JP2000066123A - Plat type curved surface mirror device - Google Patents

Plat type curved surface mirror device

Info

Publication number
JP2000066123A
JP2000066123A JP10235230A JP23523098A JP2000066123A JP 2000066123 A JP2000066123 A JP 2000066123A JP 10235230 A JP10235230 A JP 10235230A JP 23523098 A JP23523098 A JP 23523098A JP 2000066123 A JP2000066123 A JP 2000066123A
Authority
JP
Japan
Prior art keywords
axis
reflecting
focal length
mirror
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235230A
Other languages
Japanese (ja)
Inventor
Masakazu Kato
雅一 加藤
Shozo Okamoto
正三 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP10235230A priority Critical patent/JP2000066123A/en
Publication of JP2000066123A publication Critical patent/JP2000066123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a plane type curved surface mirror which is of a plane type, is always constant in a size and depth dimension, is freely variable in its focus and is capable of embodying a large focal length by discretely controlling many reflecting means which are arranged in a matrix form and deflect and reflect light in a two-dimensional direction. SOLUTION: This device comprises the reflecting means 3, a control means 4, an X-axis driving means 5 and a Y-axis driving means. The reflecting means 3 are optical scanning elements capable deflecting and reflecting the light in the two-dimensional direction by using a semiconductor process and are, for example, galvanomirrors. The reflecting means 3 are composed of the matrices of the number 1 to n in an X-axis direction and 1 to m in a Y-axis direction. The respective reflecting means 3 consist of the structures capable of arbitrarily deflecting the light to the X-Y axis. The control means 4 makes computation by the numerical value of the focal length inputted from a keyboard and executes the control of the X-Y axis to supply a X-axis driving signal Dx to the X-axis driving means 5 and a Y-axis driving signal Dy to the Y-axis driving means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マトリクス状に並
べられた多数のミラーを個別に制御して平面状の曲面鏡
を構成することができる平型曲面鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat curved mirror device capable of individually controlling a large number of mirrors arranged in a matrix to form a flat curved mirror.

【0002】[0002]

【従来の技術】従来の凸面鏡、凹面鏡は焦点距離が決ま
れば形状がおのずと決まり、焦点距離が大きくなると、
曲率、鏡径も大きくなっていた。
2. Description of the Related Art Conventional convex mirrors and concave mirrors are naturally determined when the focal length is determined.
The curvature and mirror diameter were also large.

【0003】図5に従来の凹面鏡の構成図を示す。図5
において従来の凹面鏡20は、物体または、発光点Pが
軸状で無限遠にあるときには、それから発して凹面鏡に
到達する光線は、鏡軸に平行である。そして反射光線を
DFとすれば、反射の法則にしたがってやはり∠PDC
=∠CDFである。また、PDはCOに平行であるか
ら、∠PDC=∠DCF=∠CDFで△FCDは二等辺
三角形である。
FIG. 5 shows the configuration of a conventional concave mirror. FIG.
In the conventional concave mirror 20, when the object or the light emitting point P is axially at infinity, light rays emitted from the concave mirror 20 and reaching the concave mirror are parallel to the mirror axis. And if the reflected light beam is DF, then ∠PDC according to the law of reflection
= ∠CDF. Also, since PD is parallel to CO, ∠PDC = ∠DCF = ∠CDF and △ FCD is an isosceles triangle.

【0004】すなわちFC=FDであり、とくに△DF
Cが非常に小さい場合には、FDとFOとは、ほとんど
相等しいから、CFとFOは等しいとみることができF
はCOの中点になる。球面の半径に比して鏡径が割合に
小さければ、∠DCOは小さいから入射角∠PDCも小
さい。したがって、鏡軸に平行に入射する光線は、焦点
Fに像を結ぶ。
That is, FC = FD, especially △ DF
If C is very small, then FD and FO are almost equal, so CF and FO can be considered equal and F
Is the midpoint of CO. If the mirror diameter is relatively small compared to the radius of the spherical surface, the ∠DCO is small and the incident angle ∠PDC is also small. Therefore, light rays incident parallel to the mirror axis form an image at the focal point F.

【0005】また、焦点距離は、鏡面の半径の1/2に
なるので焦点距離がわかれば鏡面の半径も自動的にきま
り、形状が固定されていた。さらに、焦点距離が大きく
なるとそれに合せて鏡面の半径も大きくなり、奥行き寸
法も大きくなるということも分かっている。
Further, since the focal length is の of the radius of the mirror surface, if the focal length is known, the radius of the mirror surface is automatically determined and the shape is fixed. Further, it has been found that as the focal length increases, the radius of the mirror surface also increases, and the depth dimension also increases.

【0006】また、多数の平面反射鏡をマトリクス状に
並べて制御し、電磁波を1点に収束するようにした太陽
熱発電に使用する反射鏡もある。(例えば特公昭58−
14648号)
There is also a reflector used for solar thermal power generation, in which a large number of planar reflectors are arranged in a matrix and controlled so that electromagnetic waves converge at one point. (For example, Japanese Patent Publication No. 58-
14648)

【0007】[0007]

【発明が解決しようとする課題】従来の曲面鏡は、焦点
が固定であり、焦点距離を変えて使用しようとすると焦
点距離に合せて、それぞれいろいろな焦点の曲面鏡を多
数準備しなければならないという課題がある。また、従
来の曲面鏡は、大きい焦点のものは、曲率、鏡径も大き
く奥行寸法も長くなるという課題がある。さらに、形状
が大きくなれば重量も重くなるという課題がある。
The conventional curved mirror has a fixed focal point, and if the focal length is changed, a large number of curved mirrors having various focal points must be prepared according to the focal length. There is a problem that. Further, the conventional curved mirror has a problem that a large focal point mirror has a large curvature, a large mirror diameter, and a long depth dimension. Furthermore, there is a problem that the weight increases as the shape increases.

【0008】多数の平面反射鏡をマトリクス状に並べた
従来の反射鏡は、その個々の反射鏡の駆動制御をステッ
プモータやサーボモータで行い制御が複雑であるという
課題がある。
The conventional reflecting mirror in which a large number of planar reflecting mirrors are arranged in a matrix has a problem that the drive control of each reflecting mirror is performed by a step motor or a servo motor, and the control is complicated.

【0009】本発明は、このような課題を解決するため
になされたもので、その目的は、平面型の形状で、大き
さ、奥行寸法が常に一定で、焦点を自由に変えることが
でき、大きな焦点距離を実現することができる平型曲面
鏡装置を提供することにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to have a flat shape, a size and a depth dimension which are always constant, and a focus can be freely changed. An object of the present invention is to provide a flat curved mirror device capable of realizing a large focal length.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
この発明に係る平型曲面鏡装置は、マトリクス状に配置
し、2次元方向に偏向して反射させる多数の反射手段
と、この多数の反射手段を個別に制御して焦点距離を設
定できる制御手段とを備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a flat curved mirror device according to the present invention comprises a plurality of reflecting means arranged in a matrix and deflecting and reflecting in a two-dimensional direction; Control means for individually controlling the reflection means and setting the focal length.

【0011】この発明に係る平型曲面鏡装置は、マトリ
クス状に配置し、2次元方向に偏向して反射させる多数
の反射手段と、この多数の反射手段を個別に制御して焦
点距離を設定できる制御手段とを備えたので、大きさ、
奥行寸法が常に一定な平面状の曲面鏡で大きな焦点距離
を実現することができる。
The flat curved mirror device according to the present invention is arranged in a matrix, and a plurality of reflecting means for deflecting and reflecting in a two-dimensional direction, and individually controlling the plurality of reflecting means to set a focal length. Size,
A large focal length can be realized with a flat curved mirror having a constant depth dimension.

【0012】この発明に係る制御手段は、焦点距離を設
定する、焦点距離設定手段と、X−Y軸を制御するX軸
制御手段と、Y軸制御手段とを備えたことを特徴とす
る。
The control means according to the present invention includes a focal length setting means for setting a focal length, an X-axis control means for controlling the XY axes, and a Y-axis control means.

【0013】また、この発明に係る制御手段は、焦点距
離を設定する、焦点距離設定手段と、X−Y軸を制御す
るX軸制御手段と、Y軸制御手段とを備えたので焦点を
自由に変えることができる。
Further, the control means according to the present invention comprises a focal length setting means for setting a focal length, an X axis control means for controlling the XY axes, and a Y axis control means, so that the focus can be freely set. Can be changed to

【0014】この発明に係る反射手段は、半導体プロセ
スを用いた2次元方向に偏向して反射できる光学的走査
素子であることを特徴とする。
The reflecting means according to the present invention is characterized in that the reflecting means is an optical scanning element which can deflect and reflect in a two-dimensional direction using a semiconductor process.

【0015】この発明に係る反射手段は、半導体プロセ
スを用いた2次元の範囲に偏向し反射させる光学的走査
素子であるので多数集めて平面状に配置すれば平型曲面
鏡が実現できる。
The reflecting means according to the present invention is an optical scanning element for deflecting and reflecting light in a two-dimensional range using a semiconductor process. Therefore, a flat curved mirror can be realized by collecting and arranging many in a plane.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。なお、本発明は、マトリク
ス状に並べられた多数の反射手段を個別に制御して平面
状の曲面鏡を構成することができる平型曲面鏡装置を実
現するためのものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The present invention is intended to realize a flat curved mirror device capable of individually controlling a large number of reflecting means arranged in a matrix to form a flat curved mirror.

【0017】図1はこの発明に係る平型曲面鏡のイメー
ジ図である。図1において、(a)は平型曲面鏡を凹面
鏡として実現した図で(b)は(a)を近似した凹面鏡
である。図1(a)において平型曲面鏡2は、Y軸方向
だけに注目してみると、Y軸方向が1〜mの数の反射手
段3で構成され鏡軸に平行に入射する光線は、すべてF
に集まる。
FIG. 1 is an image view of a flat curved mirror according to the present invention. In FIG. 1, (a) is a diagram in which a flat curved mirror is realized as a concave mirror, and (b) is a concave mirror approximating (a). In FIG. 1 (a), when the flat curved mirror 2 is focused only on the Y-axis direction, light rays incident on the Y-axis direction in parallel with the mirror axis are constituted by 1 to m number of reflecting means 3, All F
Gather in

【0018】図1(b)は、図1(a)のY軸の同じ位
置の反射手段3を表わしたもので、反射手段3の角度
は、図1(a)の2、l、m−1の位置は∠α、0、∠
θとほとんど図1(b)と同じ角度であるのに対し、k
の位置の∠βは、図1(b)の∠γと同じではなく、ま
たnの位置の∠δは、図1(b)の∠εとは同じでな
い。
FIG. 1B shows the reflecting means 3 at the same position on the Y axis in FIG. 1A, and the angle of the reflecting means 3 is 2, l, m- in FIG. 1A. The position of 1 is {α, 0, ∠
θ is almost the same as that in FIG.
Is not the same as Δγ in FIG. 1 (b), and Δδ at the position n is not the same as Δε in FIG. 1 (b).

【0019】したがって、1、l、mの位置の反射手段
3は図1(a)、図1(b)とも同じ角度であるが、そ
の他の位置では、反射手段3の角度は異なる。反射手段
3は、それぞれの位置で焦点が同じになるように演算し
た数値により設定された角度になっている。この図1
(b)にあるように図1(a)と同じ焦点距離になる奥
行寸法は、図1(a)よりも大きくなる。
Therefore, the reflection means 3 at the positions 1, 1, and m have the same angle in FIGS. 1A and 1B, but the angle of the reflection means 3 is different at other positions. The angle of the reflection means 3 is set by a numerical value calculated so that the focal point becomes the same at each position. This figure 1
As shown in FIG. 1B, the depth dimension having the same focal length as that of FIG. 1A is larger than that of FIG.

【0020】図2は、この発明に係る平型曲面鏡の要部
構成図である。図2は、反射手段3、制御手段4、X軸
駆動手段5、Y軸駆動手段6、とで構成される。反射手
段3は、半導体プロセスを用いた2次元方向に偏向して
反射できる光学的走査素子であり、その一例としてガル
バノミラーがある。
FIG. 2 is a structural view of a main part of the flat curved mirror according to the present invention. FIG. 2 includes a reflection unit 3, a control unit 4, an X-axis driving unit 5, and a Y-axis driving unit 6. The reflection means 3 is an optical scanning element which can deflect and reflect in a two-dimensional direction using a semiconductor process, and an example thereof is a galvanometer mirror.

【0021】また、反射手段3は、X軸方向は、1〜
n、Y軸方向が1〜mの数のマトリクスで構成され、そ
れぞれの反射手段3は、X−Y軸に任意に偏向できる構
造になっている。
The reflecting means 3 has an X-axis direction of 1 to 3.
The n and Y axis directions are composed of a matrix of 1 to m numbers, and each reflecting means 3 has a structure capable of arbitrarily deflecting to the XY axis.

【0022】制御手段4は、焦点距離設定用のキーボー
ド、マイクロプロセッサ、記憶回路、演算回路、タイマ
回路等で構成し、キーボードから入力される焦点距離の
数値により演算をしてX−Y軸の制御を行う。また、制
御手段4は、X軸駆動手段5にX軸駆動信号Dxを供給
する。さらに、制御手段4は、Y軸駆動手段6にY軸駆
動信号Dyを供給する。
The control means 4 includes a keyboard for setting a focal length, a microprocessor, a storage circuit, an arithmetic circuit, a timer circuit, and the like. Perform control. Further, the control unit 4 supplies an X-axis drive signal Dx to the X-axis drive unit 5. Further, the control unit 4 supplies a Y-axis drive signal Dy to the Y-axis drive unit 6.

【0023】X軸駆動手段5は、信号増幅器、出力バッ
ファ等で構成し、制御手段4からのX軸駆動信号Dxに
より、それぞれの反射手段3のX軸方向に偏向駆動す
る。Y軸駆動手段6は、信号増幅器、出力バッファ等で
構成し、制御手段4からのY軸駆動信号Dyにより、そ
れぞれの反射手段3のY軸方向に偏向駆動する。
The X-axis driving means 5 comprises a signal amplifier, an output buffer and the like, and deflects and drives the respective reflecting means 3 in the X-axis direction by the X-axis driving signal Dx from the control means 4. The Y-axis driving means 6 is composed of a signal amplifier, an output buffer, and the like, and deflects and drives the respective reflecting means 3 in the Y-axis direction according to the Y-axis driving signal Dy from the control means 4.

【0024】図3は、この発明に係る平型曲面鏡装置の
制御手段の要部ブロック図である。図3において制御手
段4は、焦点距離設定手段7、X軸制御手段8、Y軸制
御手段9、とで構成される。焦点距離設定手段7は、デ
コーダ、演算手段で構成され、キーボードから入力され
た焦点距離の数値からX軸、Y軸それぞれの偏向角度を
演算し、X軸制御信号Cx、Y軸制御信号Cy、をX軸
制御手段8、およびY軸制御手段9に供給する。
FIG. 3 is a block diagram of a main part of the control means of the flat curved mirror device according to the present invention. 3, the control unit 4 includes a focal length setting unit 7, an X axis control unit 8, and a Y axis control unit 9. The focal length setting means 7 is composed of a decoder and a calculating means, calculates the X-axis and Y-axis deflection angles from the numerical value of the focal length inputted from the keyboard, and outputs an X-axis control signal Cx, a Y-axis control signal Cy, Is supplied to the X-axis control means 8 and the Y-axis control means 9.

【0025】また、焦点距離設定手段7は、凹面鏡、凸
面鏡のどちらかの設定がキーボードからでき、焦点距離
の数値をキーボードから入力すると、焦点距離から鏡径
が決まるので、予めX軸の1〜n、Y軸の1〜mの各位
置毎の鏡径に対する角度の演算式を算出しておいて、X
軸、Y軸のそれぞれの偏向角度を決定する。
The focal length setting means 7 can set either a concave mirror or a convex mirror from a keyboard. When a numerical value of the focal length is inputted from the keyboard, the mirror diameter is determined from the focal length. An arithmetic expression for the angle with respect to the mirror diameter at each position of 1 to m on the n and Y axes is calculated, and X
The deflection angles of the axis and the Y axis are determined.

【0026】X軸制御手段8は、スイープジェネレータ
等の信号発生手段で構成し、焦点距離設定手段7に基づ
いて算出されるX軸制御信号Cxを入力し、X軸の偏向
角度から周波数をスイープするX軸駆動信号Dxを発生
し、X軸駆動信号DxをX軸駆動手段5に供給する。
The X-axis control means 8 is constituted by a signal generating means such as a sweep generator, inputs the X-axis control signal Cx calculated based on the focal length setting means 7, and sweeps the frequency from the X-axis deflection angle. An X-axis drive signal Dx is generated, and the X-axis drive signal Dx is supplied to the X-axis drive unit 5.

【0027】Y軸制御手段9は、スイープジェネレータ
等の信号発生手段で構成し、焦点距離設定手段7に基づ
いて算出されるY軸制御信号Cyを入力し、Y軸の偏向
角度から周波数をスイープするY軸駆動信号Dyを発生
し、Y軸駆動信号DyをY軸駆動手段6に供給する。
The Y-axis control means 9 is constituted by a signal generating means such as a sweep generator, receives the Y-axis control signal Cy calculated based on the focal length setting means 7, and sweeps the frequency from the Y-axis deflection angle. The Y-axis drive signal Dy is generated, and the Y-axis drive signal Dy is supplied to the Y-axis drive means 6.

【0028】このようにこの発明に係る制御手段は、焦
点距離を設定する、焦点距離設定手段と、X軸を制御す
るX軸制御手段と、Y軸を制御するY軸制御手段とを備
えたので焦点を自由に変えることができる。
As described above, the control means according to the present invention includes the focal length setting means for setting the focal length, the X axis control means for controlling the X axis, and the Y axis control means for controlling the Y axis. So you can change the focus freely.

【0029】図4はこの発明に係る反射手段として用い
るガルバノミラーの構成図である。図4において、ガル
バノミラー30は、半導体基板であるシリコン基板32
の上下面を、それぞれホウケイ酸ガラス等からなる上側
ガラス基板33、下側ガラス基板34で上下方向からサ
ンドイッチ状に重ね合わせ、接合して3層構造とする。
FIG. 4 is a structural view of a galvano mirror used as a reflection means according to the present invention. In FIG. 4, a galvanometer mirror 30 includes a silicon substrate 32 which is a semiconductor substrate.
The upper and lower surfaces are sandwiched from above and below on an upper glass substrate 33 and a lower glass substrate 34 made of borosilicate glass or the like, and joined to form a three-layer structure.

【0030】上側ガラス基板33および下側ガラス基板
34は、それぞれ中央部に、例えば超音波加工によって
形成した凹部33A,34Aを設け、シリコン基板32
に接合する場合、凹部33A,34Aがそれぞれシリコ
ン基板32側となるように配置する。このような配置に
より、反射ミラー38を設ける可動板35の揺動空間を
形成するとともに、密閉構造とする。
The upper glass substrate 33 and the lower glass substrate 34 are provided with concave portions 33A, 34A formed by, for example, ultrasonic processing at the center, respectively.
In this case, the concave portions 33A and 34A are arranged so as to be on the silicon substrate 32 side. With such an arrangement, a swing space of the movable plate 35 on which the reflection mirror 38 is provided is formed, and a closed structure is provided.

【0031】シリコン基板32には、枠状に形成された
外側可動板35Aと、外側可動板35Aの内側に軸支さ
れる内側可動板35Bとからなる平板状の可動板35を
設ける。外側可動板35Aは、第1のトーションバー3
6A,36Aによってシリコン基板32に軸支され、内
側可動板35Bは、第1のトーションバー36A,36
Aと軸方向が直交する第2のトーションバー36B,3
6Bで外側可動板35Aの内側に軸支点される。外側可
動板35A,内側可動板35B,第1のトーションバー
36Aおよび第2のトーションバー36Bは、シリコン
基板32に異方性エッチングによって一体成形し、シリ
コン基板32と同一の材料で形成する。
The silicon substrate 32 is provided with a flat movable plate 35 composed of an outer movable plate 35A formed in a frame shape and an inner movable plate 35B pivotally supported inside the outer movable plate 35A. The outer movable plate 35A includes the first torsion bar 3
6A and 36A, the inner movable plate 35B is supported by the first torsion bars 36A and 36A.
A second torsion bar 36B, 3 whose axial direction is orthogonal to A
At 6B, it is pivotally supported inside the outer movable plate 35A. The outer movable plate 35A, the inner movable plate 35B, the first torsion bar 36A, and the second torsion bar 36B are integrally formed on the silicon substrate 32 by anisotropic etching, and are formed of the same material as the silicon substrate 32.

【0032】外側可動板35Aの上面に、シリコン基板
32の上面に形成した一対の外側電極端子39A,39
Aに第1のトーションバー36Aの一方の部分を介して
両端がそれぞれ電気的に接続される平面コイル37Aが
絶縁層で被覆されて形成される。一方、内側可動板35
Bの上面に、シリコン基板32の上面に形成した一対の
内側電極端子39B,39Bに第2のトーションバー3
6Bから外部可動板35A部分を通り、第1のトーショ
ンバー36Aの他方を介してそれぞれ電気的に接続され
る平面コイル37Bが絶縁層で被覆されて形成される。
A pair of outer electrode terminals 39A, 39A formed on the upper surface of the silicon substrate 32 are formed on the upper surface of the outer movable plate 35A.
A is formed by coating a planar coil 37A, which is electrically connected to both ends of the first torsion bar 36A via one portion of the first torsion bar 36A, with an insulating layer. On the other hand, the inner movable plate 35
B, a pair of inner electrode terminals 39B, 39B formed on the upper surface of the silicon
A planar coil 37B that is electrically connected to the first torsion bar 36A via the other portion of the first movable torsion bar 36A from the base coil 6B is covered with an insulating layer.

【0033】平面コイル37A,平面コイル37Bは、
電解メッキによる電鋳コイル法で形成する。なお、外側
可動板35A,内側電極端子39Bは、シリコン基板3
2上に電鋳コイル法により平面コイル37A,37Bと
同時に形成する。平面コイル37Bで囲まれた内側可動
板35Bの中央部には、反射ミラー38を形成する。
The plane coil 37A and the plane coil 37B are
It is formed by an electroformed coil method by electrolytic plating. The outer movable plate 35A and the inner electrode terminal 39B are connected to the silicon substrate 3
2 are formed simultaneously with the planar coils 37A and 37B by an electroformed coil method. A reflection mirror 38 is formed at the center of the inner movable plate 35B surrounded by the plane coil 37B.

【0034】上側ガラス基板33および下側ガラス基板
34には、それぞれ2個づつ対となった円柱状の永久磁
石40A〜43A,40B〜43Bが図のように配置さ
れている。上側ガラス基板33の対向する永久磁石40
A,41Aと、下側ガラス基板34の対向する永久磁石
40B,41Bとで外側可動板35A上の平面コイル3
7Aに磁界を作用させ、平面コイル37Aに流す駆動電
流との相互作用で外側可動板35Aを回動させる。
On the upper glass substrate 33 and the lower glass substrate 34, two pairs of columnar permanent magnets 40A to 43A and 40B to 43B are arranged as shown in the figure. Opposing permanent magnets 40 on upper glass substrate 33
A, 41A and the opposing permanent magnets 40B, 41B of the lower glass substrate 34 form a planar coil 3 on the outer movable plate 35A.
A magnetic field acts on 7A, and the outer movable plate 35A is rotated by interaction with a drive current flowing through the planar coil 37A.

【0035】一方、上側ガラス基板33の対向する永久
磁石42A,43Aと、下側ガラス基板34の対向する
永久磁石42B,43Bとで内側可動板35B上の平面
コイル37Bに磁界を作用させ、平面コイル37Bに流
す駆動電流との相互作用で内側可動板35Bを回動させ
る。
On the other hand, the opposing permanent magnets 42A and 43A of the upper glass substrate 33 and the opposing permanent magnets 42B and 43B of the lower glass substrate 34 apply a magnetic field to the planar coil 37B on the inner movable plate 35B, and The inner movable plate 35B is rotated by interaction with the drive current flowing through the coil 37B.

【0036】対向した永久磁石40Aと41Aは、上下
の極性が互いに反対、例えば永久磁石40Aの上面がS
極ならば、永久磁石41Aの上面はN極となるよう配置
し、しかも、磁束が可動板35の平面コイル部分に対し
て平行に横切るように配置する。他の対向した永久磁石
42Aと43A、永久磁石40Bと41B、永久磁石4
2Bと43Bについても同様である。
The opposed permanent magnets 40A and 41A have opposite polarities, for example, the upper surface of the permanent magnet 40A is S
If it is a pole, the upper surface of the permanent magnet 41A is arranged so as to be an N pole, and furthermore, the magnetic flux is arranged so as to cross in parallel with the plane coil portion of the movable plate 35. Other opposed permanent magnets 42A and 43A, permanent magnets 40B and 41B, permanent magnet 4
The same applies to 2B and 43B.

【0037】上下方向で対向する永久磁石40Aと40
Bとの関係は、上下の極性は同じ、例えば永久磁石40
Aの上面がS極ならば、永久磁石40Bの上面もS極と
なるように配置する。他の上下方向で対向する永久磁石
41Aと41B、永久磁石42Aと42B、永久磁石4
3Aと43Bも同様に配置する。これにより、可動板3
5の両端部で互いに相反する方向に力が作用する。
The permanent magnets 40A and 40 facing each other in the vertical direction
The relationship with B is that the upper and lower polarities are the same, for example, the permanent magnet 40
If the upper surface of A is the S pole, the upper surface of the permanent magnet 40B is also arranged to be the S pole. Other vertically facing permanent magnets 41A and 41B, permanent magnets 42A and 42B, permanent magnet 4
3A and 43B are similarly arranged. Thereby, the movable plate 3
Forces act in opposite directions at both ends of 5.

【0038】下側ガラス基板34の下面には、平面コイ
ル37A,37Bとそれぞれ電磁結合するよう配置され
た検出コイル45A,45Bと検出コイル46A,46
Bがパターンで形成される。検出コイル45A,45B
は、第1のトーションバー36Aに対して対称に配置さ
れ、検出コイル46A,46Bは、第2のトーションバ
ー36Bに対して対称に配置される。
On the lower surface of the lower glass substrate 34, detection coils 45A and 45B and detection coils 46A and 46, which are arranged to be electromagnetically coupled to the planar coils 37A and 37B, respectively.
B is formed in a pattern. Detection coil 45A, 45B
Are arranged symmetrically with respect to the first torsion bar 36A, and the detection coils 46A and 46B are arranged symmetrically with respect to the second torsion bar 36B.

【0039】一対の検出コイル45A,45Bは、外側
可動板35Aの変位角を検出するためのもので、平面コ
イル37Aに流す駆動電流に重畳して流す検出用電流に
基づいて発生する平面コイル37Aと検出コイル45
A,45Bとの相互インダクタンスが外側可動板35A
の角度変位によって変化し、この相互インダクタンスの
変化から外側可動板35Aの変位角を検出することがで
きる。
The pair of detection coils 45A and 45B are for detecting a displacement angle of the outer movable plate 35A, and are formed based on a detection current flowing in superposition on a driving current flowing in the plane coil 37A. And detection coil 45
A, the mutual inductance with 45B is outside movable plate 35A
The displacement angle of the outer movable plate 35A can be detected from the mutual inductance change.

【0040】一方、一対の検出コイル46A,46Bも
同様にして内側可動板35Bの変位角を検出することが
できる。なお、外側可動板35Aの変位を、例えばX軸
方向の変位に対応させ、内側可動板35Bの変位をY軸
方向の変位に対応させることにより、反射ミラー38の
2次元の変位が可能となる。
On the other hand, the pair of detection coils 46A and 46B can detect the displacement angle of the inner movable plate 35B in the same manner. The displacement of the outer movable plate 35A corresponds to, for example, the displacement in the X-axis direction, and the displacement of the inner movable plate 35B corresponds to the displacement in the Y-axis direction, whereby the two-dimensional displacement of the reflection mirror 38 becomes possible. .

【0041】このように、この発明に係る反射手段3
は、半導体プロセスを用いた2次元の範囲に偏向し反射
させる光学的走査素子であるので多数集めて平面状に配
置すれば平型曲面鏡が実現できる。
As described above, the reflecting means 3 according to the present invention
Is an optical scanning element that deflects and reflects light in a two-dimensional range using a semiconductor process, so that a flat curved mirror can be realized by collecting a large number and arranging them in a plane.

【0042】なお、本実施の形態では、図1に示すよう
に凹面鏡で説明したが、この他に凸面鏡、放物面鏡、楕
円面鏡に応用した構成としてもよい。また、焦点を自由
に結ぶことができるから、太陽等の移動する光源を、一
つの焦点に結像させることができる。さらに、光源を固
定し、移動物体を追尾しながら反射光を当てて、スポッ
トライトの様に使用することもできる。また、反射手段
のミラーのかわりに誘電体板を使用すれば方向、焦点が
可変できるパラボラアンテナとして使用することもでき
る。
Although the present embodiment has been described with reference to a concave mirror as shown in FIG. 1, the present invention may be applied to a convex mirror, a parabolic mirror, or an elliptical mirror. In addition, since the focal point can be freely focused, a moving light source such as the sun can be focused on one focal point. Further, the light source can be fixed and the reflected light can be applied while tracking a moving object to be used like a spotlight. If a dielectric plate is used instead of the mirror of the reflection means, it can be used as a parabolic antenna whose direction and focus can be changed.

【0043】[0043]

【発明の効果】以上説明したように、この発明に係る平
型曲面鏡装置は、マトリクス状に配置し、2次元方向に
偏向して反射させる多数の反射手段と、この多数の反射
手段を個別に制御して焦点距離を設定できる制御手段と
を備えたので、大きさ、奥行寸法が常に一定な平面状の
曲面鏡で大きな焦点距離を実現することができ小さいス
ペース、軽量な曲面鏡ができる。
As described above, the flat curved mirror device according to the present invention has a large number of reflecting means which are arranged in a matrix, deflect and reflect in a two-dimensional direction, and a large number of reflecting means. And a control means that can set the focal length by controlling the focal length, so that a large focal length can be realized with a flat curved mirror having a constant size and depth dimension, and a small space and a lightweight curved mirror can be achieved. .

【0044】また、この発明に係る制御手段は、焦点距
離を設定する、焦点距離設定手段と、X−Y軸を制御す
るX軸制御手段と、Y軸制御手段とを備えて焦点を自由
に変えることができるので一つの平型曲面鏡で凹面鏡、
凸面鏡、として利用でき、また駆動制御も容易で、焦点
距離も任意に設定できる多種類の平型曲面鏡として使用
できる。
The control means according to the present invention comprises a focal length setting means for setting a focal length, an X-axis control means for controlling the XY axes, and a Y-axis control means, so that the focal point can be freely set. Because it can be changed, one flat curved mirror is a concave mirror,
It can be used as a convex mirror, and can be used as various types of flat curved mirrors that can be easily driven and controlled and the focal length can be set arbitrarily.

【0045】また、この発明に係る反射手段は、半導体
プロセスを用いた2次元の範囲に偏向し反射させる光学
的走査素子であるので多数集めて平面状に配置すれば平
型曲面鏡が実現できる。
Since the reflecting means according to the present invention is an optical scanning element for deflecting and reflecting in a two-dimensional range using a semiconductor process, a flat curved mirror can be realized by collecting a large number and arranging them in a plane. .

【0046】よって、装置の設置と駆動制御が容易で、
小型、軽量で経済性に優れた平型曲面鏡装置を提供する
ことができる。
Therefore, installation and drive control of the device are easy,
It is possible to provide a flat curved mirror device that is small, lightweight, and economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る平型曲面鏡のイメージ図FIG. 1 is an image diagram of a flat curved mirror according to the present invention.

【図2】この発明に係る平型曲面鏡の要部構成図FIG. 2 is a configuration diagram of a main part of a flat curved mirror according to the present invention.

【図3】この発明に係る平型曲面鏡装置の制御手段の要
部ブロック図
FIG. 3 is a block diagram of a main part of control means of the flat curved mirror device according to the present invention.

【図4】この発明に係る反射手段として用いるガルバノ
ミラーの構成図
FIG. 4 is a configuration diagram of a galvanometer mirror used as a reflection unit according to the present invention.

【図5】従来の凹面鏡の構成図FIG. 5 is a configuration diagram of a conventional concave mirror.

【符号の説明】[Explanation of symbols]

1…平型曲面鏡装置、2…平型曲面鏡、3…反射手段、
4…制御手段、5…X軸駆動手段、6…Y軸駆動手段、
7…焦点距離設定手段、8…X軸制御手段、9…Y軸制
御手段、20…従来の凹面鏡、30…ガルバノミラー、
Cx…X軸制御信号、Cy…Y軸制御信号、Dx…X軸
駆動信号、Dy…Y軸駆動信号。
DESCRIPTION OF SYMBOLS 1 ... Flat curved mirror device, 2 ... Flat curved mirror, 3 ... Reflecting means,
4 control means, 5 X-axis drive means, 6 Y-axis drive means,
7: focal length setting means, 8: X-axis control means, 9: Y-axis control means, 20: conventional concave mirror, 30: galvano mirror,
Cx: X-axis control signal, Cy: Y-axis control signal, Dx: X-axis drive signal, Dy: Y-axis drive signal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マトリクス状に配置し、2次元方向に偏向
して反射させる多数の反射手段と、この多数の反射手段
を個別に制御して焦点距離を設定できる制御手段と、を
備えたことを特徴とする平型曲面鏡装置。
1. A large number of reflecting means arranged in a matrix and deflecting and reflecting in a two-dimensional direction, and a control means capable of individually controlling the plurality of reflecting means to set a focal length. A flat curved mirror device characterized by the above-mentioned.
【請求項2】前記制御手段は、焦点距離を設定する、焦
点距離設定手段と、X−Y軸を制御するX軸制御手段
と、Y軸制御手段とを、備えたことを特徴とする請求項
1記載の平型曲面鏡装置。
2. The apparatus according to claim 1, wherein said control means includes a focal length setting means for setting a focal length, an X axis control means for controlling XY axes, and a Y axis control means. Item 2. A flat curved mirror device according to item 1.
【請求項3】前記反射手段は、半導体プロセスを用いた
2次元方向に偏向して反射できる光学的走査素子である
ことを特徴とする請求項1記載の平型曲面鏡装置。
3. The flat curved mirror device according to claim 1, wherein said reflecting means is an optical scanning element capable of deflecting and reflecting in a two-dimensional direction using a semiconductor process.
JP10235230A 1998-08-21 1998-08-21 Plat type curved surface mirror device Pending JP2000066123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235230A JP2000066123A (en) 1998-08-21 1998-08-21 Plat type curved surface mirror device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235230A JP2000066123A (en) 1998-08-21 1998-08-21 Plat type curved surface mirror device

Publications (1)

Publication Number Publication Date
JP2000066123A true JP2000066123A (en) 2000-03-03

Family

ID=16983017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235230A Pending JP2000066123A (en) 1998-08-21 1998-08-21 Plat type curved surface mirror device

Country Status (1)

Country Link
JP (1) JP2000066123A (en)

Similar Documents

Publication Publication Date Title
US9864187B2 (en) Micromechanical structure with biaxial actuation and corresponding MEMS device
EP2730540B1 (en) Miniature machine and method of manufacturing the miniature machine
JP4251206B2 (en) Actuator, optical scanner and image forming apparatus
US4285566A (en) Optical scanning apparatus
US20030210323A1 (en) Dynamic laser printer scanning alignment using a torsional hinge mirror
JPH06175060A (en) Torsional vibrator and optical deflector
CA2132646A1 (en) Integrated scanner on a common substrate
JPH07175005A (en) Planar type galvanomirror and its production
JP2003161900A (en) Optical switch having converging optical element
JPH07218857A (en) Planar galvanomirror provided with displacement detecting function and its production
TWI781243B (en) Cascaded mirror array and scanning system thereof
US9664899B2 (en) Optical scanning device and image reading system
US20020166893A1 (en) Integrated scanner on a common substrate having an omnidirectional mirror
JP2004226548A (en) Optical scanner, object detection device using the same, and plotting device
US7490947B2 (en) Microoptic reflecting component
KR20060124079A (en) Mems scanning micromirror and dual-axis electromagnetic mems scanning micromirror device
US6334573B1 (en) Integrated scanner on a common substrate having an omnidirectional mirror
JP2000066123A (en) Plat type curved surface mirror device
EP1377868B1 (en) Method and apparatus for orienting a surface
JP2002148536A (en) Actuator and its driving method
JP4476080B2 (en) Variable focus optical device
JP3450466B2 (en) Optical scanning actuator
JP2010266894A (en) Optical fiber switch structure
JPH07304208A (en) Optical beam deflector
JP2002228952A (en) Mirror device