JP2000073941A - Electric pump - Google Patents

Electric pump

Info

Publication number
JP2000073941A
JP2000073941A JP10240510A JP24051098A JP2000073941A JP 2000073941 A JP2000073941 A JP 2000073941A JP 10240510 A JP10240510 A JP 10240510A JP 24051098 A JP24051098 A JP 24051098A JP 2000073941 A JP2000073941 A JP 2000073941A
Authority
JP
Japan
Prior art keywords
magnetostrictive element
giant magnetostrictive
temperature
electric pump
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10240510A
Other languages
Japanese (ja)
Inventor
Yutaka Ogawa
豊 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Research and Development Centre Ltd filed Critical Akebono Research and Development Centre Ltd
Priority to JP10240510A priority Critical patent/JP2000073941A/en
Publication of JP2000073941A publication Critical patent/JP2000073941A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric pump capable of restricting reduction of magnetostriction quantity caused by temperature fall of a super-magnetostrictive element by keeping temperature of the super-magnetostrictive element as a drive source for a piston to discharge fluid by reciprocating action at a prescribed value or more. SOLUTION: In an electric pump 1 using a super-magnetostrictive element 9 which is elongated by application of a magnetic field as a drive source for a piston 5 to discharge fluid by reciprocating action, it is provided with a temperature sensor 30 to detect temperature of the super-magnetostrictive element 9, a heating means H to heat the super-magnetostrictive element 9, and a control device 33 to actuate the heating means H based on an output of the temperature sensor 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、往復動作によって
流体を吐出するピストンの駆動源として、磁界が加えら
れて伸長する超磁歪素子を使用した電動式ポンプに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric pump using a giant magnetostrictive element which expands by applying a magnetic field as a driving source of a piston for discharging a fluid by reciprocating operation.

【0002】[0002]

【従来の技術】最近の車両用のブレーキ装置は、アンチ
ロックブレーキシステムの装備や、トラクションコント
ロールシステムの装備など、ブレーキ機能のインテリジ
ェント化が活発に行われている。そして、このようなイ
ンテリジェント化に伴い、油圧発生源としてブレーキ装
置に組み込まれるポンプの電動化や小型化が必要不可欠
になってきている。
2. Description of the Related Art In recent years, brake systems for vehicles have been actively provided with intelligent brake functions such as an anti-lock brake system and a traction control system. With the advance of such intelligence, it has become indispensable to electrically pump and reduce the size of a pump incorporated in a brake device as a hydraulic pressure generation source.

【0003】このような背景から、ハウジングに収容し
たピストンの往復動で流体の吐出を行うポンプ部と、ピ
ストンを往復動させる駆動源として伸縮動作を電気的に
制御可能な固体素子を使用したピストン駆動部とを備え
た電動式ポンプが提案されている。この場合に、伸縮動
作を電気的に制御可能な固体素子としては、圧電セラミ
ックスや超磁歪素子が提案されている(特開平7−16
7327号公報、特開平8−334082号公報等参
照)。
[0003] From such a background, a pump unit that discharges a fluid by reciprocating a piston housed in a housing, and a piston that uses a solid element that can electrically control expansion and contraction as a driving source for reciprocating the piston. An electric pump including a driving unit has been proposed. In this case, piezoelectric ceramics and giant magnetostrictive elements have been proposed as solid-state elements whose expansion and contraction operations can be electrically controlled (JP-A-7-16).
No. 7327, JP-A-8-334082, etc.).

【0004】しかし、圧電セラミックスの伸縮動作には
高電圧が必要で、圧電セラミックスの伸縮動作を制御す
るために装備する電源や制御回路が大型化するという問
題がある。これに対して、超磁歪素子の伸縮動作は、超
磁歪素子の周囲に配置したコイルから超磁歪素子へ磁界
を加えることによって行うもので、コイルへの通電が低
電圧で済むため、超磁歪素子の伸縮動作を制御するため
に装備する電源や制御回路を小型化することができる。
従って、軽量・小型化が重要課題とされる車両用ブレー
キ装置の電動式ポンプの駆動源としては、超磁歪素子を
利用した方が有利である。
However, a high voltage is required for the expansion and contraction operation of the piezoelectric ceramics, and there is a problem that a power supply and a control circuit provided for controlling the expansion and contraction operation of the piezoelectric ceramics increase in size. On the other hand, the expansion and contraction operation of the giant magnetostrictive element is performed by applying a magnetic field to the giant magnetostrictive element from a coil arranged around the giant magnetostrictive element. The power supply and control circuit provided for controlling the expansion and contraction of the device can be reduced in size.
Therefore, it is more advantageous to use a giant magnetostrictive element as a drive source of an electric pump of a vehicle brake device in which weight reduction and downsizing are important issues.

【0005】[0005]

【発明が解決しようとする課題】ところが、超磁歪素子
は所定の印加磁界の下で発生する伸縮による磁歪量が、
図2の特性線fで示すように、素子温度が0℃以上の場
合には安定しているが、素子温度が0℃以下に下がる
と、温度低下と共に急激に減少する。従って、車両用ブ
レーキ装置の電動式ポンプの駆動源として超磁歪素子を
使用した場合に、寒冷地での使用では、素子温度の低下
による磁歪量の減少のために、十分なポンプ性能が得ら
れなくなる虞があった。本発明は上記事情に鑑みてなさ
れたものであり、超磁歪素子を使用した電動式ポンプで
おいて、超磁歪素子の温度を規定値以上に保つことによ
り、超磁歪素子の温度低下に起因した磁歪量の減少を抑
えることができ、従って、寒冷地等での使用時にも安定
したポンプ性能を維持することができる電動式ポンプを
提供することを目的とする。
However, the giant magnetostrictive element has a magnetostriction caused by expansion and contraction generated under a predetermined applied magnetic field.
As shown by the characteristic line f in FIG. 2, when the element temperature is 0 ° C. or higher, the temperature is stable. However, when the element temperature falls to 0 ° C. or lower, the temperature rapidly decreases as the temperature decreases. Therefore, when a giant magnetostrictive element is used as a drive source of an electric pump of a vehicle brake device, sufficient pump performance can be obtained in a cold region due to a decrease in magnetostriction due to a decrease in element temperature. There was a risk of disappearing. The present invention has been made in view of the above circumstances, in an electric pump using a giant magnetostrictive element, by maintaining the temperature of the giant magnetostrictive element at a specified value or more, caused by the temperature drop of the giant magnetostrictive element It is an object of the present invention to provide an electric pump capable of suppressing a decrease in magnetostriction and maintaining stable pump performance even when used in a cold region or the like.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る電動式ポンプは、往復動作によって流体
を吐出するピストンの駆動源として、磁界が加えられて
伸長する超磁歪素子を使用した電動式ポンプにおいて、
前記超磁歪素子の温度を検出する温度センサと、前記超
磁歪素子を加熱する加熱手段と、前記温度センサの出力
に基づいて前記加熱手段を作動させて前記超磁歪素子の
温度を規定値以上に保持する制御装置とを備えたことを
特徴とする。
An electric pump according to the present invention for achieving the above object uses a giant magnetostrictive element which expands by applying a magnetic field as a driving source of a piston for discharging a fluid by reciprocating operation. Electric pump
A temperature sensor for detecting the temperature of the giant magnetostrictive element, a heating means for heating the giant magnetostrictive element, and operating the heating means based on an output of the temperature sensor to raise the temperature of the giant magnetostrictive element to a specified value or more. And a control device for holding.

【0007】そして、上記構成によれば、電動式ポンプ
の使用環境が、例えば寒冷地等で、超磁歪素子の温度が
規定値まで低下すると、制御装置が加熱手段を作動させ
て、超磁歪素子の温度を規定値以上に保持する。従っ
て、予め、加熱手段を作動させる基準温度を適宜値に設
定しておけば、超磁歪素子の温度を、磁歪量が安定する
0℃以上の適宜値に常時維持して、超磁歪素子の温度低
下に起因する磁歪量の減少を抑えることができる。
[0007] According to the above configuration, when the temperature of the giant magnetostrictive element drops to a specified value in an environment where the electric pump is used, for example, in a cold region or the like, the control device operates the heating means to cause the giant magnetostrictive element to operate. Is kept above the specified value. Therefore, if the reference temperature for operating the heating means is previously set to an appropriate value, the temperature of the giant magnetostrictive element is always maintained at an appropriate value of 0 ° C. or more at which the magnetostriction amount is stabilized, and the temperature of the giant magnetostrictive element is maintained. The decrease in the magnetostriction caused by the decrease can be suppressed.

【0008】また、前記制御装置は、前記温度センサの
出力が規定値以下に低下したとき、前記超磁歪素子に磁
界を加えるため装備されたコイルを発熱させるべく電流
を流して前記加熱手段として動作させる構成とすること
が好ましい。
When the output of the temperature sensor falls below a specified value, the control device operates as a heating means by supplying a current to generate heat in a coil provided for applying a magnetic field to the giant magnetostrictive element. It is preferable to adopt a configuration in which these are performed.

【0009】このようにすると、超磁歪素子に磁界を加
えるために装備したコイルが、低温環境下での使用時に
超磁歪素子を規定温度以上に加熱する加熱手段としても
兼用てき、超磁歪素子の加熱用に専用の加熱手段を装備
する必要が無くなる。
In this case, the coil provided for applying a magnetic field to the giant magnetostrictive element also serves as a heating means for heating the giant magnetostrictive element to a specified temperature or higher when used in a low-temperature environment. There is no need to provide a dedicated heating means for heating.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る電動式ポンプ
の好適な実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る電動式ポンプの一実施形態を示す
縦断面図である。この電動式ポンプ1は、車両用油圧ブ
レーキ装置に油圧発生源として組み込まれるもので、有
底円筒状のハウジング3に収容したピストン5を、この
ピストン5に当接し電気的に制御可能な固体素子である
超磁歪素子9の伸縮動作で往復動させることによって、
流体の吐出を行うポンプ部7を具備して構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the electric pump according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing one embodiment of an electric pump according to the present invention. The electric pump 1 is incorporated as a hydraulic pressure generating source into a hydraulic brake device for a vehicle. The electric pump 1 is a solid-state element that can electrically control a piston 5 housed in a bottomed cylindrical housing 3 by contacting the piston 5. By reciprocating the giant magnetostrictive element 9
It comprises a pump section 7 for discharging a fluid.

【0011】ポンプ部7は、ハウジング3の開口端を塞
ぐ端壁材4によってピストン5との間に液室12を画成
しており、端壁材4に貫通形成された吐出口12aと、
吸入口12bとに、それぞれチェック弁14、15を配
備したものである。吐出口12aのチェック弁14は、
ピストン5の吐出行程時に流路を開き、吸入行程時には
流路を閉じる。一方、吸入口12bのチェック弁15は
吸入行程時に流路を開き、吐出行程時には流路を閉じ
る。端壁材4とハウジング3との接触部には、シールリ
ング16が装備されている。また、ピストン5が摺動す
るハウジング3の内周面には、ピストン5との間をシー
ルするピストンシール17が装備されている。ピストン
5は、液室12内に配置した戻しスプリング19によっ
て、端壁材4から離間する方向(即ち、固体素子である
超磁歪素子9に当接する方向)に付勢されている。
The pump portion 7 defines a liquid chamber 12 between the piston 5 and the end wall 4 closing the open end of the housing 3, and a discharge port 12 a formed through the end wall 4,
Check valves 14 and 15 are provided at the inlet 12b, respectively. The check valve 14 of the discharge port 12a is
The flow path is opened during the discharge stroke of the piston 5, and the flow path is closed during the suction stroke. On the other hand, the check valve 15 of the suction port 12b opens the flow path during the suction stroke, and closes the flow path during the discharge stroke. A seal ring 16 is provided at a contact portion between the end wall member 4 and the housing 3. Further, a piston seal 17 for sealing between the housing 3 and the piston 5 is provided on the inner peripheral surface of the housing 3 on which the piston 5 slides. The piston 5 is urged by a return spring 19 disposed in the liquid chamber 12 in a direction away from the end wall member 4 (that is, in a direction in which it contacts the giant magnetostrictive element 9 which is a solid element).

【0012】電動式ポンプ1には、さらに磁界が加えら
れると伸長する特性を有する既述の超磁歪素子9と、電
流が印加されると超磁歪素子9に磁界を加えるコイル2
0と、超磁歪素子9の周囲に密着装備されて超磁歪素子
9の温度を検出する温度センサ30と、超磁歪素子9の
伸縮動作がピストン5に伝達されるように超磁歪素子9
とコイル20とを円筒内部に収容保持したハウジング3
と、コイル20へ印加する電流の発生源となる電源22
と、電源22とコイル20との間に介在してコイル20
への印加電流を制御することで超磁歪素子9の伸縮動作
を制御する制御装置33と、制御装置33からの制御信
号に基づいて作動してポンプ部7の吐出圧をリザーバへ
開放するアンロード手段35とが設けられている。
The electric pump 1 includes the above-described giant magnetostrictive element 9 having a characteristic of extending when a magnetic field is further applied thereto, and a coil 2 for applying a magnetic field to the giant magnetostrictive element 9 when a current is applied.
0, a temperature sensor 30 that is closely attached to the periphery of the giant magnetostrictive element 9 and detects the temperature of the giant magnetostrictive element 9, and a giant magnetostrictive element 9 so that the expansion and contraction of the giant magnetostrictive element 9 is transmitted to the piston 5.
3 housing and holding coil and coil 20 inside the cylinder
And a power source 22 which is a source of a current applied to the coil 20.
And a coil 20 interposed between the power supply 22 and the coil 20.
Control device 33 for controlling the expansion and contraction operation of the giant magnetostrictive element 9 by controlling the current applied to the device, and unloading which operates based on a control signal from the control device 33 to release the discharge pressure of the pump section 7 to the reservoir. Means 35 are provided.

【0013】ハウジング3は、超磁歪素子9の伸縮動作
がピストン5に伝達されるように、超磁歪素子9及びコ
イル20の収容領域に連続してピストン5を円筒内部に
摺動自在に収容保持すると共に、これらの周囲を覆う閉
磁気回路を構成するヨークとして機能する。また、ピス
トン5の戻しスプリング19は、超磁歪素子9の伸長動
作を効率化する予負荷ばねを兼ねている。
The housing 3 is slidably accommodated in the cylinder so as to be continuous with the accommodating area of the giant magnetostrictive element 9 and the coil 20 so that the expansion / contraction operation of the giant magnetostrictive element 9 is transmitted to the piston 5. At the same time, it functions as a yoke constituting a closed magnetic circuit that covers these areas. Further, the return spring 19 of the piston 5 also functions as a preload spring for improving the elongating operation of the giant magnetostrictive element 9.

【0014】制御装置33は、制動動作時等にピストン
5を適正に往復動させるために、コイル20への電流印
加により超磁歪素子9を所定周期で伸縮動作させる不図
示のポンプ動作制御回路と、温度センサ30の検出値が
規定値まで下がると、超磁歪素子9が加熱されるように
コイル20への電流印加を開始してコイル20を発熱さ
せる不図示の素子温度制御回路とを有している。
The control device 33 includes a pump operation control circuit (not shown) that causes the giant magnetostrictive element 9 to expand and contract at a predetermined cycle by applying a current to the coil 20 in order to properly reciprocate the piston 5 during a braking operation or the like. And an element temperature control circuit (not shown) for starting current application to the coil 20 and heating the coil 20 so that the giant magnetostrictive element 9 is heated when the detected value of the temperature sensor 30 decreases to a specified value. ing.

【0015】超磁歪素子9の伸縮量は、コイル20より
加えられる磁界の強さに比例する。従って、ピストン5
による吐出行程は、コイル20の発生する磁界を初期値
から所定値まで上昇させて、超磁歪素子9に所定の伸長
動作をさせることで行い、また、吸入行程は、コイル2
0の発生する磁界を所定値から初期値まで降下させて、
超磁歪素子9に所定の収縮動作をさせることで行う。
The amount of expansion and contraction of the giant magnetostrictive element 9 is proportional to the strength of the magnetic field applied from the coil 20. Therefore, the piston 5
Is performed by raising the magnetic field generated by the coil 20 from an initial value to a predetermined value and causing the giant magnetostrictive element 9 to perform a predetermined elongation operation.
By lowering the magnetic field generated by 0 from a predetermined value to an initial value,
This is performed by causing the giant magnetostrictive element 9 to perform a predetermined contraction operation.

【0016】制御装置33のポンプ動作制御回路は、ピ
ストン5による吐出行程の時は、コイル20が発生する
磁界が初期値から所定値まで上昇するように、コイル2
0に印加する電流を制御し、また、吸入行程の時は、コ
イル20が発生する磁界が所定値から初期値まで降下す
るように、コイル20に印加する電流を制御する。ポン
プ動作制御回路は、このような吐出工程と吸入工程の繰
り返しを、コイル20に供給する電流を所定周期の交流
電流とすることで実現する。
The pump operation control circuit of the control device 33 controls the coil 2 so that the magnetic field generated by the coil 20 rises from an initial value to a predetermined value during the discharge stroke by the piston 5.
The current applied to the coil 20 is controlled such that the magnetic field generated by the coil 20 drops from a predetermined value to an initial value during the suction stroke. The pump operation control circuit realizes such repetition of the discharge step and the suction step by setting the current supplied to the coil 20 to an alternating current having a predetermined cycle.

【0017】制御装置33の素子温度制御回路は、低温
環境下での使用のために超磁歪素子9の伸縮特性が低下
する場合に、超磁歪素子9の温度が規定値以上に保持さ
れるように、温度センサ30の検出値に基づいて、超磁
歪素子9を加熱動作させるものである。本実施形態で
は、コイル20に微弱な交流電流を流してコイル20を
発熱させて、コイル20の発熱により超磁歪素子9の温
度を規定値に保つ。即ち、本実施形態の場合、超磁歪素
子9に磁界を加えるため装備されたコイル20が、超磁
歪素子9の加熱手段Hとしても利用されている。
The element temperature control circuit of the control device 33 is adapted to maintain the temperature of the giant magnetostrictive element 9 at a specified value or more when the expansion and contraction characteristics of the giant magnetostrictive element 9 decrease due to use in a low-temperature environment. Then, the giant magnetostrictive element 9 is heated based on the value detected by the temperature sensor 30. In the present embodiment, a weak alternating current is applied to the coil 20 to cause the coil 20 to generate heat, and the heat of the coil 20 keeps the temperature of the giant magnetostrictive element 9 at a specified value. That is, in the case of the present embodiment, the coil 20 provided for applying a magnetic field to the giant magnetostrictive element 9 is also used as the heating means H of the giant magnetostrictive element 9.

【0018】アンロード手段35は、本実施形態の場
合、図示せぬリザーバと吸入側チェック弁15との間を
連絡する吸入側流路41と、図示せぬ負荷部(例えば、
油圧ブレーキ装置のホイールシリンダなど)と吐出側チ
ェック弁14との間を連絡する吐出側流路42とを連通
させるバイパス路43に装備された2位置切替式の電磁
弁で、素子温度制御回路による加熱動作時にはバイパス
路43を開いて吸入側流路41と吐出側流路42とを連
通状態にし、また、ポンプ動作制御回路によるポンプ動
作時にはバイパス路43を閉じて吸入側流路41と吐出
側流路42とを非連通状態にする。
In the case of the present embodiment, the unloading means 35 includes a suction-side flow path 41 that connects between a reservoir (not shown) and the suction-side check valve 15, and a load (not shown).
A two-position switching type solenoid valve provided in a bypass passage 43 for communicating a discharge side flow passage 42 communicating between a discharge side check valve 14 and a wheel cylinder of a hydraulic brake device. During the heating operation, the bypass passage 43 is opened to make the suction side flow passage 41 and the discharge side flow passage 42 communicate with each other. When the pump is operated by the pump operation control circuit, the bypass passage 43 is closed to close the suction side flow passage 41 and the discharge side flow passage. The channel 42 is brought into a non-communication state.

【0019】バイパス路43が開いて吸入側流路41と
吐出側流路42とが連通した状態では、吐出側チェック
弁14の吐出口は、吸込側流路41を介して図示せぬリ
ザーバに連通している。上記構成の電動式ポンプ1で
は、コイル20に加熱用の微弱な交流電流を流した時、
コイル20から超磁歪素子9に磁界が加わり、これによ
り、ポンプ部7は僅かであるが駆動して少量といえども
液圧および吐出量を発生する。しかし、アンロード手段
35により吐出側チェック弁14の吐出口がリザーバに
連通した状態であれば、ポンプ部7からの吐出圧がリザ
ーバに逃げるため、ポンプ部7からの吐出圧による不都
合が生じない。
In a state where the bypass passage 43 is opened and the suction side flow passage 41 and the discharge side flow passage 42 communicate with each other, the discharge port of the discharge side check valve 14 is connected to a reservoir (not shown) via the suction side flow passage 41. Communicating. In the electric pump 1 having the above configuration, when a weak alternating current for heating is passed through the coil 20,
A magnetic field is applied from the coil 20 to the giant magnetostrictive element 9, whereby the pump unit 7 is driven to generate a small amount of hydraulic pressure and discharge even though it is small. However, if the discharge port of the discharge-side check valve 14 is in communication with the reservoir by the unloading means 35, the discharge pressure from the pump unit 7 escapes to the reservoir, so that the inconvenience due to the discharge pressure from the pump unit 7 does not occur. .

【0020】このようにアンロード手段35が装備して
あれば、本実施形態のように超磁歪素子9を加熱する目
的でコイル20に交流電流を供給した場合には、ポンプ
部7を実質的に不作動状態にして、超磁歪素子9を加熱
することができる。しかし、超磁歪素子9を加熱するた
めに、コイル20に交流電流に代えて直流電流を流すこ
ともできる。この場合には、アンロード手段を省略する
ことができる。また、供給電流を直流電流に交流電流を
重畳した交番電流として、超磁歪素子9の温度を加熱し
て規定値に保ちながら、超磁歪素子9がポンプ動作する
ように構成することもできる。
If the unloading means 35 is provided as described above, the pump unit 7 is substantially turned off when an alternating current is supplied to the coil 20 for the purpose of heating the giant magnetostrictive element 9 as in the present embodiment. And the giant magnetostrictive element 9 can be heated. However, in order to heat the giant magnetostrictive element 9, a direct current may be applied to the coil 20 instead of the alternating current. In this case, the unloading means can be omitted. Alternatively, the giant magnetostrictive element 9 may be configured to perform a pump operation while maintaining the temperature of the giant magnetostrictive element 9 at a specified value by heating the temperature of the giant magnetostrictive element 9 as an alternating current obtained by superimposing an alternating current on a direct current.

【0021】以上の電動式ポンプ1によれば、電動式ポ
ンプ1の使用環境が、例えば寒冷地等で、超磁歪素子9
の温度が規定値まで低下すると、制御装置33がコイル
20を加熱手段として作動させて、超磁歪素子9の温度
を規定値以上に保持する。従って、予め、加熱手段とし
てコイル20を作動させる基準温度を適宜値に設定して
おけば、超磁歪素子9の温度を、磁歪量が安定する0℃
以上の適宜値に常時維持して、超磁歪素子9の温度低下
に起因する磁歪量の減少を抑えることができ、寒冷地等
での使用時にも安定したポンプ性能を維持することがで
きる。
According to the electric pump 1 described above, the operating environment of the electric pump 1 is, for example, in a cold region or the like, and the giant magnetostrictive element 9 is used.
Is decreased to the specified value, the control device 33 operates the coil 20 as a heating means to maintain the temperature of the giant magnetostrictive element 9 at or above the specified value. Therefore, if the reference temperature for operating the coil 20 as the heating means is set to an appropriate value in advance, the temperature of the giant magnetostrictive element 9 is reduced to 0 ° C. at which the magnetostriction amount is stabilized.
By maintaining the above appropriate value at all times, it is possible to suppress a decrease in the magnetostriction caused by a decrease in the temperature of the giant magnetostrictive element 9, and to maintain stable pump performance even when used in a cold region or the like.

【0022】しかも、本実施形態の電動式ポンプ1で
は、超磁歪素子9に磁界を加えるために装備したコイル
20が、低温環境下での使用時に超磁歪素子9を規定温
度以上に加熱する加熱手段として兼用され、超磁歪素子
9の加熱用に専用の加熱手段を装備する必要が無くなる
ため、構成部品の増加を防止し、装置のコンパクト化や
コスト低減を図ることが可能になる。
In addition, in the electric pump 1 of the present embodiment, the coil 20 provided for applying a magnetic field to the giant magnetostrictive element 9 has a heating function of heating the giant magnetostrictive element 9 to a specified temperature or higher when used in a low-temperature environment. Since it is not necessary to equip the heating means for heating the giant magnetostrictive element 9 with a dedicated heating means, it is possible to prevent an increase in the number of components and to reduce the size and cost of the apparatus.

【0023】なお、以上の実施形態では、超磁歪素子9
に磁界を加えるため装備されたコイル20を、超磁歪素
子9を加熱する加熱手段としても兼用する構成であった
が、コイル20とは別に、超磁歪素子9を加熱するヒー
ター線等の専用の加熱手段を装備するようにしてもよ
い。
In the above embodiment, the giant magnetostrictive element 9
Although the coil 20 equipped to apply a magnetic field to the coil was also used as a heating means for heating the giant magnetostrictive element 9, the coil 20 was provided separately from the coil 20, such as a heater wire for heating the giant magnetostrictive element 9. A heating means may be provided.

【0024】[0024]

【発明の効果】本発明の電動式ポンプによれば、使用環
境が例えば寒冷地等で、超磁歪素子の温度が規定値まで
低下すると、制御装置が加熱手段を作動させて、超磁歪
素子の温度を規定値以上に保持する。従って、予め、加
熱手段を作動させる基準温度を適宜値に設定しておけ
ば、超磁歪素子の温度を、磁歪量が安定する0℃以上の
適宜値に常時維持して、超磁歪素子の温度低下に起因す
る特性低下を抑えることができ、寒冷地等での使用時に
も安定したポンプ性能を維持することができる。また、
請求項2に記載のように、制御装置が、温度センサの出
力が規定値以下に低下したとき、超磁歪素子に磁界を加
えるため装備されたコイルを発熱させるべく電流を流し
て加熱手段として動作させる構成の場合には、超磁歪素
子に磁界を加えるために装備したコイルが、低温環境下
での使用時に超磁歪素子を規定温度以上に加熱する加熱
手段としても兼用され、超磁歪素子の加熱用に専用の加
熱手段を装備する必要が無くなるため、構成部品の増加
を防止し、装置のコンパクト化やコスト低減を図ること
が可能になる。
According to the electric pump of the present invention, when the temperature of the giant magnetostrictive element is reduced to a specified value in a use environment, for example, in a cold region, the control device activates the heating means to activate the giant magnetostrictive element. Keep the temperature above the specified value. Therefore, if the reference temperature for operating the heating means is previously set to an appropriate value, the temperature of the giant magnetostrictive element is always maintained at an appropriate value of 0 ° C. or more at which the magnetostriction amount is stabilized, and the temperature of the giant magnetostrictive element is maintained. It is possible to suppress the characteristic deterioration due to the decrease, and to maintain stable pump performance even when used in a cold region or the like. Also,
As described in claim 2, when the output of the temperature sensor falls below a specified value, the control device operates as a heating means by supplying a current to generate heat in a coil provided for applying a magnetic field to the giant magnetostrictive element. In the case of the configuration, the coil provided for applying a magnetic field to the giant magnetostrictive element is also used as a heating means for heating the giant magnetostrictive element to a specified temperature or more when used in a low-temperature environment, and the heating of the giant magnetostrictive element is performed. Therefore, it is not necessary to provide a dedicated heating means, so that it is possible to prevent an increase in the number of components and to reduce the size and cost of the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電動式ポンプの一実施形態による
縦断面図である。
FIG. 1 is a longitudinal sectional view of an electric pump according to an embodiment of the present invention.

【図2】超磁歪素子の磁歪量と素子温度との特性相関図
である。
FIG. 2 is a characteristic correlation diagram between the magnetostriction amount of the giant magnetostrictive element and the element temperature.

【符号の説明】[Explanation of symbols]

1 電動式ポンプ 3 ハウジング 4 端壁材 7 ポンプ部 9 超磁歪素子 12 液室 19 戻しスプリング 20 コイル(加熱手段) 22 電源 33 制御装置 35 アンロード手段 DESCRIPTION OF SYMBOLS 1 Electric pump 3 Housing 4 End wall material 7 Pump part 9 Giant magnetostrictive element 12 Liquid chamber 19 Return spring 20 Coil (heating means) 22 Power supply 33 Control device 35 Unloading means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 往復動作によって流体を吐出するピスト
ンの駆動源として、磁界が加えられて伸長する超磁歪素
子を使用した電動式ポンプにおいて、 前記超磁歪素子の温度を検出する温度センサと、前記超
磁歪素子を加熱する加熱手段と、前記温度センサの出力
に基づいて前記加熱手段を作動させて前記超磁歪素子の
温度を規定値以上に保持する制御装置とを備えたことを
特徴とする電動式ポンプ。
1. An electric pump using a giant magnetostrictive element that expands by applying a magnetic field as a drive source of a piston that discharges a fluid by reciprocating operation, comprising: a temperature sensor for detecting a temperature of the giant magnetostrictive element; A motor that heats the giant magnetostrictive element, and a control device that operates the heating means based on an output of the temperature sensor to maintain the temperature of the giant magnetostrictive element at or above a specified value. Type pump.
【請求項2】 前記制御装置は、前記温度センサの出力
が規定値以下に低下したとき、前記超磁歪素子に磁界を
加えるため装備されたコイルを発熱させるべく電流を流
して前記加熱手段として動作させることを特徴とする請
求項1記載の電動式ポンプ。
2. The control device according to claim 1, wherein when the output of the temperature sensor falls below a predetermined value, the control device operates as a heating unit by supplying a current to generate heat in a coil provided for applying a magnetic field to the giant magnetostrictive element. The electric pump according to claim 1, wherein the electric pump is driven.
JP10240510A 1998-08-26 1998-08-26 Electric pump Withdrawn JP2000073941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240510A JP2000073941A (en) 1998-08-26 1998-08-26 Electric pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240510A JP2000073941A (en) 1998-08-26 1998-08-26 Electric pump

Publications (1)

Publication Number Publication Date
JP2000073941A true JP2000073941A (en) 2000-03-07

Family

ID=17060599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240510A Withdrawn JP2000073941A (en) 1998-08-26 1998-08-26 Electric pump

Country Status (1)

Country Link
JP (1) JP2000073941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646075A (en) * 2015-05-27 2018-01-30 罗伯特·博世有限公司 Pump installation, brakes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646075A (en) * 2015-05-27 2018-01-30 罗伯特·博世有限公司 Pump installation, brakes
CN107646075B (en) * 2015-05-27 2019-10-15 罗伯特·博世有限公司 Pump installation, braking system

Similar Documents

Publication Publication Date Title
US6321703B1 (en) Device for controlling a gas exchange valve for internal combustion engines
EP0882632A3 (en) Hydraulic unit for a vehicle brake system
JPH09277817A (en) Vehicular heating device
KR100289027B1 (en) Method and apparatus for controlling electromagnetic valve in industrial vehicle
JP6846861B2 (en) Piston pump
JP2000073941A (en) Electric pump
JPH0551499B2 (en)
US5921342A (en) Power assisted steering apparatus for automotive vehicle
JPH01199079A (en) Control device for electromagnetically proportional control valve
US6918361B2 (en) Device for controlling a cross-section of an opening in the combustion cylinder of an internal combustion engine
JP2017198086A (en) Compressed air supply device
JP2002089453A (en) Hydraulic control device
CN113661322B (en) Capacity control valve
JP2000110714A (en) Electric pump
JP4012662B2 (en) Solenoid valve and brake device
JP2000110715A (en) Electric pump
JPH11324931A (en) Control method of motor-driven pump
JP2000130349A (en) Electric power pump
JP3976102B2 (en) Hydraulic pump
JP2001012402A (en) Hydraulic pressure control device
JP4198856B2 (en) Electric fluid pressure generator
JP2001107930A (en) Brake force control device
KR100982692B1 (en) proportional pressure-reducing valves
JP3595697B2 (en) Operation control device for hydraulic booster device
KR0173812B1 (en) Traction control system and control method of a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324