JP2000072429A - Vanadium carbide powder and its production - Google Patents

Vanadium carbide powder and its production

Info

Publication number
JP2000072429A
JP2000072429A JP10248965A JP24896598A JP2000072429A JP 2000072429 A JP2000072429 A JP 2000072429A JP 10248965 A JP10248965 A JP 10248965A JP 24896598 A JP24896598 A JP 24896598A JP 2000072429 A JP2000072429 A JP 2000072429A
Authority
JP
Japan
Prior art keywords
powder
cylinder
vanadium carbide
carbide powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10248965A
Other languages
Japanese (ja)
Inventor
Hiroaki Oki
博昭 沖
Akihide Matsumoto
明英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP10248965A priority Critical patent/JP2000072429A/en
Publication of JP2000072429A publication Critical patent/JP2000072429A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a uniform and fine vanadium carbide powder of high purity having good dispersibility in an alloy in order to improve the characteristics of a ultrafine sintered carbide alloy and to provide a producing method and a producing device of the powder. SOLUTION: This vanadium carbide powder has <=1.0 μm average particle size, >=15 wt.% of bonded carbon amt. and <=0.5 wt.% oxygen content. To produce the vanadium carbide powder, a producing device of the vanadium carbide powder is used and is equipped with a rotary furnace in which reduction carbonization is carried out in a hydrogen flow. The rotary furnace 10 is equipped with a cylindrical heater 3 in the center part and a two-layer cylinder consisting of first and second graphite cylinders 1, 2 is installed so as to surround the heater. The first cylinder 1 is arranged and fixed in the outside of the second cylinder 2 and the second cylinder 2 is rotatably provided. The material to be treated is heat-treated while the material continuously flows through the second cylinder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICプリント用基
板の穴開けドリル、磁気テープ切断用切断刃等に用いら
れる超硬合金の作製に用いられる炭化バナジウム粉末と
その製造方法とその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vanadium carbide powder used for producing a cemented carbide used in a drill for drilling an IC print substrate, a cutting blade for cutting a magnetic tape, and the like, a method for producing the same, and an apparatus for producing the same. .

【0002】[0002]

【従来の技術】近年、ICプリント用基板の穴開けドリ
ル、磁気テープ切断用切断刀等に用いられる超硬合金に
は高硬度、高強度であることが要求される。このような
要求を満たす超硬合金は、原料に超微粒炭化タングステ
ン粉末を用い、焼結中の粒成長を抑制するために主とし
て、炭化バナジウム粉末、炭化クロム粉末、炭化タンタ
ル粉末等が少量添加される。これらのなかで、炭化バナ
ジウム粉末は最も効果的である。
2. Description of the Related Art In recent years, cemented carbides used for drills for drilling IC printed circuit boards, cutting knives for cutting magnetic tape, and the like are required to have high hardness and high strength. The cemented carbide satisfying such requirements uses ultra-fine tungsten carbide powder as a raw material, and a small amount of vanadium carbide powder, chromium carbide powder, tantalum carbide powder or the like is mainly added to suppress grain growth during sintering. You. Of these, vanadium carbide powder is the most effective.

【0003】従来の炭化バナジウム粉末の製造方法とし
て以下の方法がある。
[0003] As a conventional method for producing vanadium carbide powder, there is the following method.

【0004】まず、第1に,金属バナジウム粉末と炭素
粉末の原料混合粉末、または、酸化バナジウム粉末と炭
素粉末の原料混合粉末を水素気流中、1500℃以上の
温度域にて、プッシャータイプの連続炉やバッチタイプ
の真空炉中で炭化処理を行う方法である。
First, a raw material mixed powder of a metal vanadium powder and a carbon powder or a raw material mixed powder of a vanadium oxide powder and a carbon powder is subjected to a pusher-type continuous process in a hydrogen stream at a temperature range of 1500 ° C. or more. This is a method of performing carbonization in a furnace or a batch type vacuum furnace.

【0005】第2には、バナジウムのハロゲン化物又は
アルコキシドと炭水化物との反応生成物を焼成し炭化バ
ナジウム粉末を得る方法である(特公昭58−5092
8号公報)。
A second method is to calcine a reaction product of a halide or alkoxide of vanadium with a carbohydrate to obtain a vanadium carbide powder (Japanese Patent Publication No. 58-5092).
No. 8).

【0006】[0006]

【発明が解決しようとする課題】上記第1の方法は、炭
化処理にプッシャータイプの連続炉やバッチタイプの炉
を使用するので、均一に熱が伝わりにくく、炭素量、酸
素量等の品質のバラツキが大きいという欠点がある。ま
た、高温で長時間処理されるため、炭化バナジウム粉末
の粒成長が著しい。よって粉砕に長時間要し鉄等の不純
物の混入を招いたり、粉砕時に粉末が酸化したり、生産
性が悪いという欠点がある。
In the first method, since a pusher type continuous furnace or a batch type furnace is used for carbonization, heat is hardly transmitted uniformly, and quality such as carbon content and oxygen content is not improved. There is a disadvantage that the dispersion is large. Further, since the treatment is performed at a high temperature for a long time, the grain growth of the vanadium carbide powder is remarkable. Therefore, there are drawbacks that it takes a long time for the pulverization, impurities such as iron are mixed, the powder is oxidized during the pulverization, and the productivity is poor.

【0007】ここで,粒成長抑制剤である炭化バナジウ
ム粉末は粗粒のものが多いと,合金作製時に均一に分散
されにくく、粒成長抑制効果が十分に得られないことが
ある。また合金中に第三相として析出し、合金強度の低
下を招く。
Here, when the vanadium carbide powder, which is a grain growth inhibitor, has a large number of coarse grains, it is difficult to uniformly disperse the powder during the production of the alloy, and the grain growth suppressing effect may not be sufficiently obtained. Further, it precipitates as a third phase in the alloy, which causes a decrease in alloy strength.

【0008】上記第2の方法は微粒かつ不純物の少ない
炭化バナジウム粉末が得られるが収率が悪く量産化しが
たく、酸素量も多いという欠点がある。またハロゲン化
物が高価であるのと多量の薬品を消費するのでコスト的
に不利であるという欠点がある。
[0008] The above-mentioned second method can obtain fine vanadium carbide powder having a small amount of impurities, but has the disadvantage that the yield is poor, mass production is difficult, and the amount of oxygen is large. Further, there is a disadvantage that the halide is expensive and a large amount of chemicals is consumed, which is disadvantageous in cost.

【0009】そこで、本発明の一般的な技術的課題は、
超微粒超硬合金の特性改善のために、合金での分散性の
よい均粒で微粒な高純度の炭化バナジウム粉末及びその
製造方法とその製造装置とを提供することにある。
Therefore, the general technical problems of the present invention are:
An object of the present invention is to provide a uniform and fine-grained high-purity vanadium carbide powder having good dispersibility in an alloy, a method for producing the same, and an apparatus for producing the same, in order to improve the properties of ultrafine-grained cemented carbide.

【0010】また、本発明の特殊な一つの技術的課題
は、コスト面で有利になるばかりでなく、量産化にも適
している炭化バナジウム粉末及びその製造方法と製造装
置とを提供することにある。
Another special technical object of the present invention is to provide a vanadium carbide powder which is not only advantageous in cost but also suitable for mass production, and a method and an apparatus for producing the same. is there.

【0011】さらに、本発明の特殊なもう一つの技術的
課題は、WCの粒成長の少ない超硬合金を再現性良く得
られる炭化バナジウム粉末及びその製造方法とその製造
装置とを提供することにある。
Another special technical object of the present invention is to provide a vanadium carbide powder capable of obtaining a cemented carbide having a small WC grain growth with good reproducibility, a method for producing the same, and an apparatus for producing the same. is there.

【0012】[0012]

【課題を解決するための手段】本発明によれば、炭化バ
ナジウム粉末において、平均粒径が1.0μm以下、結
合炭素量が15wt%以上、酸素含有量が0.5wt%
以下であることを特徴とする炭化バナジウム粉末が得ら
れる。
According to the present invention, the vanadium carbide powder has an average particle size of not more than 1.0 μm, an amount of bonded carbon of not less than 15 wt%, and an oxygen content of 0.5 wt%.
A vanadium carbide powder characterized by the following is obtained.

【0013】また、本発明によれば、前記炭化バナジウ
ム粉末を製造する方法であって,酸化バナジウム粉末と
炭素粉末を出発原料として混合し、この原料混合粉末を
直径1.0〜4.0mm、長さ2〜10mmの円柱状ま
たは直径2.0〜6.0mmの球状に成型し、乾燥後、
これらの原料成型体を1300℃〜1800℃の水素気
流中で還元炭化処理することを特徴とする炭化バナジウ
ム粉末の製造方法が得られる。
Further, according to the present invention, there is provided a method for producing the above-mentioned vanadium carbide powder, comprising mixing a vanadium oxide powder and a carbon powder as starting materials, and mixing the raw material mixed powder with a diameter of 1.0 to 4.0 mm. After molding into a cylindrical shape with a length of 2 to 10 mm or a spherical shape with a diameter of 2.0 to 6.0 mm, and drying,
A method for producing vanadium carbide powder, characterized in that these raw material molded bodies are subjected to a reduction carbonization treatment in a hydrogen stream at 1300 ° C. to 1800 ° C.

【0014】また、本発明によれば、前記炭化バナジウ
ム粉末の製造方法において,酸化バナジウム粉末におい
て、平均粒径2.0μm以下であり、炭素粉末におい
て、平均粒径1.0μm以下である原料を用いることを
特徴とする炭化バナジウム粉末の製造方法が得られる。
Further, according to the present invention, in the method for producing a vanadium carbide powder, the raw material having an average particle diameter of 2.0 μm or less in the vanadium oxide powder and an average particle diameter of 1.0 μm or less in the carbon powder is used. A method for producing a vanadium carbide powder, characterized in that it is used, is obtained.

【0015】また、本発明によれば、前記いずれかの炭
化バナジウム粉末の製造方法において,前記水素気流中
での還元炭化処理において、中心部に円柱型ヒーターが
設置されそのヒーターを包み込むように黒鉛製の二重の
円筒が設置されており、外側の円筒は固定され、内側の
円筒は回転し、内側の円筒内を処理物が連続的に流れて
いく回転炉を用いて加熱処理をすることを特徴とする炭
化バナジウム粉末の製造方法が得られる。
Further, according to the present invention, in any one of the above-mentioned methods for producing vanadium carbide powder, in the reduction carbonization treatment in the hydrogen stream, a cylindrical heater is installed at the center and the graphite is wrapped around the heater. Double cylinders are installed, the outer cylinder is fixed, the inner cylinder rotates, and heat treatment is performed using a rotary furnace in which the processed material flows continuously in the inner cylinder. Thus, a method for producing a vanadium carbide powder, characterized in that:

【0016】また、本発明によれば、水素気流中で還元
炭化処理を行う回転炉を備えた炭化バナジウム粉末の製
造装置において,前記回転炉は、中心部に円柱型ヒータ
ーが設置されそのヒーターを包み込むように黒鉛製の第
1及び第2の円筒からなる二重の円筒が設置されてお
り、前記第1の円筒は、前記第2の円筒の外側に、固定
されて配置され、前記第2の円筒は回転可能に設けら
れ、前記第2の円筒内を処理物が連続的に流れていきな
がら加熱処理する構成を有することを特徴とする炭化バ
ナジウム粉末の製造装置が得られる。
Further, according to the present invention, in the apparatus for producing vanadium carbide powder provided with a rotary furnace for performing reduction carbonization in a hydrogen stream, the rotary furnace is provided with a cylindrical heater at the center thereof, and the heater is used as the heater. A double cylinder composed of graphite first and second cylinders is installed so as to enclose the first cylinder, the first cylinder is fixedly disposed outside the second cylinder, and the second cylinder is disposed outside the second cylinder. Is provided so as to be rotatable, and has a configuration in which the heat treatment is performed while the processing object continuously flows in the second cylinder, thereby obtaining an apparatus for producing vanadium carbide powder.

【0017】さらに、本発明によれば、前記炭化バナジ
ウム粉末を用いたことを特徴とする超硬合金が得られ
る。
Further, according to the present invention, a cemented carbide characterized by using the above-mentioned vanadium carbide powder can be obtained.

【0018】さらに具体的に本発明を説明すると、原料
に平均粒径2.0μm以下(望ましくは1.0μm以
下)の酸化バナジウム粉末と平均粒径1.0μm以下の
炭素粉末を用い、これらを十分に乾式混合した後、各種
溶剤で混練し、直径1.0〜4.0mm、長さ2〜10
mmの円柱状または直径2.0〜6.0mmの球状に成
型し、乾燥する。
More specifically, the present invention will be described. As the raw materials, vanadium oxide powder having an average particle size of 2.0 μm or less (preferably 1.0 μm or less) and carbon powder having an average particle size of 1.0 μm or less are used. After thoroughly dry-mixing, the mixture is kneaded with various solvents, and has a diameter of 1.0 to 4.0 mm and a length of 2 to 10
It is molded into a cylindrical shape having a diameter of 2.0 mm or a spherical shape having a diameter of 2.0 to 6.0 mm, and dried.

【0019】この原料成型体を水素気流中1300〜1
800℃の温度域において、生成ガスの迅速な除去およ
び均等な熱の供給が可能な回転炉を用いて処理物を攪拌
しながら還元炭化処理を行う。
The raw material compact was placed in a hydrogen stream at 1300-1.
In a temperature range of 800 ° C., the reduced carbonization treatment is performed while stirring the processed material using a rotary furnace capable of rapidly removing generated gas and uniformly supplying heat.

【0020】その結果、平均粒径が1.0μm以下、結
含炭素量が15wt%以上、酸素含有量が0.5wt%
以下であることを特徴とする均粒で微粒の炭化バナジウ
ム粉末が得られる。
As a result, the average particle diameter was 1.0 μm or less, the carbon content was 15 wt% or more, and the oxygen content was 0.5 wt%.
A uniform and fine vanadium carbide powder characterized by the following is obtained.

【0021】本発明品の炭化バナジウム粉末を超硬合金
に用いると、従来のものに比べ粒成長抑制効果が大きく
合金強度の高い超硬合金が再現性よく得られる。
When the vanadium carbide powder of the present invention is used for a cemented carbide, a cemented carbide having a large grain growth suppressing effect and a high alloy strength can be obtained with good reproducibility as compared with conventional ones.

【0022】次に,本発明における製造条件を前述のよ
うに限定した理由について説明する。
Next, the reason why the manufacturing conditions in the present invention are limited as described above will be described.

【0023】超硬合金に用いられる炭化バナジウム粉末
の平均粒径を1.0μm以下としたのは、1.0μmを
越えた炭化バナジウム粉末を添加すると、強度低下を招
く第三相が析出し合金強度が低下するためである。
The reason why the average particle size of the vanadium carbide powder used in the cemented carbide is set to 1.0 μm or less is that when a vanadium carbide powder exceeding 1.0 μm is added, a third phase which causes a reduction in strength is precipitated and the This is because the strength is reduced.

【0024】炭化バナジウム粉末の結合炭素量を15w
t%以上としたのは、15wt%未満では合金炭素量の
制御が難しくなるためである。
The vanadium carbide powder has a bound carbon content of 15 watts.
The reason why the content is set to t% or more is that it is difficult to control the amount of alloy carbon if the content is less than 15 wt%.

【0025】炭化バナジウム粉末の酸素量を0.5wt
%以下としたのは、0.5wt%を越えた炭化バナジウ
ム粉末を添加すると、超硬合金には反応ガスによるポア
が残留したり、合金炭素量の抑制が難しくなるためであ
る。
The oxygen content of the vanadium carbide powder is 0.5 wt.
The reason for the lower limit is that if the amount of vanadium carbide powder exceeds 0.5 wt%, pores due to the reaction gas remain in the cemented carbide and it becomes difficult to suppress the carbon content of the alloy.

【0026】平均粒径2.0μm以下の酸化バナジウム
粉末と平均粒径1.0μm以下の炭素粉末を使用したの
は酸化バナジウム粉末と炭素粉末の接触面積を増大させ
迅速に還元、炭化反応せしめ微粒の炭化バナジウム粉末
を得るために上記のように眼定した。直径1.0〜4.
0mm、長さ2〜10mmの円柱状または直径2.0〜
6.0mmの球状に成型したのは、原料成型体が撹拌さ
れ、還元炭化反応を迅速かつ充分に進行させるために上
記のように眼定した。これより大きいと、原料成型体の
中心部に未反応部分が発生する。また、これより小さい
と、回転炉内に原料が詰まるなどの不具合が発生するか
らである。
The reason why the vanadium oxide powder having an average particle size of 2.0 μm or less and the carbon powder having an average particle size of 1.0 μm or less are used is to increase the contact area between the vanadium oxide powder and the carbon powder and to rapidly reduce and carbonize the fine particles. Was determined as described above to obtain vanadium carbide powder. 1.0-4.
0mm, 2-10mm long cylindrical or 2.0 ~ diameter
The molding into a spherical shape of 6.0 mm was carried out as described above in order to stir the raw material molded article and to allow the reduction carbonization reaction to proceed quickly and sufficiently. If it is larger than this, an unreacted portion is generated at the center of the raw material molded body. If the diameter is smaller than this, a problem such as clogging of the raw material in the rotary furnace occurs.

【0027】また、本発明において、還元炭化処理に回
転炉を用いたのは、原料成型体を撹拌することにより処
理物に効率良く熱を伝えることで、固相(酸化バナジウ
ム粒子)、固相(炭素粒子)の反応性を高め、反応生成
ガス(CO,CO2 )の除去を迅速にすることにより原
料成型体を素速く還元、炭化反応させ、生成炭化物の粒
成長を抑制させるためである。
In the present invention, the rotary furnace is used for the reduction carbonization treatment because the heat is efficiently transmitted to the processed material by agitating the raw material molded body so that the solid phase (vanadium oxide particles) and the solid phase can be solidified. This is to increase the reactivity of the (carbon particles) and quickly remove the reaction product gas (CO, CO 2 ) to quickly reduce and carbonize the raw material molded body, thereby suppressing the grain growth of the generated carbide. .

【0028】また、本発明において,還元炭化処理温度
を1300〜1800℃としたのは、1300℃未満の
温度では酸素が0.5wt%より多く残り未反応の酸化
バナジウムが残存し、1800℃より高い温度では酸素
は十分に除去されるが、炭化バナジウム粉末が粒成長を
起こし生成炭化物が粗くなる欠点があるからである。
Further, in the present invention, the reduction and carbonization temperature is set to 1300 to 1800 ° C., because at a temperature lower than 1300 ° C., more than 0.5% by weight of oxygen remains, unreacted vanadium oxide remains, and the temperature decreases from 1800 ° C. At a high temperature, oxygen is sufficiently removed, but there is a disadvantage that the vanadium carbide powder causes grain growth and formed carbide becomes coarse.

【0029】[0029]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0030】図1は本発明の実施の形態による炭化バナ
ジウム製造装置の要部を示す断面図である。図1を参照
すると、回転炉10は、中心軸の位置に配置された円柱
型ヒータ3と、円柱型ヒータ3の周囲を包み込むように
2重に配置された黒鉛製の第1及び第2の円筒1、2
と、第2の円筒2の下流端部に配置されたギア6と,駆
動用モータ4と、駆動用モータ4に設けられたギア5
と、それらの周囲を覆う断熱材料からなる外郭部11を
備えている。第1の円筒1は、炉内に固定されており、
第2の円筒2は、ギア5及びギア6を介して、駆動用モ
ータ4によって、回転する構成となっている。
FIG. 1 is a sectional view showing a main part of a vanadium carbide producing apparatus according to an embodiment of the present invention. Referring to FIG. 1, a rotary furnace 10 includes a cylindrical heater 3 disposed at a position of a center axis, and first and second graphite heaters disposed so as to wrap around the cylindrical heater 3. Cylinder 1, 2
A gear 6 disposed at the downstream end of the second cylinder 2, a driving motor 4, and a gear 5 provided on the driving motor 4.
And an outer shell 11 made of a heat insulating material that covers the periphery thereof. The first cylinder 1 is fixed in the furnace,
The second cylinder 2 is configured to be rotated by a driving motor 4 via a gear 5 and a gear 6.

【0031】回転炉10は、その中心軸が、図では、右
側が下がるように構成されており、炉内には水素気流が
導入されている。原料は、図では、左側の上方から供給
され、第2の円筒2の回転及び中心軸の傾斜によって、
図の右側に移動して取り出される。
The rotary furnace 10 is configured such that the central axis thereof is lowered on the right side in the figure, and a hydrogen gas flow is introduced into the furnace. In the figure, the raw material is supplied from the upper left side, and by rotation of the second cylinder 2 and inclination of the central axis,
Move to the right side of the figure and take it out.

【0032】次に本発明の実施の形態による炭化バナジ
ウムの具体的製造方法について説明する。
Next, a specific method for producing vanadium carbide according to the embodiment of the present invention will be described.

【0033】(第1の実施の形態)平均粒径2.0μm
の酸化バナジウム粉末と平均粒径1.0μmの炭素粉末
を所定の結合炭素量になるよう配合し、高速回転混合機
にて混合し、原料混合粉末を作製した。この原料混合粉
末に成型を容易にするための各種溶剤を添加し、直径
1.0mm、長さ2mmの円柱状に成型、乾燥を行い、
原料成型体を作製した。この原料成型体を、図1の回転
炉10を用いて水素気流中1300℃で反応せしめた。
この時、回転炉10は、内径85mm,長さ2400m
mの黒鉛製円筒内に、外径40mm、長さ2620mm
の黒鉛製円柱型ヒーター3を設置したものであり、黒鉛
製円筒を1rpmで回転させ、水平に対し約6度傾けて
使用した。回転炉10内は、水素が1.8m3 /h流
れ、かつ、黒鉛製円柱型ヒーター3を通電加熱すること
により黒鉛製円筒内を1300℃に保った。この状態
で、回転炉10上部より原料成型体を6kg/hの割合
で投入した。この原料成型体の炉内滞在時間は約30分
であった。このようにして得られた本発明品の製造条
件、分析値を表1の本発明粉末試料番号1に示す。
(First Embodiment) Average particle size 2.0 μm
Was mixed with a carbon powder having an average particle size of 1.0 μm so as to have a predetermined amount of bound carbon, and mixed with a high-speed rotary mixer to prepare a raw material mixed powder. Various solvents for facilitating molding are added to the raw material mixed powder, molded into a column having a diameter of 1.0 mm and a length of 2 mm, and dried.
A raw material molded body was produced. This raw material molded body was reacted at 1300 ° C. in a hydrogen stream using the rotary furnace 10 shown in FIG.
At this time, the rotary furnace 10 has an inner diameter of 85 mm and a length of 2400 m.
m inside a graphite cylinder, outer diameter 40mm, length 2620mm
The graphite cylinder heater 3 was installed, and the graphite cylinder was rotated at 1 rpm and used at an angle of about 6 degrees with respect to the horizontal. In the rotary furnace 10, hydrogen flowed 1.8 m 3 / h, and the graphite cylinder was maintained at 1300 ° C. by energizing and heating the graphite column heater 3. In this state, a raw material molded body was charged from the upper part of the rotary furnace 10 at a rate of 6 kg / h. The residence time of this raw material molded article in the furnace was about 30 minutes. The production conditions and analytical values of the product of the present invention thus obtained are shown in Table 1 of the present invention powder sample number 1.

【0034】上記使用原料成型体を1.8m3 /hの水
素気流中1800℃の回転炉で処理した粉末の分析値を
表1の本発明粉末試料番号2に示す。上記使用原料混合
粉末を直径1.0mm、長さ10mmの円柱状,直径
4.0mm、長さ2mmの円柱状、直径4.0mm、長
さ10mmの円柱状,直径2.0mmの球状および直径
6.0mmの球状に成型し、各々1.8m3 /hの水素
気流中1300℃,1800℃の回転炉で処理した粉末
の分析値を表1の本発明粉末試料番号3,4,5,6,
7,8,9,10,11,12に示す。
The analytical values of the powder obtained by treating the above-mentioned raw material molded body in a rotary furnace at 1800 ° C. in a hydrogen stream of 1.8 m 3 / h are shown in Table 1 of the present invention powder sample number 2. The above used raw material mixed powder was prepared into a cylindrical shape having a diameter of 1.0 mm and a length of 10 mm, a cylindrical shape having a diameter of 4.0 mm and a length of 2 mm, a cylindrical shape having a diameter of 4.0 mm and a length of 10 mm, and a spherical shape and a diameter of 2.0 mm. The analytical values of the powders molded into spherical shapes of 6.0 mm and processed in a rotary furnace at 1300 ° C. and 1800 ° C. in a hydrogen gas flow of 1.8 m 3 / h are shown in Table 1 as powder samples Nos. 3, 4, 5, and 6 of the present invention. ,
7, 8, 9, 10, 11, and 12 are shown.

【0035】平均粒径2.0μmの酸化バナジウム粉末
と平均粒径0.5μmの炭素粉末.平均粒径1.0μm
の酸化バナジウム粉末と平均粒径1.0μmの炭素粉末
および平均粒径1.0μmの酸化バナジウム粉末と平均
粒径0.5μmの炭素粉末を各々直径1.0mm、長さ
2mmの円柱状に成型し、1.8m3 /hの水素気流中
1300℃の回転炉で処理した粉末の分析埴を表1の本
発明粉末試料番号13,14および15に示す。
Vanadium oxide powder having an average particle size of 2.0 μm and carbon powder having an average particle size of 0.5 μm. Average particle size 1.0 μm
Vanadium oxide powder and carbon powder having an average particle size of 1.0 μm and vanadium oxide powder having an average particle size of 1.0 μm and carbon powder having an average particle size of 0.5 μm are each formed into a columnar shape having a diameter of 1.0 mm and a length of 2 mm. The analysis of the powders processed in a rotary furnace at 1300 ° C. in a hydrogen stream of 1.8 m 3 / h is shown in Table 1 as powder samples 13, 14 and 15 of the present invention.

【0036】本発明品の製造条件の比較例を以下に示
す。
A comparative example of the production conditions of the product of the present invention is shown below.

【0037】表1の本発明粉末試料番号1に使用した原
料成型体を1.8m3 /hの水素気流中1200℃およ
び1900℃の回転炉で処理した。これらの粉末の分析
植を表1の比較粉末試料番号1および2に示す。
The raw material compact used for the powder sample No. 1 of the present invention shown in Table 1 was treated in a hydrogen stream at 1.8 m 3 / h in a rotary furnace at 1200 ° C. and 1900 ° C. Analytical plants of these powders are shown in Table 1 as comparative powder sample numbers 1 and 2.

【0038】また、表1の本発明粉末試料番号1に使用
した原料混合粉末を直径1.0mm、長さ1mmの円柱
状,直径1.0mm、長さ15mmの円柱状,直径0.
5mm、長さ2mmの円柱状,直径8.0mm、長さ2
mmの円柱状,直径1.0mmの球状および直径8.0
mmの球状に成型し、各々1.8m3 /hの水素気流中
1300℃の回転炉で処理した。これらの粉末の分枡値
を表1の比較粉末試料番号3,4,5,6,7および8
に示す。
Further, the raw material mixed powder used for the powder sample No. 1 of the present invention in Table 1 was prepared as a column having a diameter of 1.0 mm and a length of 1 mm, a column having a diameter of 1.0 mm and a column having a length of 15 mm and a diameter of 0.1 mm.
5mm, 2mm long column, 8.0mm diameter, 2 length
mm column, 1.0 mm diameter sphere and 8.0 mm diameter
mm, and each was processed in a rotary furnace at 1300 ° C. in a hydrogen stream of 1.8 m 3 / h. The division values of these powders were compared with the comparative powder sample numbers 3, 4, 5, 6, 7 and 8 in Table 1.
Shown in

【0039】この他、平均粒径2.0μmの酸化バナジ
ウム粉末と平均粒径2.0μmの炭素粉末および平均粒
径3.0μmの酸化バナジウム粉末と平均粒径1.0μ
mの炭素粉末を各々直径1.0mm,長さ2mmの円柱
状に成型し、1.8m3 /hの水素気流中1300℃の
回転炉で処理した。その粉末の分析値を表1の比較粉末
試料番号9及び10に示す。従来法による比較例を以下
に示す。
In addition, a vanadium oxide powder having an average particle size of 2.0 μm, a carbon powder having an average particle size of 2.0 μm, a vanadium oxide powder having an average particle size of 3.0 μm, and an average particle size of 1.0 μm
m of carbon powder were each formed into a columnar shape having a diameter of 1.0 mm and a length of 2 mm, and processed in a rotary furnace at 1300 ° C. in a hydrogen stream of 1.8 m 3 / h. The analytical values of the powder are shown in Comparative Powder Sample Nos. 9 and 10 in Table 1. A comparative example according to the conventional method is shown below.

【0040】表1の本発明粉末試料番号1に使用した原
料成型体を従来法のプッシャータイプの連続炉にて、1
300℃および1800℃で処理した。炉内に水素ガス
を1.2m3 /h流し、原料成型体を入れた長さ300
mmの黒鉛製ポートを60分間隔で炉へ挿入した。この
ようにして得られた粉末の分析値を表1の比較粉末試料
番号11および12に示す。
The raw material compact used for the powder sample No. 1 of the present invention shown in Table 1 was subjected to a conventional pusher type continuous furnace to obtain 1
Treated at 300 ° C and 1800 ° C. 300 m 3 / h of hydrogen gas was flowed into the furnace, and the length of the raw material molded body was 300 mm.
mm graphite ports were inserted into the furnace at 60 minute intervals. The analysis values of the powder thus obtained are shown in Table 1 as comparative powder sample numbers 11 and 12.

【0041】[0041]

【表1】 [Table 1]

【0042】(第2の実施の形態)次に、第1の実施の
形態で得た炭化バナジウム粉末のうち、本発明粉末試料
番号1,2と比較粉末試料番号1,2を使用した超硬合
金の例について述べる。
(Second Embodiment) Next, among the vanadium carbide powders obtained in the first embodiment, the cemented carbide using powder sample numbers 1 and 2 of the present invention and comparative powder sample numbers 1 and 2 was used. An example of an alloy will be described.

【0043】原料粉末として、平均粒径0.2μmの超
微粒炭化タングステン粉末、平均粒径1.2μmのコバ
ルト粉末、そして上記炭化バナジウム粉末を用意した。
As raw material powders, ultrafine tungsten carbide powder having an average particle diameter of 0.2 μm, cobalt powder having an average particle diameter of 1.2 μm, and the above-mentioned vanadium carbide powder were prepared.

【0044】これらの原料粉末を用い、炭化タングステ
ン粉末を89.5wt%、炭化バナジウム粉末を0.5
wt%,そしてコバルト粉末を10.0wt%の割合に
配合し、アルコール中で8時間湿式混合した。混合後、
減圧乾燥し、1000kg/cm2 の圧力でプレス成型
した。その後、1380℃で1時間真空焼結した。続い
て1350℃で1時間アルゴン雰囲気下において100
0kg/cm2 のHIP処理を行った。これらの焼結体
をダイヤモンド砥石で4mm×8mm×25mmのJI
S片に作製し、ロックウェル硬さ(HRA)、抗折力、
抗磁力について測定した。その結果を表2に示した。
Using these raw material powders, 89.5 wt% of tungsten carbide powder and 0.5% of vanadium carbide powder were used.
wt% and cobalt powder at a ratio of 10.0 wt%, and wet-mixed in alcohol for 8 hours. After mixing
It was dried under reduced pressure and press-molded at a pressure of 1000 kg / cm 2 . Thereafter, vacuum sintering was performed at 1380 ° C. for 1 hour. Subsequently, at 1350 ° C. for 1 hour in an argon atmosphere, 100
HIP processing of 0 kg / cm 2 was performed. These sintered bodies were JI of 4 mm x 8 mm x 25 mm using a diamond grindstone.
Made in S piece, Rockwell hardness (HRA), flexural strength,
The coercive force was measured. The results are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】上記表2から明らかなように、本発明粉末
の炭化バナジウム粉末を用いた合金は、比較粉末を用い
た合金に比べ高硬度、高強度で、本発明粉末の炭化バナ
ジウム粉末が優れていることが判る。
As is clear from Table 2 above, the alloy using the vanadium carbide powder of the present invention powder has higher hardness and higher strength than the alloy using the comparative powder, and the vanadium carbide powder of the present invention powder is superior. It turns out that there is.

【0047】[0047]

【発明の効果】以上説明したように、本発明によって製
造された炭化バナジウム粉末は、高純度(結合炭素量1
5wt%以上、酸素含有量0.5wt%以下)かつ微粒
(平均粒径1.0μm以下)で均粒であった。
As described above, the vanadium carbide powder produced according to the present invention has high purity (the amount of bound carbon is 1).
5 wt% or more, oxygen content 0.5 wt% or less) and fine particles (average particle size 1.0 μm or less) and were uniform.

【0048】また、本発明による炭化バナジウム粉末を
用いた超硬含金は、WC粒子の粒成長の少ない超硬合金
が再現性良く得られた。
In the case of the cemented carbide using the vanadium carbide powder according to the present invention, a cemented carbide with small grain growth of WC particles was obtained with good reproducibility.

【0049】さらに、本発明の製造方法ではコスト面で
有利になるばかりでなく、量産化にも適している。
Further, the manufacturing method of the present invention is not only advantageous in cost, but also suitable for mass production.

【0050】また、本発明によれば、平均粒径2.0μ
m以下(望ましくは,1.0μm以下)の酸化バナジウ
ム粉末と平均粒径1.0μm以下の炭素粉末を原料に用
いることにより、酸化バナジウム粉末と炭素粉末の接触
面積を増大させる。還元炭化処理として回転炉を使用す
ることにより反応ガスを炉外ヘすばやく排出させ、かつ
効率よく均一に加熱処理することにより迅速に還元、炭
化反応させる。これらによって、平均粒径1.0μm以
下、結合炭素量15wt%以上、酸素含有量0.5wt
%以下の均粒で微粒な高純度炭化バナジウム粉末が得ら
れる。
According to the present invention, the average particle size is 2.0 μm.
The contact area between the vanadium oxide powder and the carbon powder is increased by using vanadium oxide powder of m or less (preferably 1.0 μm or less) and carbon powder having an average particle diameter of 1.0 μm or less as raw materials. By using a rotary furnace as the reduction carbonization treatment, the reaction gas is quickly discharged to the outside of the furnace, and the reduction and carbonization reaction is rapidly performed by efficiently and uniformly heating. As a result, the average particle size is 1.0 μm or less, the amount of bonded carbon is 15 wt% or more, and the oxygen content is 0.5 wt
% And a fine high-purity vanadium carbide powder having a uniform grain size of not more than%.

【0051】さらに、本発明によれば、回転炉を用いる
ことにより容易に製造可能であるバナジウム粉末の製造
装置を提供することができる。
Further, according to the present invention, it is possible to provide an apparatus for producing vanadium powder which can be easily produced by using a rotary furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による炭化バナジウム粉末
の製造装置の要部を示す図である。
FIG. 1 is a diagram showing a main part of an apparatus for producing vanadium carbide powder according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 第1の円筒 2 第2の円筒 3 円筒型ヒータ 4 モータ 5、6 ギア 10 回転炉 11 外郭 DESCRIPTION OF SYMBOLS 1 1st cylinder 2 2nd cylinder 3 Cylindrical heater 4 Motor 5, 6 Gear 10 Rotary furnace 11 Outer shell

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 MA06 MB02 MC04 MC06 MC07 MC08 4K017 AA04 BA07 BB13 CA07 DA06 EH01 EH18 FB03 FB06 FB09 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 MA06 MB02 MC04 MC06 MC07 MC08 4K017 AA04 BA07 BB13 CA07 DA06 EH01 EH18 FB03 FB06 FB09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化バナジウム粉末において、平均粒径
が1.0μm以下、結合炭素量が15wt%以上、酸素
含有量が0.5wt%以下であることを特徴とする炭化
バナジウム粉末。
1. A vanadium carbide powder having an average particle size of 1.0 μm or less, a bound carbon content of 15 wt% or more, and an oxygen content of 0.5 wt% or less.
【請求項2】 請求項1記載の炭化バナジウム粉末を製
造する方法であって,酸化バナジウム粉末と炭素粉末を
出発原料として混合し、この原料混合粉末を直径1.0
〜4.0mm、長さ2〜10mmの円柱状または直径
2.0〜6.0mmの球状に成型し、乾燥後、これらの
原料成型体を1300℃〜1800℃の水素気流中で還
元炭化処理することを特徴とする炭化バナジウム粉末の
製造方法。
2. The method for producing a vanadium carbide powder according to claim 1, wherein the vanadium oxide powder and the carbon powder are mixed as starting materials, and the raw material mixed powder has a diameter of 1.0%.
After molding into a columnar shape having a length of 2 to 10 mm or a spherical shape having a diameter of 2.0 to 6.0 mm and drying, these raw material molded bodies are subjected to a reduction carbonization treatment in a hydrogen stream at 1300 ° C to 1800 ° C. A method for producing vanadium carbide powder.
【請求項3】 請求項2記載の炭化バナジウム粉末の製
造方法において,酸化バナジウム粉末において、平均粒
径2.0μm以下であり、炭素粉末において、平均粒径
1.0μm以下である原料を用いることを特徴とする炭
化バナジウム粉末の製造方法。
3. The method for producing a vanadium carbide powder according to claim 2, wherein a material having an average particle diameter of 2.0 μm or less in the vanadium oxide powder and an average particle diameter of 1.0 μm or less in the carbon powder is used. A method for producing a vanadium carbide powder, comprising:
【請求項4】 請求項2又は3記載の炭化バナジウム粉
末の製造方法において,前記水素気流中での還元炭化処
理において、中心部に円柱型ヒーターが設置されそのヒ
ーターを包み込むように黒鉛製の二重の円筒が設置され
ており、外側の円筒は固定され、内側の円筒は回転し、
内側の円筒内を処理物が連続的に流れていく回転炉を用
いて加熱処理をすることを特徴とする炭化バナジウム粉
末の製造方法。
4. The method for producing a vanadium carbide powder according to claim 2, wherein in the reduction and carbonization treatment in the hydrogen stream, a cylindrical heater is provided at a central portion, and the graphite heater is wrapped around the heater. Heavy cylinders are installed, the outer cylinder is fixed, the inner cylinder rotates,
A method for producing a vanadium carbide powder, wherein a heat treatment is performed using a rotary furnace in which a processing object flows continuously in an inner cylinder.
【請求項5】 水素気流中で還元炭化処理を行う回転炉
を備えた炭化バナジウム粉末の製造装置において,前記
回転炉は、中心部に円柱型ヒーターが設置されそのヒー
ターを包み込むように黒鉛製の第1及び第2の円筒から
なる二重の円筒が設置されており、前記第1の円筒は、
前記第2の円筒の外側に、固定されて配置され、前記第
2の円筒は回転可能に設けられ、前記第2の円筒内を処
理物が連続的に流れていきながら加熱処理する構成を有
することを特徴とする炭化バナジウム粉末の製造装置。
5. A vanadium carbide powder producing apparatus provided with a rotary furnace for performing a reduction carbonization treatment in a hydrogen gas stream, wherein said rotary furnace is provided with a cylindrical heater at a central portion thereof and is made of graphite so as to surround the heater. A double cylinder consisting of a first and a second cylinder is installed, wherein the first cylinder is
The second cylinder is fixedly disposed outside the second cylinder, the second cylinder is rotatably provided, and has a configuration in which a heat treatment is performed while a processing object continuously flows in the second cylinder. An apparatus for producing vanadium carbide powder, characterized in that:
【請求項6】 請求項1記載の炭化バナジウム粉末を用
いたことを特徴とする超硬合金。
6. A cemented carbide using the vanadium carbide powder according to claim 1.
JP10248965A 1998-09-03 1998-09-03 Vanadium carbide powder and its production Withdrawn JP2000072429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10248965A JP2000072429A (en) 1998-09-03 1998-09-03 Vanadium carbide powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10248965A JP2000072429A (en) 1998-09-03 1998-09-03 Vanadium carbide powder and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006346986A Division JP4180633B2 (en) 2006-12-25 2006-12-25 Vanadium carbide powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2000072429A true JP2000072429A (en) 2000-03-07

Family

ID=17186037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10248965A Withdrawn JP2000072429A (en) 1998-09-03 1998-09-03 Vanadium carbide powder and its production

Country Status (1)

Country Link
JP (1) JP2000072429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072826A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Method of preparing metal carbide
WO2018070466A1 (en) * 2016-10-13 2018-04-19 株式会社アライドマテリアル Tungsten carbide powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072826A (en) * 2008-12-22 2010-07-01 제일모직주식회사 Method of preparing metal carbide
WO2018070466A1 (en) * 2016-10-13 2018-04-19 株式会社アライドマテリアル Tungsten carbide powder
JP6368448B1 (en) * 2016-10-13 2018-08-01 株式会社アライドマテリアル Tungsten carbide powder
CN109843797A (en) * 2016-10-13 2019-06-04 联合材料公司 Tungsten-carbide powder
US11312632B2 (en) 2016-10-13 2022-04-26 A.L.M.T. Corp. Tungsten carbide powder
CN109843797B (en) * 2016-10-13 2022-11-22 联合材料公司 Tungsten carbide powder

Similar Documents

Publication Publication Date Title
JP3862385B2 (en) Tin oxide-containing indium oxide powder and method for producing sintered body
EP1775275B1 (en) High-strength and highly abrasion-resistant sintered diamond product and process for production thereof
CN1069604C (en) Method to produce transition metal carbide from partially reduced transition metal compound
KR100346762B1 (en) PRODUCTION METHOD FOR NANOPHASE WC/TiC/Co COMPOSITE POWDER
CN108455614B (en) Method for preparing nano WC powder at low temperature and in short process
CA2394844A1 (en) Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
CN1073532C (en) Method to produce transition metal carbide from partially reduced transition metal compound
CN112846170A (en) (Ti, W) C solid solution powder and preparation method thereof
CN117620190A (en) Preparation method of high-purity superfine rhenium powder
EP1281670B1 (en) Fine tungsten carbide powder and process for producing the same
CN117165830B (en) Gear steel and preparation method thereof
KR101101755B1 (en) Method for recycling waste cemented carbide sludge
JP3413625B2 (en) Method for producing titanium carbonitride powder
JP2000072429A (en) Vanadium carbide powder and its production
CN112839755B (en) Sintered spheres made of tungsten carbide
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JPH05279125A (en) Production of sintered silicon nitride ceramic
CN113716565B (en) Superfine tungsten carbide powder and preparation method thereof and hard alloy
JP4180633B2 (en) Vanadium carbide powder and method for producing the same
CN102665973A (en) Recycling of tungsten carbides
RU2763814C1 (en) Method for producing nanodispersed powders
CN108531764A (en) A kind of silver tungsten carbide carbon alkene contact material and preparation method thereof
JP2958851B2 (en) Method for producing fine chromium carbide
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061226