JP2000074954A - Superconductive current detection device - Google Patents

Superconductive current detection device

Info

Publication number
JP2000074954A
JP2000074954A JP10262384A JP26238498A JP2000074954A JP 2000074954 A JP2000074954 A JP 2000074954A JP 10262384 A JP10262384 A JP 10262384A JP 26238498 A JP26238498 A JP 26238498A JP 2000074954 A JP2000074954 A JP 2000074954A
Authority
JP
Japan
Prior art keywords
superconductor
current
superconducting
electromagnetic wave
superconducting current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10262384A
Other languages
Japanese (ja)
Inventor
Masakichi Touchi
政吉 斗内
Masanori Hagiyuki
正憲 萩行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10262384A priority Critical patent/JP2000074954A/en
Publication of JP2000074954A publication Critical patent/JP2000074954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To make detectable in a noncontact free space the two-dimensional current density image of a superconductive current by applying a light pulse to a superconductor to be detected and detecting electromagnetic waves being emitted from its light application region. SOLUTION: The superconductive current detection device 20 is provided with a light pulse light source 1 that is a laser or the like and an electromagnetic wave detection device 8 that is a bolometer or a semiconductor light switch or the like with an antenna structure. The semiconductor light switch with an antenna structure can detect radiation electromagnetic waves corresponding to the direction of a superconductive current. And, when a light pulse is applied to a superconductor 6 with a pulse width of approximately 10 pico seconds, a superconductive current at the application region is partially and momentarily decreases and a light application region excites and emits electromagnetic waves with time change of current modulation. By performing scanning with light pulses two-dimensionally and detecting the intensity and direction of radiation electromagnetic waves by the electromagnetic wave detection device 8 and converting them to a current density corresponding to each region, the two-dimensional current density image of the superconductor 6 can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超伝導電流の検出
に利用し、特に光励起と放射電磁波検出を併用して超伝
導電流の2次元電流密度像を非接触空間で検出する超伝
動電流検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of superconducting current, and more particularly to a superconducting current detection for detecting a two-dimensional current density image of a superconducting current in a non-contact space by using both photoexcitation and radiation electromagnetic wave detection. Related to the device.

【0002】[0002]

【従来の技術】従来、超伝導電流の2次元検出装置とし
ては、レーザー加熱型検出装置、磁気光学効果応用検出
装置及び超伝導量子磁束干渉計走査型検出装置等があ
る。
2. Description of the Related Art Conventionally, as a two-dimensional superconducting current detecting device, there are a laser heating type detecting device, a magneto-optical effect application detecting device, a superconducting quantum flux interferometer scanning type detecting device, and the like.

【0003】さらに、A.J.Kentらは論文「Su
percond.Sci.Technol.」(Vo
l.4,pp. 602〜605,1991年発行)の中
で、超伝導状態にある超伝導体にレーザーを照射するこ
とにより常伝導転移を誘起し、発生する電圧を検出する
ことにより超伝導電流の2次元的検出が可能であること
を報告している。またT.H.Johansenらは論
文「Physical ReviewB」(Vol.5
4,No22, pp. 16264〜16269 ,1996年発行)の
中で、超伝導体直上に磁気光学材料を配置し、流れる電
流により発生する磁場を光のファラデー効果により観測
することで超伝導電流の2次元的検出が可能であること
を報告している。
Further, A.I. J. Kent et al.
percond. Sci. Technol. (Vo
l. 4, pp. 602 to 605, issued in 1991), a normal conductor transition is induced by irradiating a superconductor in a superconducting state with a laser, and a generated voltage is detected to generate a superconducting current. It reports that two-dimensional detection is possible. T. H. Johansen et al. Disclose the paper "Physical Review B" (Vol. 5).
4, No22, pp. 16264-16269, published in 1996), a magneto-optical material is placed just above a superconductor, and the magnetic field generated by the flowing current is observed by the Faraday effect of light, so that the superconducting current is reduced. It reports that two-dimensional detection is possible.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、A.
J.Kentらの提案では、レーザー加熱により超伝導
状態を破壊しており、その状態変化により流れる電流分
布が変化することから、超伝導状態における超伝導電流
の検出ができないこと、さらに電圧検出のための配線が
必要であり、非接触検出ではない、などの解決すべき課
題がある。またT.H.Johansenらの提案で
は、超伝導電流の検出のために磁気光学材料を超伝導体
近傍に配置する必要があり、外部から非接触空間検出が
できないこと、さらに磁気歪みなどにより分解能が参照
用光ビーム径よりも大幅に悪くなる、などの解決すべき
課題がある。
However, A.I.
J. In the proposal of Kent et al., The superconducting state is destroyed by laser heating, and the distribution of current flowing due to the change in the state changes, so that it is impossible to detect the superconducting current in the superconducting state. There are problems to be solved, such as the necessity of wiring and non-contact detection. T. H. In the proposal of Johansen et al., It is necessary to dispose a magneto-optical material near a superconductor in order to detect a superconducting current, and it is impossible to detect a non-contact space from the outside. There are problems to be solved, such as significantly worsening than the diameter.

【0005】このように、従来の2次元超伝導電流検出
装置では、超伝導電流の検出に、電極の設置、磁気光学
材料の設置及び超伝導量子磁束干渉計の設置などを超伝
導体に直接又はごく近傍で行う必要があり、非接触自由
空間で超伝導電流を検出するように改善することは困難
であった。
As described above, in the conventional two-dimensional superconducting current detecting device, the installation of electrodes, the installation of a magneto-optical material, the installation of a superconducting quantum flux interferometer, and the like are performed directly on the superconductor to detect the superconducting current. Alternatively, it is necessary to perform the measurement in a very close vicinity, and it has been difficult to improve the method to detect a superconducting current in a non-contact free space.

【0006】そこで、本発明は、上記の課題にかんがみ
て、光励起と放射電磁波検出により超伝導電流の2次元
電流密度像を非接触自由空間で検出することのできる超
伝導電流検出装置を提供することを目的とする。
[0006] In view of the above problems, the present invention provides a superconducting current detecting device capable of detecting a two-dimensional current density image of a superconducting current in a non-contact free space by photoexcitation and detection of radiated electromagnetic waves. The purpose is to:

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明の超伝導電流検出装置は、光パ
ルスを被検出体の超伝導体に照射する光パルス光源と、
放射電磁波を検出する電磁波検出装置とを備え、光パル
スの照射により超伝導体の超伝導電流を変調することに
基づいて光照射領域から励起して放射する電磁波を電磁
波検出装置で検出して、超伝導体に流れる超伝導電流の
方向と超伝導電流密度の2次元分布とを超伝導体と非接
触で検出する構成としたものである。また請求項2記載
の発明は、上記構成に加え、光パルスの幅が10ピコ秒
以下であることを特徴とする。
According to a first aspect of the present invention, there is provided a superconducting current detecting device for irradiating a light pulse to a superconductor of an object to be detected.
An electromagnetic wave detection device that detects radiated electromagnetic waves is provided, and the electromagnetic wave detection device detects the electromagnetic waves excited and emitted from the light irradiation region based on modulating the superconducting current of the superconductor by irradiating light pulses, In this configuration, the direction of the superconducting current flowing in the superconductor and the two-dimensional distribution of the superconducting current density are detected without contact with the superconductor. According to a second aspect of the present invention, in addition to the above configuration, the width of the light pulse is 10 picoseconds or less.

【0008】さらに請求項3記載の発明は、電磁波検出
装置がアンテナ構造を有する半導体光スイッチに流れる
電流の方向を検出するよう構成している。また請求項4
記載の発明は、超伝導体の超伝導電流を検出するとき、
光パルスを照射しながら被検出体である超伝導体が2次
元的に移動し、又は被検出体である超伝導体に対して光
パルスを2次元的に走査して、超伝導体の放射電磁波を
検出するようにしたことを特徴とするものである。
Further, the invention according to claim 3 is configured so that the electromagnetic wave detecting device detects the direction of the current flowing through the semiconductor optical switch having the antenna structure. Claim 4
The described invention, when detecting the superconducting current of the superconductor,
The superconductor, which is the object to be detected, moves two-dimensionally while irradiating the light pulse, or the light pulse is two-dimensionally scanned with respect to the superconductor, which is the object to be detected, to radiate the superconductor. An electromagnetic wave is detected.

【0009】上記構成で成る請求項1記載の発明の超伝
導電流検出装置では、外部から超伝導体に光パルスを照
射することにより、超伝導電流の一部を変調し、その変
調に伴って発生した電磁波を外部の電磁波検出装置を用
いて検出する。したがって、最小空間分解能を光の波長
とした、超伝導電流2次元非接触自由空間で超伝導電流
を検出することができる。また請求項2記載の発明で
は、熱的影響を及ぼさない最大パルス幅の約10ピコ秒
以下の光パルスを照射しているので、超伝導電流の変調
に伴う電磁波の励起に際して、超伝導性に大きな影響を
及ぼさない状態で、超伝導電流の増減に対応した電磁波
を励起することができる。それゆえ、超伝導性を維持し
たままで超伝導電流を検出することができる。
In the superconducting current detecting device according to the first aspect of the present invention, a part of the superconducting current is modulated by irradiating the superconductor with an optical pulse from the outside, and the modulation is performed with the modulation. The generated electromagnetic wave is detected using an external electromagnetic wave detection device. Therefore, the superconducting current can be detected in the two-dimensional non-contact free space of the superconducting current with the minimum spatial resolution being the wavelength of light. According to the second aspect of the present invention, since the light pulse having a maximum pulse width of about 10 picoseconds or less that does not have a thermal effect is applied, when the electromagnetic wave is excited due to the modulation of the superconducting current, the superconductivity is reduced. Electromagnetic waves corresponding to the increase and decrease of the superconducting current can be excited without significant influence. Therefore, the superconducting current can be detected while maintaining the superconductivity.

【0010】さらに請求項3記載の発明では、電磁波検
出装置としてアンテナ構造を有する半導体光スイッチを
用いているので、超伝導電流の流れる方向に対応した放
射電磁波を検出することができる。したがって、超伝導
電流の電流密度と電流の方向を検出することができる。
また請求項4記載の発明では、放射電磁波を検出する
時、被検出体である超伝導体が2次元的に移動し、又は
電磁波励起用光パルスを2次元的に走査する。このた
め、超伝導体中に流れる電流像を2次元的に検出するこ
とができる。
Further, according to the third aspect of the present invention, since the semiconductor optical switch having the antenna structure is used as the electromagnetic wave detecting device, the radiated electromagnetic wave corresponding to the direction in which the superconducting current flows can be detected. Therefore, the current density and the direction of the superconducting current can be detected.
According to the fourth aspect of the invention, when detecting a radiated electromagnetic wave, the superconductor which is the object to be detected moves two-dimensionally, or two-dimensionally scans a light pulse for exciting the electromagnetic wave. Therefore, a current image flowing in the superconductor can be detected two-dimensionally.

【0011】このように、光パルスと電磁波検出を併用
した超伝導電流検出装置を構成することにより、現在ま
でにない超伝導電流の2次元検出装置が実現できる。
As described above, by configuring the superconducting current detecting device using both the light pulse and the electromagnetic wave detection, a two-dimensional superconducting current detecting device which has never existed before can be realized.

【0012】[0012]

【発明の実施の形態】以下、図面に示した実施形態に基
づいて本発明の超伝導電流検出装置を詳細に説明する。
図1は本発明の実施形態を示す超伝導電流検出装置の概
略図である。図1を参照すると、本実施形態の超伝導電
流検出装置20は、冷却装置4中に置かれた超伝導電流
の流れる超伝導体6に冷却装置の光学窓5を介して光パ
ルス2を照射する光パルス光源1と、この光パルス2を
被検出体である超伝導体6に集光する光集光レンズ3
と、光パルス2が照射された超伝導体領域で発生した放
射電磁波7を検出する電磁波検出装置8と、この放射電
磁波7の発生領域と強度に基づいて2次元電流密度像を
作製する超伝導電流マッピング制御装置13とを備え、
この超伝導電流マッピング制御装置13は、発生した放
射電磁波の強度を電流に換算し、被検出体の領域と断面
積とから2次元電流密度像をディスプレイ14又はプリ
ンタ(図示せず)に表示又は出力するようになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a superconducting current detecting device according to the present invention will be described in detail based on an embodiment shown in the drawings.
FIG. 1 is a schematic diagram of a superconducting current detecting device according to an embodiment of the present invention. Referring to FIG. 1, a superconducting current detecting device 20 of the present embodiment irradiates a superconductor 6 in which a superconducting current flows placed in a cooling device 4 with an optical pulse 2 through an optical window 5 of the cooling device. And a light condensing lens 3 for condensing the light pulse 2 on a superconductor 6 which is an object to be detected.
An electromagnetic wave detecting device 8 for detecting a radiated electromagnetic wave 7 generated in a superconductor region irradiated with the light pulse 2, and a superconducting device for producing a two-dimensional current density image based on the generated region and intensity of the radiated electromagnetic wave 7 A current mapping control device 13;
The superconducting current mapping control device 13 converts the intensity of the generated radiated electromagnetic wave into a current, and displays or displays a two-dimensional current density image on the display 14 or a printer (not shown) from the area of the object to be detected and the sectional area. Output.

【0013】誘起用の光パルス光源1には,アルゴンイ
オンレーザー励起のモード同期チタンサファイアレーザ
ーにより発生されるパルス幅約50フェムト秒のレーザ
ー光等を用いることができる。光パルスは超伝導体の超
伝導性に影響を及ぼさない程度で電磁波の励起ができる
ことが好ましく、熱的影響を及ばさない最大光パルス幅
は約10ピコ秒程度である。また光パルスは被検出体の
超伝導体上を2次元的に走査するのが好ましい。光パル
スを2次元的に走査するかわりに、被検出体自体を2次
元的に移動させて光パルスを照射してもよい。
As the light pulse light source 1 for induction, a laser beam having a pulse width of about 50 femtoseconds generated by a mode-locked titanium sapphire laser excited by an argon ion laser can be used. It is preferable that the light pulse can excite the electromagnetic wave without affecting the superconductivity of the superconductor, and the maximum light pulse width not affecting the thermal effect is about 10 picoseconds. Further, it is preferable that the light pulse scans the superconductor of the object to be detected two-dimensionally. Instead of scanning the light pulse two-dimensionally, the light pulse may be irradiated by moving the detection target itself two-dimensionally.

【0014】また電磁波検出装置8としては、インジウ
ムアンチモン製ホットエレクトロンボロメーター又はア
ンテナ構造を有する半導体光スイッチ、例えば低温成長
ガリウム砒素製光スイッチ等を用いることができる。ボ
ロメーターは、放射されるテラヘルツ(THz)電磁波
の強度を高感度に測定でき、また、アンテナ構造を有す
る半導体光スイッチ、例えばLT−GaAsは検出でき
る電磁波の偏光方向が限られていることから、放射電磁
波に対応した超伝導電流の向きを検出できる。
As the electromagnetic wave detecting device 8, a hot electron bolometer made of indium antimony or a semiconductor optical switch having an antenna structure, for example, an optical switch made of low-temperature grown gallium arsenide can be used. A bolometer can measure the intensity of a radiated terahertz (THz) electromagnetic wave with high sensitivity, and a semiconductor optical switch having an antenna structure, for example, LT-GaAs, has a limited detectable polarization direction of the electromagnetic wave. The direction of the superconducting current corresponding to the radiated electromagnetic wave can be detected.

【0015】次に、検出した放射電磁波と検出する超伝
導電流の対応について説明する。本発明の超伝導電流検
出装置20では、被検出体である超伝導体6と電磁波検
出装置8との距離や照射光パルス2の強度等の検出条件
によって検出信号強度が大きく異なるため、実際の電流
密度は、形状が明らかな標準サンプルに既知の電流を流
し、この電流に対応した検出結果と比較することで換算
係数を求め計算している。例えば、x方向に既知の電流
を標準サンプルに流し、この電流に対応したy方向の信
号強度の積分と実際の被検出体のy方向の信号強度の積
分とが一致するように換算係数を求め、既知のy方向の
幅と超伝導材料の厚さで割ったものを電流密度としてい
る。つまり、標準サンプルを基準にして、この標準サン
プルと比較することにより実際の電流密度を計算してい
るのである。したがって、換算係数を求めた後は、同一
条件で検出する限り被検出体のサンプルが異なっても標
準サンプルと比較する必要はない。
Next, the correspondence between the detected radiated electromagnetic wave and the detected superconducting current will be described. In the superconducting current detection device 20 of the present invention, the detection signal intensity greatly differs depending on the detection conditions such as the distance between the superconductor 6 as the object to be detected and the electromagnetic wave detection device 8 and the intensity of the irradiation light pulse 2. The current density is calculated by applying a known current to a standard sample whose shape is clear and comparing it with a detection result corresponding to the current to obtain a conversion coefficient. For example, a known current is applied to the standard sample in the x direction, and a conversion coefficient is calculated such that the integral of the signal intensity in the y direction corresponding to this current and the integral of the signal intensity in the y direction of the actual detection object match. , Divided by the known width in the y direction and the thickness of the superconducting material is defined as the current density. That is, the actual current density is calculated by comparing the standard sample with the standard sample. Therefore, after obtaining the conversion coefficient, there is no need to compare with the standard sample even if the sample of the object to be detected is different as long as detection is performed under the same conditions.

【0016】次に、本実施形態の作用について説明す
る。超伝導電流が流れる被検出体の超伝導体に光パルス
を照射すると、照射した領域の超伝導電流の一部が瞬時
に減少し、この電流変調の時間変化に伴って超伝導体の
光照射領域が電磁波を励起して放射する。この放射電磁
波を電磁波検出装置で電磁波の強度と向きを検出し、被
検出体の領域に対応した電流密度に換算して2次元電流
密度像を出力する。したがって、本実施形態では超伝導
電流を非接触で検出することができる。
Next, the operation of the present embodiment will be described. When a light pulse is applied to the superconductor of the object where the superconducting current flows, a part of the superconducting current in the irradiated area is instantaneously reduced. The region excites and emits electromagnetic waves. The radiated electromagnetic wave is detected by an electromagnetic wave detecting device to detect the intensity and direction of the electromagnetic wave, and is converted into a current density corresponding to the area of the object to be detected to output a two-dimensional current density image. Therefore, in this embodiment, the superconducting current can be detected in a non-contact manner.

【0017】[0017]

【実施例】次に、本発明の超伝導電流検出装置を用い
て、超伝導体の超伝導電流を2次元電流密度像として検
出した実施例を示す。図2は被検出体として用いた超伝
導ストリップラインの構造例を示す。図2を参照する
と、本発明の超伝導電流検出装置では、基板表面9に例
えば超伝導材料としてYBa2 Cu3 7-x (以下、
「YBCO」と略する。)を用いて超伝導ストリップラ
イン10を形成し、電極J1から電極J2に電流を流し
ている被検出体に対して、ビーム径30μmに集光した
光パルスを2次元的に走査することにより電磁波を発生
させ、この放射電磁波をボローメーターを用いて2次元
的に検出し、超伝導電流を検出するものである。
Next, an embodiment in which the superconducting current of the superconductor is detected as a two-dimensional current density image using the superconducting current detecting device of the present invention will be described. FIG. 2 shows an example of the structure of a superconducting stripline used as an object to be detected. Referring to FIG. 2, in the superconducting current detecting device of the present invention, for example, YBa 2 Cu 3 O 7-x (hereinafter, referred to as a superconducting material)
Abbreviated as "YBCO". ) Is used to form a superconducting strip line 10 and two-dimensionally scan an object passing a current from the electrode J1 to the electrode J2 with a light pulse focused to a beam diameter of 30 μm. Is generated, and this radiated electromagnetic wave is two-dimensionally detected using a bolometer, and a superconducting current is detected.

【0018】図3は、本超伝導電流検出装置で検出した
超伝導ストリップライン中に流れる超伝導電流の2次元
像を示す。図3に示すように、基板上に形成された超伝
導ストリップラインに流れる超伝導電流は、ストリップ
ラインの端で大きく、中心では小さい。なお、本実施例
では基板表面上に形成した超伝導ストリップラインの超
伝導電流を検出したが、超伝導体を基板で挟んだサンド
イッチ構造でも、光を透過する基板に挟まれている場合
は超伝導電流を検出できる。
FIG. 3 shows a two-dimensional image of the superconducting current flowing in the superconducting strip line detected by the present superconducting current detecting device. As shown in FIG. 3, the superconducting current flowing in the superconducting stripline formed on the substrate is large at the end of the stripline and small at the center. In this embodiment, the superconducting current of the superconducting strip line formed on the substrate surface is detected. However, even in a sandwich structure in which the superconductor is sandwiched between the substrates, if the superconducting layer is sandwiched between light transmitting substrates, Conduction current can be detected.

【0019】図4は図2のA−A’線断面における電流
密度を示す図であり、実線は光パルスビーム径が5μ
m、点線は光パルスビーム径が30μmの場合の電流密
度を示す。図4に示すように、光パルスビーム径を5μ
mと30μmとした時に断面に流れる電流分布はビーム
径が5μmの方がシャープであり、ビーム径を小さくす
ることにより分解能が向上する。したがって、本発明の
超伝導電流検出装置では、超伝導ストリップラインに流
れる超伝導電流を非接触で検出することができ、またビ
ーム径が小さい方が分解能が向上する。
FIG. 4 is a diagram showing the current density in the cross section taken along the line AA ′ in FIG. 2, and the solid line indicates that the light pulse beam diameter is 5 μm.
m and the dotted line show the current density when the light pulse beam diameter is 30 μm. As shown in FIG. 4, the light pulse beam diameter was 5 μm.
When the beam diameter is 5 μm, the distribution of the current flowing through the cross section at m and 30 μm is sharper, and the resolution is improved by reducing the beam diameter. Therefore, in the superconducting current detecting device of the present invention, the superconducting current flowing in the superconducting strip line can be detected in a non-contact manner, and the smaller the beam diameter, the higher the resolution.

【0020】次に、磁束でトラップした超伝導ループに
流れる超伝導電流の向きと電流密度を、本発明の超伝導
電流検出装置を用いて検出した例を示す。図5は被検出
体として用いた超伝導ループの構造例を示す。超伝導材
料としてYBCOを用い、中心の穴には約100ガウス
の磁束12をトラップし、超伝導ループ11に沿った超
伝導永久電流を周回させてある。被検出体の超伝導ルー
プ11に対して、ビーム径30μmに集光した光パルス
を走査し、放射電磁波を半導体光スイッチにより検出し
た。
Next, an example in which the direction and the current density of the superconducting current flowing in the superconducting loop trapped by the magnetic flux are detected using the superconducting current detecting device of the present invention will be described. FIG. 5 shows an example of the structure of a superconducting loop used as a detection object. Using YBCO as a superconducting material, a magnetic flux 12 of about 100 gauss is trapped in a central hole, and a superconducting permanent current along a superconducting loop 11 is circulated. A light pulse focused at a beam diameter of 30 μm was scanned on the superconducting loop 11 of the object to be detected, and a radiated electromagnetic wave was detected by a semiconductor optical switch.

【0021】図6は超伝導ループで検出された電流のx
方向成分の2次元像を示す。図7は図5のB−B’線断
面での電流分布を示す図である。図6において、矢印は
磁束を超伝導ループの中心に捕獲している時に流れてい
る超伝導電流のx方向成分であり、黒い部分が正の電流
を表わし、白い部分が負の電流を表わしている。図6で
示されているように超伝導ループの上下でx成分が存在
し、左右では存在していない。また図7に示されている
ように、超伝導ループの上側では電流はx方向に流れ、
下側では−x方向に流れており、本発明の超伝導電流検
出装置では超伝導電流密度の検出だけでなく電流の流れ
る方向をも検出できる。
FIG. 6 shows the current x detected in the superconducting loop.
3 shows a two-dimensional image of a directional component. FIG. 7 is a diagram showing a current distribution in a cross section taken along line BB ′ of FIG. In FIG. 6, the arrow represents the x-direction component of the superconducting current flowing when the magnetic flux is captured at the center of the superconducting loop. The black portion represents a positive current, and the white portion represents a negative current. I have. As shown in FIG. 6, the x component exists above and below the superconducting loop, and does not exist on the left and right. Also, as shown in FIG. 7, the current flows in the x direction above the superconducting loop,
The current flows in the −x direction on the lower side, and the superconducting current detecting device of the present invention can detect not only the superconducting current density but also the direction in which the current flows.

【0022】[0022]

【発明の効果】以上説明したように、本発明の超伝導電
流検出装置では、超伝導電流が流れる被検出体の超伝導
体に光パルスを照射し、照射した領域の超伝導電流の一
部が瞬時に減少して電流変調の時間変化に伴って超伝導
体の光照射領域が電磁波を放射し、この放射電磁波を電
磁波検出装置を用いることによって、電磁波の強度と向
きを検出することができるため、超伝導電流の2次元電
流密度像を非接触自由空間で検出できるという効果を有
する。また本発明の超伝導電流検出装置では、超伝導性
に大きな影響を及ぼさない状態で超伝導電流の検出がで
きるという効果を有する。
As described above, in the superconducting current detecting device according to the present invention, the superconducting body of the object through which the superconducting current flows is irradiated with the light pulse, and a part of the superconducting current in the irradiated area is irradiated. Is instantaneously reduced, the light irradiation area of the superconductor emits electromagnetic waves with the time change of the current modulation, and the intensity and direction of the electromagnetic waves can be detected by using the emitted electromagnetic waves with an electromagnetic wave detection device. Therefore, there is an effect that a two-dimensional current density image of the superconducting current can be detected in a non-contact free space. Further, the superconducting current detecting device of the present invention has an effect that the superconducting current can be detected without significantly affecting the superconductivity.

【図の簡単な説明】[Brief description of figures]

【図1】本発明の実施形態を示す超伝導電流検出装置の
概略図である。
FIG. 1 is a schematic diagram of a superconducting current detection device showing an embodiment of the present invention.

【図2】被検出体として用いた超伝導ストリップライン
の構造例を示す。
FIG. 2 shows a structural example of a superconducting stripline used as a detection target.

【図3】本超伝導電流検出装置で検出した超伝導ストリ
ップライン中に流れる超伝導電流の2次元像を示す。
FIG. 3 shows a two-dimensional image of a superconducting current flowing in a superconducting stripline detected by the present superconducting current detecting device.

【図4】図2のA−A’の位置における電流密度を示す
図であり、実線は光パルスビーム径が5μm、点線は光
パルスビーム径が30μmの場合の電流密度を示す。
4 is a diagram showing a current density at a position AA ′ in FIG. 2, wherein a solid line shows a current density when the light pulse beam diameter is 5 μm, and a dotted line shows a current density when the light pulse beam diameter is 30 μm.

【図5】被検出体として用いた超伝導ループの構造例で
ある。
FIG. 5 is a structural example of a superconducting loop used as an object to be detected.

【図6】超伝導ループで検出された電流のx方向成分の
2次元像を示す。
FIG. 6 shows a two-dimensional image of an x-direction component of a current detected in a superconducting loop.

【図7】図5の断面B−B’での電流分布を示す図であ
る。
FIG. 7 is a diagram showing a current distribution on a section BB ′ in FIG. 5;

【符号の説明】[Explanation of symbols]

1 光パルス光源 2 光パルス 3 光集光レンズ 4 冷却装置 5 光学窓 6 非測定超伝導体 7 放射電磁波 8 電磁波検出装置 9 基板 10 超伝導ストリップライン 11 超伝導ループ 12 磁束 13 超伝導電流マッピング制御装置 14 ディスプレイ REFERENCE SIGNS LIST 1 light pulse light source 2 light pulse 3 light focusing lens 4 cooling device 5 optical window 6 unmeasured superconductor 7 radiated electromagnetic wave 8 electromagnetic wave detection device 9 substrate 10 superconducting stripline 11 superconducting loop 12 magnetic flux 13 superconducting current mapping control Device 14 Display

フロントページの続き Fターム(参考) 2G017 AA02 AA03 AA06 AA07 AA08 AA15 AB07 AD11 BA15 BA16 BA18 2G035 AB01 AB04 AC12 AC25 AD35 AD66 2G036 AA16 BB22 CA08 Continued on the front page F term (reference) 2G017 AA02 AA03 AA06 AA07 AA08 AA15 AB07 AD11 BA15 BA16 BA18 2G035 AB01 AB04 AC12 AC25 AD35 AD66 2G036 AA16 BB22 CA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光パルスを被検出体の超伝導体に照射す
る光パルス光源と、放射電磁波を検出する電磁波検出装
置とを備え、 上記光パルスの照射により上記超伝導体の超伝導電流を
変調することに基づいて光照射領域から励起して放射す
る電磁波を上記電磁波検出装置で検出して、上記超伝導
体に流れる超伝導電流の方向と超伝導電流密度の2次元
分布とを上記超伝導体と非接触で検出するようにした超
伝導電流検出装置。
1. An optical pulse light source for irradiating a superconductor of a detection target with a light pulse, and an electromagnetic wave detection device for detecting a radiated electromagnetic wave, wherein the superconducting current of the superconductor is irradiated by the light pulse. The electromagnetic wave excited and emitted from the light irradiation area based on the modulation is detected by the electromagnetic wave detection device, and the direction of the superconducting current flowing in the superconductor and the two-dimensional distribution of the superconducting current density are determined by the superconductivity. A superconducting current detection device that detects without contact with a conductor.
【請求項2】 前記光パルスの幅が10ピコ秒以下であ
ることを特徴とする、請求項1に記載の超伝導電流検出
装置。
2. The superconducting current detecting device according to claim 1, wherein the width of the light pulse is 10 picoseconds or less.
【請求項3】 前記電磁波検出装置がアンテナ構造を有
する半導体光スイッチに流れる電流の方向を検出するこ
とを特徴とする、請求項1に記載の超伝導電流検出装
置。
3. The superconducting current detecting device according to claim 1, wherein said electromagnetic wave detecting device detects a direction of a current flowing through a semiconductor optical switch having an antenna structure.
【請求項4】 前記超伝導体の超伝導電流を検出すると
き、前記光パルスを照射しながら被検出体である超伝導
体が2次元的に移動し、又は被検出体である超伝導体に
対して前記光パルスを2次元的に走査して、前記超伝導
体の放射電磁波を検出するようにしたことを特徴とす
る、請求項1に記載の超伝導電流検出装置。
4. A superconductor which is an object to be detected moves two-dimensionally while irradiating the light pulse when detecting a superconducting current of the superconductor, or a superconductor which is an object to be detected. 2. The superconducting current detecting device according to claim 1, wherein the light pulse is two-dimensionally scanned to detect a radiation electromagnetic wave of the superconductor.
JP10262384A 1998-09-01 1998-09-01 Superconductive current detection device Pending JP2000074954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262384A JP2000074954A (en) 1998-09-01 1998-09-01 Superconductive current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262384A JP2000074954A (en) 1998-09-01 1998-09-01 Superconductive current detection device

Publications (1)

Publication Number Publication Date
JP2000074954A true JP2000074954A (en) 2000-03-14

Family

ID=17375016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262384A Pending JP2000074954A (en) 1998-09-01 1998-09-01 Superconductive current detection device

Country Status (1)

Country Link
JP (1) JP2000074954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416962B1 (en) * 2000-11-14 2004-02-05 이주현 Non contact type voltage sensing apparatus
CN103383402A (en) * 2012-05-02 2013-11-06 南通大学 Detection system and method of semiconductor two-dimensional electron gas circular polarization spin photocurrent
CN103592529A (en) * 2013-09-11 2014-02-19 天津学子电力设备科技有限公司 Method for evaluating insulation aging of XLPE (cross linked polyethylene) cable based on low-temperature pulse
CN107064834A (en) * 2017-05-05 2017-08-18 北京航空航天大学 A kind of wideband electromagnetic imaging surface signal acquiring system switched based on light path
KR20240085107A (en) 2022-12-06 2024-06-14 삼성전자주식회사 Measuring apparatus and test equipment having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416962B1 (en) * 2000-11-14 2004-02-05 이주현 Non contact type voltage sensing apparatus
CN103383402A (en) * 2012-05-02 2013-11-06 南通大学 Detection system and method of semiconductor two-dimensional electron gas circular polarization spin photocurrent
CN103383402B (en) * 2012-05-02 2016-02-10 南通大学 The detection system of semiconductor two-dimensional electron gas circular polarization spin photocurrent and detection method thereof
CN103592529A (en) * 2013-09-11 2014-02-19 天津学子电力设备科技有限公司 Method for evaluating insulation aging of XLPE (cross linked polyethylene) cable based on low-temperature pulse
CN107064834A (en) * 2017-05-05 2017-08-18 北京航空航天大学 A kind of wideband electromagnetic imaging surface signal acquiring system switched based on light path
KR20240085107A (en) 2022-12-06 2024-06-14 삼성전자주식회사 Measuring apparatus and test equipment having the same

Similar Documents

Publication Publication Date Title
Mitrofanov et al. Terahertz near-field microscopy based on a collection mode detector
Wu et al. Two‐dimensional electro‐optic imaging of THz beams
US5422498A (en) Apparatus for diagnosing interconnections of semiconductor integrated circuits
Rosencwaig Thermal-wave imaging
Cai et al. Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection
KR950010389B1 (en) Semidoncutor defects determining method
Tonouchi et al. Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7− δ thin film strips
Zhou et al. Tuning the terahertz emission power of an intrinsic Josephson-junction stack with a focused laser beam
JPWO2003028173A1 (en) Terahertz light equipment
JP2009192524A (en) Apparatus and method for measuring terahertz wave
US7466151B2 (en) Electric-field distribution measurement method and apparatus for semiconductor device
Wiecha et al. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy
US6980010B2 (en) Method and apparatus for inspecting wire breaking of integrated circuit
JP2000074954A (en) Superconductive current detection device
Kim et al. Transmission-type laser THz emission microscope using a solid immersion lens
Morikawa et al. Vector imaging of supercurrent flow in YBa 2 Cu 3 O 7− δ thin films using terahertz radiation
Angrisani et al. THz measurement systems
Murakami et al. Laser terahertz emission microscope
US7274019B2 (en) Method for detection and imaging over a broad spectral range
Kawano Terahertz sensing and imaging based on nanostructured semiconductors and carbon materials
Tonouchi et al. Visualization of Optically Controlled Magnetic Flux in YBa 2Cu 3O 7-δ Thin Film Loop by Terahertz Radiation Imaging
Kim et al. Visualizing heterogeneous dipole fields by terahertz light coupling in individual nano-junctions used in transmon qubits
Kondo et al. A novel two-dimensional mapping system for supercurrent distribution using femtosecond laser pulses
Tonouchi et al. Terahertz radiation imaging of vortices penetrated into YBCO thin films
Tonouchi Magnetic Flux Quanta in YBa2Cu3O7-δ Thin-Film Loops Controlled by Femtosecond Optical Pulses

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129