0.83511 × 10 -2 P 3 = 5.0 A 4 = -0.37296 × 10 -2 P 4 = 6.0 A 5 = 0.46548 × 10 -3 P 5 = 8.0 A 6 = -0.43124 × 10 -4 P 6 = 10.0 2nd 1.00 ≦ H <1.159 (second region) Aspherical surface κ = -0.11481 × 10 A 1 = 0.70764 × 10 -2 P 1 = 3.0 A 2 = -0.13388 × 10 -1 P 2 = 4.0 A 3 = 0.24084 × 10 -1 P 3 = 5.0 A 4 = -0.97636 × 10 -2 P 4 = 6.0 A 5 = 0.93136 × 10 -3 P 5 = 8.0 A 6 = -0.68008 × 10 -4 P 6 = 10.0 Second surface κ = -0.24914 × 10 2 A 1 = 0.13775 x 10 -2 P 1 = 3.0 A 2 = -0.41269 x 10 -2 P 2 = 4.0 A 3 = 0.21236 x 10 -1 P 3 = 5.0 A 4 = -0.13895 x 10 -1 P 4 = 6.0 A 5 = 0.16631 × 10 −2 P 5 = 8.0 A 6 = −0.12138 × 10 −3 P 6 = 10.0 The aspheric surface is based on the following equation.

【数1】 但しXは光軸方向の軸、Hは光軸と垂直方向の軸、光の
進行方向を正とし、rは近軸曲率半径、κは円錐形数、
Ajは非球面係数、Pjは非球面のべき数(ただし、P
j≧3)である。
(Equation 1) Where X is the axis in the direction of the optical axis, H is the axis perpendicular to the optical axis, and the traveling direction of light is positive, r is the paraxial radius of curvature, κ is the number of cones,
Aj is the aspheric coefficient, and Pj is the power of the aspheric surface (where P
j ≧ 3).

【0020】第1光情報記録媒体、第2光情報記録媒体
対応時の球面収差を図6(a)(b)に示す。このよう
に補正された対物レンズによる波面は、球面収差によ
り、また屈折面の位置のずれにより、光路長の差を生じ
る。このため、収束点における各輪帯の光束の位相のず
れにより、スポットの光強度は強い影響を受ける。上記
データに示す実施例における波面収差を図7に示す。同
図(a)はDVD対応時、同図(b)はCD対応時を示
す。図8に集光スポットの光強度分布を示す。サイドロ
ーブが極めて小さく、良好なスポット形状を示してい
る。
FIGS. 6A and 6B show spherical aberrations when the optical information recording medium is compatible with the first optical information recording medium and the second optical information recording medium. The wavefront of the objective lens corrected in this way causes a difference in optical path length due to spherical aberration and a shift in the position of the refraction surface. For this reason, the light intensity of the spot is strongly affected by the phase shift of the light flux of each annular zone at the convergence point. FIG. 7 shows the wavefront aberration in the example shown in the above data. FIG. 7A shows the case of the DVD, and FIG. 7B shows the case of the CD. FIG. 8 shows the light intensity distribution of the focused spot. The side lobes are extremely small, indicating a good spot shape.

【0021】[0021]

【発明の効果】本発明光ピックアップ装置は、その対物
レンズそれ自身に、情報の再生に寄与しない光束が光検
出器に入射するのを防止しするフレアカット機能を持た
せることにより、光ピックアップ装置が単純な構成であ
るにもかかわらず、複数種の光情報記録媒体の良好な記
録再生をを可能とするという大きな効果を奏するもので
ある。
According to the optical pickup device of the present invention, the objective lens itself has a flare cut function for preventing a light beam which does not contribute to the reproduction of information from being incident on the photodetector. Has a great effect of enabling good recording and reproduction of a plurality of types of optical information recording media, despite its simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ピックアップ装置の構成を示す概念
図である。
FIG. 1 is a conceptual diagram showing a configuration of an optical pickup device of the present invention.

【図2】対物レンズの実施例1の平面図である。FIG. 2 is a plan view of Example 1 of the objective lens.

【図3】対物レンズ実施例1の球面収差図である。FIG. 3 is a spherical aberration diagram of the objective lens example 1;

【図4】対物レンズの実施例2の平面図である。FIG. 4 is a plan view of Example 2 of the objective lens.

【図5】対物レンズの実施例2の球面収差図である。FIG. 5 is a spherical aberration diagram of Example 2 of the objective lens.

【図6】対物レンズの実施例3の球面収差図である。FIG. 6 is a spherical aberration diagram of Example 3 of the objective lens.

【図7】上記実施例3の波面収差図である。FIG. 7 is a wavefront aberration diagram of the third embodiment.

【図8】上記実施例3の集光スポットの光強度分布図で
ある。
FIG. 8 is a light intensity distribution diagram of a condensed spot according to the third embodiment.

【図9】同一対物レンズで複数種の光情報記録媒体の再
生を行う光ピックアップ装置の1例の構成を示す概念図
である。
FIG. 9 is a conceptual diagram showing a configuration of an example of an optical pickup device for reproducing a plurality of types of optical information recording media with the same objective lens.

【図10】輪帯上領域を有するレンズの従来例を示す断
面図である。
FIG. 10 is a cross-sectional view showing a conventional example of a lens having an upper zone.

【図11】図10の対物レンズの球面収差図である。FIG. 11 is a diagram of spherical aberration of the objective lens of FIG. 10;

【符号の説明】[Explanation of symbols]

1,10 光ピックアップ装置 2,11 半導
体レーザー 3,30 光検出器 4 ホログラム 5 ホロレーザー 6,13 コリ
メータレンズ 7,16:対物レンズ 8,17 絞り 9,22 情報記録面 12 偏光ビー
ムスプリッタ 14 1/4λ板 15 2次元ア
クチュエータ 18 シリンドリカルレンズ 20 光ディス
ク 21 透明基板
Reference Signs List 1,10 Optical pickup device 2,11 Semiconductor laser 3,30 Photodetector 4 Hologram 5 Holographic laser 6,13 Collimator lens 7,16: Objective lens 8,17 Aperture 9,22 Information recording surface 12 Polarizing beam splitter 141 / 4λ plate 15 Two-dimensional actuator 18 Cylindrical lens 20 Optical disk 21 Transparent substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 則一 東京都八王子市石川町2970番地 コニカ株 式会社内 Fターム(参考) 5D119 AA41 BA01 CA16 FA05 FA09 JA44 JA59 JB03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Noriichi Arai 2970 Ishikawa-cho, Hachioji-shi, Tokyo Konica Corporation F term (reference) 5D119 AA41 BA01 CA16 FA05 FA09 JA44 JA59 JB03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明基板の厚さがt1で屈折率がn1の
第1の光情報記録媒体に情報記録された情報と、透明基
板の厚さがt2で屈折率がn2の第2の光情報記録媒体
に情報記録された情報とを光源から出射した光束を1つ
の対物レンズで透明基板を介して情報記録面に集光さ
せ、情報記録面からの反射光を光検出器により検出する
ことにより記録再生する光ピックアップ装置において、 該光検出器はほぼ平行に配置された複数の短冊状のセン
サー素子によって構成され、 該対物レンズは、光軸を中心に輪帯状に複数の領域に分
割されており、少なくとも1つずつの第1の光情報記録
媒体の基板厚を考慮して球面収差を補正した領域と第2
の光情報記録媒体の基板厚を考慮して球面収差を補正し
た領域とを含み、 第1の光情報記録媒体の基板厚を考慮して球面収差を補
正した領域のうち、最も光軸から離れた領域の平均作動
距離をfb1、第2の光情報記録媒体の基板厚を考慮し
て球面収差を補正した領域のうち、最も光軸から離れた
領域の平均作動距離をfb2としたとき、下記の条件を
満たすことをを特徴とする光ピックアップ装置 0.05mm<|(fb1+t1/n1)−(fb2+
t2/n2)|<0.2mm 平均作動距離とは、対物レンズの光情報記録媒体側の面
と光軸との接平面を基準に、各輪帯状の領域を通る光束
が光軸と交わる位置までの距離を面積平均した量から基
板厚を差し引いた量
An information recorded on a first optical information recording medium having a transparent substrate thickness of t1 and a refractive index of n1, and a second light having a transparent substrate thickness of t2 and a refractive index of n2. A light beam emitted from a light source with information recorded on an information recording medium is focused on an information recording surface via a transparent substrate by one objective lens, and reflected light from the information recording surface is detected by a photodetector. In the optical pickup device for recording / reproducing, the photodetector is constituted by a plurality of strip-shaped sensor elements arranged substantially in parallel, and the objective lens is divided into a plurality of zones in an annular shape around the optical axis. A region in which spherical aberration is corrected in consideration of the substrate thickness of at least one first optical information recording medium and a second region in which spherical aberration is corrected.
A region in which the spherical aberration has been corrected in consideration of the substrate thickness of the optical information recording medium, and a region farthest from the optical axis among the regions in which the spherical aberration has been corrected in consideration of the substrate thickness of the first optical information recording medium. When the average working distance of the region farthest from the optical axis is fb1, the average working distance of the region farthest from the optical axis among the regions in which the spherical aberration is corrected in consideration of the substrate thickness of the second optical information recording medium is fb1, Optical pickup device characterized by satisfying the following condition: 0.05 mm <| (fb1 + t1 / n1)-(fb2 +
t2 / n2) | <0.2 mm The average working distance is the position where the light beam passing through each annular zone intersects the optical axis with respect to the tangent plane between the optical information recording medium side surface of the objective lens and the optical axis. The amount obtained by subtracting the board thickness from the area averaged distance to
【請求項2】 請求項1において、短冊状のセンサー素
子の長編の長さをL、情報記録面と光検出器間の倍率を
Mとしたとき、下記の条件を満たすことを特徴とする光
ピックアップ装置 30μm<|L/M|<150μm
2. The light according to claim 1, wherein the following conditions are satisfied, where L is the length of the strip-shaped sensor element and M is the magnification between the information recording surface and the photodetector. Pickup device 30 μm <| L / M | <150 μm
【請求項3】 請求項1あるいは請求項2において、情
報記録面からの反射光を光検出器の方向に導くためのホ
ログラム素子を有することを特徴とする光ピックアップ
3. An optical pickup according to claim 1, further comprising a hologram element for guiding reflected light from the information recording surface toward the photodetector.
【請求項4】 請求項1ないし請求項3の何れかにおい
て、光源と光検出器がほぼ同じ平面内にあることを特徴
とする光ピックアップ
4. An optical pickup according to claim 1, wherein the light source and the photodetector are substantially in the same plane.
【請求項5】 透明基板の厚さがt1で屈折率がn1の
第1の光情報記録媒体に情報記録された情報と、透明基
板の厚さがt2で屈折率がn2の第2の光情報記録媒体
に情報記録された情報とを光源から出射した光束を1つ
の対物レンズで透明基板を介して情報記録面に集光さ
せ、情報記録面からの反射光を光検出器により検出する
ことにより記録再生する光ピックアップ装置において、 該光検出器はほぼ平行に配置された複数の短冊状のセン
サー素子によって構成され、 該対物レンズは、光軸を中心に輪帯状に複数の領域に分
割されており、光軸上の第1輪帯領域は第1の光情報記
録媒体と第2の光情報記録媒体の基板厚を考慮して球面
収差を補正され、第2の輪帯領域は第2の光情報記録媒
体の基板厚を考慮して球面収差を補正され、第3輪帯領
域は遮蔽領域とされ、第4輪帯領域は第1の光情報記録
媒体の基板厚を考慮して球面収差を補正された領域とさ
れていることを特徴とする光ピックアップ装置
5. Information recorded on a first optical information recording medium having a transparent substrate thickness of t1 and a refractive index of n1, and second light having a transparent substrate thickness of t2 and a refractive index of n2. A light beam emitted from a light source with information recorded on an information recording medium is focused on an information recording surface via a transparent substrate by one objective lens, and reflected light from the information recording surface is detected by a photodetector. In the optical pickup device for recording / reproducing, the photodetector is constituted by a plurality of strip-shaped sensor elements arranged substantially in parallel, and the objective lens is divided into a plurality of zones in an annular shape around the optical axis. The first annular zone area on the optical axis is corrected for spherical aberration in consideration of the substrate thicknesses of the first optical information recording medium and the second optical information recording medium, and the second annular zone area is the second annular zone area. The spherical aberration is corrected in consideration of the substrate thickness of the optical information recording medium of Annular region is a shielded area, the fourth annular region is optical pickup apparatus characterized in that it is a region that has been corrected for spherical aberration in consideration of the substrate thickness of the first optical information recording medium
【請求項6】 請求項5において、対物レンズの遮蔽領
域はNA0.3〜0.4であることを特徴とする光ピッ
クアップ装置
6. The optical pickup device according to claim 5, wherein the shielding area of the objective lens has an NA of 0.3 to 0.4.
【請求項7】 請求項5あるいは請求項6において、情
報記録面からの反射光を光検出器の方向に導くためのホ
ログラム素子を有することを特徴とする光ピックアップ
7. An optical pickup according to claim 5, further comprising a hologram element for guiding reflected light from the information recording surface toward the photodetector.
【請求項8】 請求項5ないし請求項7の何れかにおい
て、光源と光検出器がほぼ同じ平面内にあることを特徴
とする光ピックアップ
8. An optical pickup according to claim 5, wherein the light source and the photodetector are substantially in the same plane.
JP10253336A 1998-08-25 1998-08-25 Optical pickup device Withdrawn JP2000076694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253336A JP2000076694A (en) 1998-08-25 1998-08-25 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253336A JP2000076694A (en) 1998-08-25 1998-08-25 Optical pickup device

Publications (1)

Publication Number Publication Date
JP2000076694A true JP2000076694A (en) 2000-03-14

Family

ID=17249909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253336A Withdrawn JP2000076694A (en) 1998-08-25 1998-08-25 Optical pickup device

Country Status (1)

Country Link
JP (1) JP2000076694A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339876B2 (en) 2003-04-25 2008-03-04 Pentax Corporation Optical system of optical pick-up
CN100375171C (en) * 2002-10-29 2008-03-12 三洋电机株式会社 Optical pickup device and recording and/or reproducing device
JP2009015986A (en) * 2007-07-06 2009-01-22 Sanyo Electric Co Ltd Optical pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375171C (en) * 2002-10-29 2008-03-12 三洋电机株式会社 Optical pickup device and recording and/or reproducing device
US7339876B2 (en) 2003-04-25 2008-03-04 Pentax Corporation Optical system of optical pick-up
JP2009015986A (en) * 2007-07-06 2009-01-22 Sanyo Electric Co Ltd Optical pickup device

Similar Documents

Publication Publication Date Title
KR100511230B1 (en) Method for recording/reproducing optical information recording medium, optical pickup apparatus, objective lens and design method of objective lens
KR100690479B1 (en) Optical pickup apparatus, objective lens, optical information recording medium reproducing/recording apparatus, and method of reproducing/recording information
KR100657251B1 (en) Optical pickup device
US7120109B1 (en) Optical pickup with improved collimating lens for use with long and short wavelength laser beams
US6304540B1 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
EP0818781A2 (en) Optical system and objective lens for recording and/or reproducing an optical information recording medium
KR101013278B1 (en) Objective lens for optical pickup apparatus, optical pickup apparatus, and optical information recording reproducing apparatus
KR100616377B1 (en) Optical pickup apparatus, optical information recording medium reproducing or recording apparatus, and converging optical system for an optical pickup
KR100802845B1 (en) Objective lens for optical pickup apparatus and optical pickup apparatus
JP3823425B2 (en) Optical pickup device and optical pickup device correction element
JPH11344666A (en) Optical pickup
JP4400342B2 (en) Objective lens and optical pickup device
JP3613745B2 (en) Optical pickup device and objective lens
KR100767148B1 (en) Optical Pick-Up Device and Objective Lens Therefor
JP4517407B2 (en) Optical pickup device for recording / reproducing optical information recording medium
JPH10312575A (en) Optical pickup
JPH1031841A (en) Light pickup
JP2000076694A (en) Optical pickup device
JPH1069675A (en) Optical pickup device, objective lens of optical pickup and optical disk device
JP2002237078A (en) Object lens and optical pickup device
JPH10208267A (en) Optical head and optical disk device
JP2000268392A (en) Optical pickup apparatus for recording/reproducing optical information recording medium, objective lens, and recording/reproducing apparatus
JP2001084632A (en) Optical pickup device, wavelength selective optical element and objective lens
JP2001236680A (en) Optical pickup device, and coupling lens for optical pickup device
US7336586B2 (en) Optical pickup device compatible with two types of optical recording media

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101