JP2000065812A - Anion measurement method using chelating agent - Google Patents

Anion measurement method using chelating agent

Info

Publication number
JP2000065812A
JP2000065812A JP23301098A JP23301098A JP2000065812A JP 2000065812 A JP2000065812 A JP 2000065812A JP 23301098 A JP23301098 A JP 23301098A JP 23301098 A JP23301098 A JP 23301098A JP 2000065812 A JP2000065812 A JP 2000065812A
Authority
JP
Japan
Prior art keywords
chelating agent
ion
acid
mobile phase
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23301098A
Other languages
Japanese (ja)
Inventor
Hisako Sakuma
久子 佐久間
Tsuyoshi Yamada
強 山田
Hiroshi Suzuki
広志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP23301098A priority Critical patent/JP2000065812A/en
Publication of JP2000065812A publication Critical patent/JP2000065812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze a sample containing fluorine ions with high quantitative precision in a wide measurement range by adding a water soluble chelating agent in a mobile phase of an ion chromatograph. SOLUTION: In an anion analysis based on an ion chromatography, a water- soluble chelating agent is added in a mobile phase. As this water-soluble chelating agent, an amino polycarboxylate chelating agent is used. A sample containing fluorine ions is analyzed. As the mobile phase, any phase separating anions from each other may be used without any specification of its sort, concentration, or pH. If an electrical conductivity detector is used, organic acid with a low ion equivalent conductivity is used. In consideration of bond stability between the chelating agent and metal ion, pH of eluting solution is desirably set to pH 3-8 approximately. Preferable concentration of the added chelating agent is about 1-500 μM for increasing fluorine ion quantitative precision effectively, and depending on a sort of the chelating agent, a concentration of about 4-100 μM is more preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はイオンクロマトグラ
フィーにおける陰イオン分析方法であって、定量精度の
高い陰イオン測定方法に関する。
The present invention relates to a method for analyzing anions in ion chromatography, and more particularly to a method for measuring anions with high quantitative accuracy.

【0002】[0002]

【従来の技術】地球環境問題が取り沙汰される昨今、食
品や飲料水や土壌に含まれる陰イオンの分析は、健康保
持や環境汚染防止する上で、ますます必要性が高まって
きている。イオンクロマトグラフィーによる陰イオンの
分析法については、工業用水試験法、工業排水試験法お
よび上水試験法等の公定法に定められており、応用範囲
の広い分析方法の一つであり、これらの陰イオンの分析
手段としては、高感度で高選択性の測定方法が望まれて
いる。イオンクロマトグラフィーによる陰イオンの分析
において、特にフッ素イオンはカラムに保持されにく
く、溶出が早いため、試料の注入により移動相が希釈さ
れることにより生じる非保持位置の負ピーク(Water di
p )と重なり定量精度が損なわれ易い。また空気中に含
まれる炭酸イオンまたは一価のカルボン酸等、保持時間
の似通った夾雑物による影響で定量精度が落ちる場合が
ある。また、上記問題点を解決した陰イオン分析用カラ
ムを用いた場合においても、フッ素イオンが試料中に含
まれる微量の金属イオンまたは流路系管壁から移動相に
微量に溶出する金属イオンもしくは溶離液中に含まれる
金属イオン等とのコンプレックスを形成するため発現す
ると思われる、フッ素イオンピークの形状変化が生じ、
定量精度が落ちる傾向があった。
2. Description of the Related Art In recent years, when global environmental problems have been dealt with, analysis of anions contained in food, drinking water and soil has been increasingly required for maintaining health and preventing environmental pollution. The method of analyzing anions by ion chromatography is specified in official methods such as the industrial water test method, the industrial wastewater test method and the clean water test method, and is one of the analytical methods with a wide range of applications. As a means for analyzing anions, a highly sensitive and highly selective measurement method is desired. In the analysis of anions by ion chromatography, in particular, fluorine ions are difficult to be retained on the column and elute quickly, so that a negative peak at a non-retained position caused by dilution of the mobile phase due to sample injection (Water di
It overlaps with p) and the quantitative accuracy is easily impaired. In addition, the quantitative accuracy may decrease due to the influence of impurities having similar retention times, such as carbonate ions or monovalent carboxylic acids contained in the air. In addition, even when a column for anion analysis that solves the above-mentioned problem is used, a small amount of metal ions or a small amount of metal ions that elute from the wall of the flow channel tube into the mobile phase, or a small amount of metal ions containing fluorine ions in the sample. A change in the shape of the fluorine ion peak, which appears to form a complex with metal ions and the like contained in the liquid, occurs.
Quantitative precision tended to decrease.

【0003】[0003]

【発明が解決しようとする課題】一般にイオンクロマト
グラフィーにおいてフッ素イオンのピーク形状を正常に
し低濃度から高濃度まで精度良く測定を行うためには、
考えられる夾雑物がフッ素イオンと相互作用のある金属
イオンの場合、前処理としてイオンクロマトグラフィー
に試料を注入する前に、水蒸気蒸留を行ったり、アルカ
リ前処理を行うことでフッ素と金属の結合を防いでいる
(Intern.J.Environ.Anal.Chem 62 191-205 1996)。し
かし、前処理として水蒸気蒸留を行う場合には、操作が
煩雑である上に、フッ素の回収率の低さが指摘されてい
る。またアルカリ前処理を行う場合には、クロマトグラ
ムにおいてアルカリ前処理に用いたナトリウムイオンの
ピークが大きくなり、フッ素イオンの分離が悪くなると
いう問題があった。本発明は、特にかかる状況に鑑みて
なされたものであり、イオンクロマトグラフィーにおい
て、連続的に金属イオンと陰イオンとの結合を防ぎ、煩
雑な前処理なしに広い測定範囲で定量精度よくフッ素イ
オンを含む試料を分析することを目的とする。
Generally, in order to normalize the peak shape of fluorine ions in ion chromatography and perform accurate measurement from a low concentration to a high concentration, it is necessary to perform the following steps.
If the possible contaminants are metal ions that interact with fluorine ions, before injecting the sample into ion chromatography as a pretreatment, bond the fluorine and metal by performing steam distillation or alkali pretreatment. (Intern. J. Environ. Anal. Chem. 62 191-205 1996). However, it is pointed out that when steam distillation is performed as a pretreatment, the operation is complicated and the fluorine recovery rate is low. In addition, when the alkali pretreatment is performed, there is a problem that the peak of the sodium ion used in the alkali pretreatment increases in the chromatogram, and the separation of the fluorine ions is deteriorated. The present invention has been made in view of such a situation, in particular, in ion chromatography, continuously prevents the binding of metal ions and anions, fluorine ion with high quantitative accuracy in a wide measurement range without complicated pretreatment. The purpose is to analyze a sample containing:

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、イオンクロマトグラフ
ィーの移動相に水溶性キレート剤を添加することによ
り、他のイオンの保持時間を変化させることなく、陰イ
オンを精度良く測定することが可能なことを見いだし、
本発明を完成するにいたった。すなわち本発明は、
(1)イオンクロマトグラフィーによる陰イオン分析法
において、移動相に水溶性キレート剤を添加することを
特徴とする陰イオン測定方法に関し、(2)水溶性キレ
ート剤としてアミノポリカルボン酸系キレート剤を用い
る上記(1)記載の陰イオン測定方法に関し、(3)フ
ッ素イオンを含む試料を分析することを特徴とする上記
(1)または(2)に記載の陰イオン測定方法に関す
る。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, by adding a water-soluble chelating agent to the mobile phase of ion chromatography, the retention time of other ions can be reduced. It was found that it was possible to measure anions accurately without changing them,
The present invention has been completed. That is, the present invention
(1) An anion analysis method using ion chromatography, wherein a water-soluble chelating agent is added to a mobile phase, and (2) an aminopolycarboxylic acid-based chelating agent is used as a water-soluble chelating agent. The present invention relates to the method for measuring anions according to the above (1) to be used, and (3) to the method for measuring anions according to the above (1) or (2), wherein a sample containing fluorine ions is analyzed.

【0005】[0005]

【発明の実施の形態】本発明のイオンクロマトグラフィ
ーによる陰イオン分析方法において、使用するイオンク
ロマトグラフィーのカラムは陰イオンを分析するカラム
であればどのようなものであってもよいが、例えば、S
hodexIC I−524AまたはShodexIC
NI−424のようにメタクリレート系ポリマーゲル
に4級アミンを導入した陰イオン分析用カラムを用いる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for analyzing anions by ion chromatography of the present invention, any ion chromatography column may be used as long as it is a column for analyzing anions. S
handexIC I-524A or ShodexIC
A column for anion analysis in which a quaternary amine is introduced into a methacrylate-based polymer gel like NI-424 can be used.

【0006】移動相としては、陰イオンを相互に分離で
きるものであればよく、その種類、濃度及びpHは特に
限定されるものではない。電気伝導度検出器を用いる場
合には、イオン当量伝導度の低い有機酸、例えばp−ヒ
ドロキシ安息香酸、pHを調整する塩基としては例えば
ビス(2−ハイドロキシエチル)イミノトリス−(ヒド
ロキシメチル)メタンを用いることができる。また溶離
液のpHはキレート剤と金属イオンの結合安定性を考え
ると強酸性でないのが好ましく、pH3〜8がより好ま
しい。
[0006] The mobile phase is not particularly limited as long as it can separate anions from each other, and its type, concentration and pH are not particularly limited. When an electric conductivity detector is used, an organic acid having low ion equivalent conductivity, for example, p-hydroxybenzoic acid, and a base for adjusting pH, for example, bis (2-hydroxyethyl) iminotris- (hydroxymethyl) methane Can be used. Further, the pH of the eluent is preferably not strongly acidic in consideration of the binding stability between the chelating agent and the metal ion, and more preferably pH 3 to 8.

【0007】添加するキレート剤の濃度に特に制限はな
く、効果的にフッ素イオンの定量精度を上げるためには
1μM〜500μMがよく、キレート剤の種類により異
なるものの、概ね4μM〜100μMがより好ましい。
本発明において添加するキレート剤の濃度は低いので、
他のイオンのピークを妨害するシステムピーク及びキレ
ート剤自身のピークを形成することもない。添加するキ
レート剤としては水溶性のキレート剤が好ましく、例え
ばアミノポリカルボン酸系や、オキシカルボン酸系、無
機化合物系が挙げられる。その中でも特にアミノポリカ
ルボン酸系が好ましく、ニトリロ三酢酸(NTA)、N
−ヒドロキシエチルイミノ二酢酸(NIMDA)、エチ
レンジアミン二酢酸(EDDA)、エチレンジアミン四
酢酸(EDTA)、N−ヒドロキシエチルエチレンジア
ミン四酢酸(HEDTA)、ジエチレントリアミン五酢
酸(DTPA)、1,2−シクロヘキサンジアミン四酢
酸(CyDTA)、トリメチレンジアミン四酢酸(TM
TA)、エチレングリコールジエチルエーテルジアミン
四酢酸(GEDTA)、エチレンジアミン四プロピオン
酸(EDTP)、グルタミン酸−N,N−二酢酸や、ア
スパラギン酸−N,N−二酢酸、及びこれらの塩等が好
ましく例示される。また、オキシカルボン酸系として
は、乳酸、グリコール酸、クエン酸、酒石酸、マンデル
酸等が挙げられ、無機化合物では、ピロりん酸、トリり
ん酸、縮合りん酸等が挙げられる。本発明に用いるキレ
ート剤は、陽イオンと瞬時に反応するアミノポリカルボ
ン酸系が好ましく、例えばEDTA2〜10μMを溶離
液に添加する方法を挙げることができる。
The concentration of the chelating agent to be added is not particularly limited, and is preferably from 1 μM to 500 μM in order to effectively increase the accuracy of quantification of fluorine ions. Although it varies depending on the type of the chelating agent, it is generally preferably from 4 μM to 100 μM.
Since the concentration of the chelating agent added in the present invention is low,
Neither does it form a system peak that interferes with the peaks of other ions or the peak of the chelator itself. As the chelating agent to be added, a water-soluble chelating agent is preferable, and examples thereof include aminopolycarboxylic acids, oxycarboxylic acids, and inorganic compounds. Among them, aminopolycarboxylic acids are particularly preferable, and nitrilotriacetic acid (NTA), N
-Hydroxyethyliminodiacetic acid (NIMDA), ethylenediaminediacetic acid (EDDA), ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediaminetetraacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), 1,2-cyclohexanediaminetetraacetic acid (CyDTA), trimethylenediaminetetraacetic acid (TM
TA), ethylene glycol diethyl ether diamine tetraacetic acid (GEDTA), ethylene diamine tetrapropionic acid (EDTP), glutamic acid-N, N-diacetic acid, aspartic acid-N, N-diacetic acid, and salts thereof are preferred. Is done. Examples of oxycarboxylic acids include lactic acid, glycolic acid, citric acid, tartaric acid, and mandelic acid, and examples of inorganic compounds include pyrophosphoric acid, triphosphoric acid, and condensed phosphoric acid. The chelating agent used in the present invention is preferably an aminopolycarboxylic acid system which reacts instantaneously with a cation. For example, a method of adding 2 to 10 μM of EDTA to an eluent can be mentioned.

【0008】本発明において分析する陰イオンとして
は、水溶液中に含有するリン酸、フッ素、塩化物、亜硝
酸、臭化物、硝酸、硫酸等の無機酸イオン、及びギ酸、
酢酸、プロピオン酸、乳酸、シュウ酸、マロン酸等の有
機酸イオンが挙げられる。本発明の陰イオン測定方法
は、特にフッ素イオンを含む試料の分析に好適である。
陰イオンの検出には電気伝導度検出器が適しているが、
UV検出器等他の検出器を用いてもよく、特に限定され
るものではない。
The anions to be analyzed in the present invention include inorganic acid ions such as phosphoric acid, fluorine, chloride, nitrous acid, bromide, nitric acid and sulfuric acid contained in an aqueous solution, and formic acid,
Organic acid ions such as acetic acid, propionic acid, lactic acid, oxalic acid, and malonic acid. The anion measurement method of the present invention is particularly suitable for analyzing a sample containing fluorine ions.
An electric conductivity detector is suitable for detecting anions,
Other detectors such as a UV detector may be used and are not particularly limited.

【0009】[0009]

【実施例】以下、本発明を実施例によりさらに詳しく説
明する。本発明の陰イオン測定方法を実施するための液
体クロマトグラフィーの系を図1に示す。
The present invention will be described in more detail with reference to the following examples. FIG. 1 shows a liquid chromatography system for performing the anion measurement method of the present invention.

【0010】(実施例1)図1に示す液体クロマトグラ
フィーの系を用いて、カラム:ShodexICNI−
424、カラム温度40℃、移動相:8mMp−ヒドロ
キシ安息香酸、2.7mMビス(2−ハイドロキシエチ
ル)イミノトリス−(ヒドロキシメチル)メタン、4μ
MEDTA、溶離液流速1.0ml/min、検出器:
電気伝導度検出器ShodexCD−5の条件下におい
て測定を行った。結果、図3のようなクロマトグラムが
得られた。ピークはそれぞれ1:リン酸イオン(PO4
3-)、2:フッ素イオン(F- )、3:塩化物イオン
(Cl- )、4:亜硝酸イオン(NO2 -)、5:臭化物
イオン(Br- )、6:硝酸イオン(NO3 -)、7:硫
酸イオン(SO4 2- )の各イオンにあたる。
(Example 1) Using a liquid chromatography system shown in FIG. 1, a column: Shodex ICNI-
424, column temperature 40 ° C., mobile phase: 8 mM p-hydroxybenzoic acid, 2.7 mM bis (2-hydroxyethyl) iminotris- (hydroxymethyl) methane, 4 μm
MEDTA, eluent flow rate 1.0 ml / min, detector:
The measurement was performed under the conditions of the electric conductivity detector ShodexCD-5. As a result, a chromatogram as shown in FIG. 3 was obtained. The peaks are respectively 1: phosphate ion (PO 4
3- ), 2: Fluorine ion (F ), 3: Chloride ion (Cl ), 4: Nitrite ion (NO 2 ), 5: Bromide ion (Br ), 6: Nitrate ion (NO 3) - ), 7: Corresponds to each ion of sulfate ion (SO 4 2- ).

【0011】(実施例2)実施例1と同様に図1に示す
液体クロマトグラフィーの系を用いて、カラム:Sho
dexIC NI−424、カラム温度40℃、移動
相:8mMp−ヒドロキシ安息香酸、2.3mMビス
(2−ハイドロキシエチル)イミノトリス−(ヒドロキ
シメチル)メタン、4μMCyDTA、溶離液流速1.
0ml/min、検出器:電気伝導度検出器Shode
xCD−5の条件で行った。100μLの注入量で図4
の様なクロマトグラムを得た。ピークは、1:フッ素イ
オン(F- )、2:塩化物イオン(Cl- )、3:亜硝
酸イオン(NO2 -)を示す。
Example 2 In the same manner as in Example 1, using the liquid chromatography system shown in FIG.
dexIC NI-424, column temperature 40 ° C, mobile phase: 8 mM p-hydroxybenzoic acid, 2.3 mM bis (2-hydroxyethyl) iminotris- (hydroxymethyl) methane, 4 μMCyDTA, eluent flow rate 1.
0 ml / min, Detector: Electrical conductivity detector Shode
The test was performed under the conditions of xCD-5. Figure 4 with an injection volume of 100 μL
Was obtained. The peaks indicate 1: fluorine ion (F ), 2: chloride ion (Cl ), 3: nitrite ion (NO 2 ).

【0012】(比較例1)実施例1と同様に図1に示す
液体クロマトグラフィーの系を用いて、カラム:Sho
dexIC NI−424、カラム温度40℃、溶離液
流速1.0ml/min、検出器:電気伝導度検出器S
hodexCD−5の条件下で移動相としては8mMp
−ヒドロキシ安息香酸、2.7mMビス(2−ハイドロ
キシエチル)イミノトリス−(ヒドロキシメチル)メタ
ンのみを用い、キレート剤は無添加とし、図2の様なク
ロマトグラムを得た。ピークはそれぞれ1:リン酸イオ
ン(PO4 3- )、2:フッ素イオン(F- )、3:塩化
物イオン(Cl- )、4:亜硝酸イオン(NO2 -)、
5:臭化物イオン(Br- )、6:硝酸イオン(N
3 -)、7:硫酸イオン(SO4 2- )の各イオンにあた
る。8はフッ素イオン由来のショルダーピークである。
(Comparative Example 1) As in Example 1, using the liquid chromatography system shown in FIG.
dexIC NI-424, column temperature 40 ° C., eluent flow rate 1.0 ml / min, detector: electric conductivity detector S
The mobile phase under the condition of hodexCD-5 is 8 mMp.
-Hydroxybenzoic acid, only 2.7 mM bis (2-hydroxyethyl) iminotris- (hydroxymethyl) methane were used, and no chelating agent was added, to obtain a chromatogram as shown in FIG. The peaks are respectively 1: phosphate ion (PO 4 3− ), 2: fluoride ion (F ), 3: chloride ion (Cl ), 4: nitrite ion (NO 2 ),
5: bromide ion (Br -), 6: nitrate ion (N
O 3 ), 7: corresponding to sulfate ion (SO 4 2− ). 8 is a shoulder peak derived from fluorine ions.

【0013】比較例1で得られた従来のクロマトグラム
である図2と、実施例1で得られた本発明のキレート剤
添加時のクロマトグラムである図3の2つのクロマトグ
ラムにおいてフッ素イオンのピークを比較すると、図3
では従来のクロマトグラムに見られたピーク8のフッ素
イオン由来のショルダーピーク(ピーク形状の異常)が
なくなっていることがわかる。さらに、実施例2で得ら
れた本発明のキレート剤添加時のクロマトグラムである
図4において、各ピークは、1:フッ素イオン(F
- )、2:塩化物イオン(Cl- )、3:亜硝酸イオン
(NO2 -)を示し、それぞれ、0.5ppm,500p
pm,5ppmに相当した。このようにフッ素以外の陰
イオンが大量に存在する場合においても、フッ素イオン
を感度良く測定することができる。
FIG. 2 is a conventional chromatogram obtained in Comparative Example 1, and FIG. 3 is a chromatogram obtained in Example 1 when the chelating agent of the present invention is added. When comparing the peaks, FIG.
It can be seen that in the conventional chromatogram, the shoulder peak (abnormal peak shape) derived from fluorine ion of peak 8 observed in the conventional chromatogram is eliminated. Further, in FIG. 4 which is a chromatogram obtained in Example 2 when the chelating agent of the present invention was added, each peak was 1: fluorine ion (F
-), 2: chloride ion (Cl -), 3: nitrite ion (NO 2 -) indicates respectively, 0.5 ppm, 500p
pm, 5 ppm. Thus, even when a large amount of anions other than fluorine are present, fluorine ions can be measured with high sensitivity.

【0014】[0014]

【発明の効果】本発明のキレート剤を用いた陰イオン測
定方法は、溶離液に低濃度のキレート剤を添加すること
により、陰イオン、特にフッ素イオンがイオンクロマト
グラフィーの分析中に遭遇する金属イオンとの結合を連
続的に回避することができるため、夾雑物が取り除かれ
フッ素イオンのピーク形状を改善することができる。結
果、フッ素イオン等の定量精度を向上させ、高感度、高
精度での陰イオン分析ができるので、特にイオンクロマ
トグラフィーにおける陰イオン測定に有用である。
According to the method for measuring anions using a chelating agent of the present invention, an anion, particularly a fluorine ion, can be produced by adding a low concentration of a chelating agent to an eluent, while the anion, particularly fluorine ions, is encountered during ion chromatography analysis. Since the bond with the ion can be continuously avoided, impurities can be removed, and the peak shape of the fluorine ion can be improved. As a result, the accuracy of quantification of fluorine ions and the like can be improved, and anion analysis can be performed with high sensitivity and high accuracy. This is particularly useful for anion measurement in ion chromatography.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の流路系統図である。FIG. 1 is a flow diagram showing an embodiment of the present invention.

【図2】比較例の陰イオン分析のクロマトグラムであ
る。
FIG. 2 is a chromatogram for anion analysis of a comparative example.

【図3】本発明の実施例1の陰イオン分析のクロマトグ
ラムの一例。
FIG. 3 is an example of a chromatogram for anion analysis in Example 1 of the present invention.

【図4】本発明の実施例2の陰イオン分析のクロマトグ
ラムの一例。
FIG. 4 is an example of a chromatogram for anion analysis in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 溶離液 2 ポンプ 3 インジェクター 4 カラム 5 検出器セル部 6 検出器本体 7 オーブン(40℃) 8 記録計 DESCRIPTION OF SYMBOLS 1 Eluent 2 Pump 3 Injector 4 Column 5 Detector cell part 6 Detector main body 7 Oven (40 degreeC) 8 Recorder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオンクロマトグラフィーによる陰イオ
ン分析法において、移動相に水溶性キレート剤を添加す
ることを特徴とする陰イオン測定方法。
1. A method for measuring anions, comprising adding a water-soluble chelating agent to a mobile phase in anion analysis by ion chromatography.
【請求項2】 水溶性キレート剤としてアミノポリカル
ボン酸系キレート剤を用いる請求項1に記載の陰イオン
測定方法。
2. The method according to claim 1, wherein an aminopolycarboxylic acid chelating agent is used as the water-soluble chelating agent.
【請求項3】 フッ素イオンを含む試料を分析すること
を特徴とする請求項1または請求項2に記載の陰イオン
測定方法。
3. The method according to claim 1, wherein a sample containing fluorine ions is analyzed.
JP23301098A 1998-08-19 1998-08-19 Anion measurement method using chelating agent Pending JP2000065812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23301098A JP2000065812A (en) 1998-08-19 1998-08-19 Anion measurement method using chelating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23301098A JP2000065812A (en) 1998-08-19 1998-08-19 Anion measurement method using chelating agent

Publications (1)

Publication Number Publication Date
JP2000065812A true JP2000065812A (en) 2000-03-03

Family

ID=16948411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23301098A Pending JP2000065812A (en) 1998-08-19 1998-08-19 Anion measurement method using chelating agent

Country Status (1)

Country Link
JP (1) JP2000065812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137132A1 (en) * 2009-05-27 2010-12-02 株式会社島津製作所 Method for measurement of anion
KR101393483B1 (en) 2008-04-30 2014-05-12 (주)아모레퍼시픽 Method for simultaneous determination of hexavalent chromium and trivalent chromium by high-performance cation-exchange ion chromatography with UV detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393483B1 (en) 2008-04-30 2014-05-12 (주)아모레퍼시픽 Method for simultaneous determination of hexavalent chromium and trivalent chromium by high-performance cation-exchange ion chromatography with UV detection
WO2010137132A1 (en) * 2009-05-27 2010-12-02 株式会社島津製作所 Method for measurement of anion
JP5408249B2 (en) * 2009-05-27 2014-02-05 株式会社島津製作所 Anion measurement method

Similar Documents

Publication Publication Date Title
Jia et al. Medium‐throughput pKa screening of pharmaceuticals by pressure‐assisted capillary electrophoresis
Wan et al. Rapid screening of pKa values of pharmaceuticals by pressure-assisted capillary electrophoresis combined with short-end injection
CN104634895A (en) Method for synchronously detecting six sweetening agents in distilled spirit by using ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometer
Kaykhaii et al. Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography
CN104965040A (en) Detection method of free and combined carboxy methyl lysine in milk and dairy products
Porras et al. Capillary zone electrophoresis of basic drugs in non-aqueous acetonitrile with buffers based on a conventional pH scale
Timerbaev Inorganic analysis of biological fluids using capillary electrophoresis
CN109884233B (en) Liquid chromatography analysis and detection method for determining content of alkyl alcohol polyoxyethylene ether sulfate in oil well produced liquid
Paull et al. Quantitative capillary zone electrophoresis of inorganic anions
JP2000065812A (en) Anion measurement method using chelating agent
Wiliams et al. Analysis of acetate counter ion and inorganic impurities in pharmaceutical drug substances by capillary ion electrophoresis with conductivity detection
Petr et al. Capillary isotachophoresis from the student point of view–images and the reality
Kodama et al. Chiral ligand exchange capillary electrophoresis using borate anion as a central ion
Oguma et al. Simultaneous determination of vanadium (IV) and vanadium (V) by flow injection analysis using kinetic spectrophotometry with Xylenol Orange
Katata et al. Determination of ethylenediaminetetraacetic acid, ethylenediaminedisuccinic acid and iminodisuccinic acid in cosmetic products by capillary electrophoresis and high performance liquid chromatography
CN111337620B (en) Method for detecting content of 3-amino-2-piperidone in compound amino acid injection
CN115266998A (en) Method for detecting content of sodium ions in sodium salt molecules
Fabre et al. Capillary electrophoresis for the determination of bromide, chloride and sulfate as impurities in calcium acamprosate
Fayyad et al. Indirect Trace Determination of Ethylenediminetetraacetic Acid (Edta) in Water by Potentiometric Stripping Analysis
CN111157666A (en) Method for simultaneously and quantitatively analyzing sulfite and sulfate ions in amine solution
Cho et al. Competitive binding of a Tris run buffer with chiral crown ether in chiral capillary electrophoresis
CN110736804A (en) Method for measuring total nitrogen content based on ion chromatography technology
Chen et al. Confirmation of iron complex formation using electrospray ionization mass spectrometry (ESI-MS) and sample stacking for analysis of iron polycarboxylate speciation by capillary electrophoresis
Muntean Food Analysis: Using Ion Chromatography
Li et al. Determination of trace sodium in the water-steam system of power plants using an FIA/ISE method with an automatic penetration and alkalization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Effective date: 20070524

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A02