JP2000065635A - Apparatus for measuring acoustic characteristic - Google Patents

Apparatus for measuring acoustic characteristic

Info

Publication number
JP2000065635A
JP2000065635A JP10234402A JP23440298A JP2000065635A JP 2000065635 A JP2000065635 A JP 2000065635A JP 10234402 A JP10234402 A JP 10234402A JP 23440298 A JP23440298 A JP 23440298A JP 2000065635 A JP2000065635 A JP 2000065635A
Authority
JP
Japan
Prior art keywords
acoustic
sound
tube
space
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10234402A
Other languages
Japanese (ja)
Other versions
JP3845519B2 (en
Inventor
Kenichi Kido
健一 城戸
Hideo Suzuki
英男 鈴木
Masaru Ogoshi
勝 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP23440298A priority Critical patent/JP3845519B2/en
Publication of JP2000065635A publication Critical patent/JP2000065635A/en
Application granted granted Critical
Publication of JP3845519B2 publication Critical patent/JP3845519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an acoustic characteristic in a state in which an acoustic material changes by calculations by setting a sound sensor for measuring a sound pressure of a predetermined position at the side of a front face of the acoustic material filled in a pipe and another sound sensor for measuring a sound pressure of a predetermined position in a space at the side of a rear face. SOLUTION: An acoustic material 20 to be measured is filled in an acoustic pipe 11 at a part of X=0 to X=d. A speaker 12 radiates sound waves towards a front face 21 of the acoustic material 20 in the acoustic pipe 11. A piston 13 forms a space at the side of a rear face 22 of the acoustic material 20. A length of the space is changed by moving the piston 13 in an X direction. A microphone 14 is a sound sensor for measuring a sound pressure of a position of the front face 21 of the piston 13. A microphone 15 is a sound sensor for measuring a sound pressure of a position of the piston 13 at the side of the rear face 22 of the acoustic material 20. An arithmetic operating part 16 obtains an acoustic characteristic of the acoustic material 20 on the basis of sound pressures obtained by microphones 14, 15 under a plurality of different conditions in which the length of the space at the side of the rear face 22 of the acoustic material 20 is different.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響材料の音響特
性を測定する音響特性測定装置に関する。
The present invention relates to an acoustic characteristic measuring device for measuring acoustic characteristics of an acoustic material.

【0002】[0002]

【従来の技術】音を吸収する吸音材のような多孔質音響
材料中の音の伝播特性は、その材料の等価密度ρ、等価
体積弾性率K、抵抗係数γ、漏洩係数gからなる4つの
材料特性によって決定される。一般には、それらの材料
特性を分離して測定することは困難であるため、それら
の材料定数のうちの複数の材料定数の組合せにより定ま
る吸音率や伝搬定数を測定することになる。例えば吸音
率の測定方法の一例として、音響材料の表面に音響管を
あてがい、その管内に音波を放射してその管内に定在波
を形成させ、その管内の長手方向に沿う各点の音圧を測
定して最低音圧と最高音圧を求め、それらの最低音圧と
最高音圧および最低音圧となる位置とから吸音率を求め
る方法が知られている。
2. Description of the Related Art Sound propagation characteristics in a porous acoustic material such as a sound absorbing material that absorbs sound are represented by four materials including an equivalent density ρ, an equivalent bulk modulus K, a resistance coefficient γ, and a leakage coefficient g. Determined by material properties. In general, it is difficult to separate and measure these material properties, so that a sound absorption coefficient and a propagation constant determined by a combination of a plurality of material constants among those material constants are measured. For example, as an example of a method of measuring the sound absorption coefficient, an acoustic tube is applied to the surface of an acoustic material, a sound wave is emitted into the tube to form a standing wave in the tube, and the sound pressure at each point along the longitudinal direction in the tube. A method is known in which the minimum sound pressure and the maximum sound pressure are measured to measure the sound absorption coefficient from the minimum sound pressure, the highest sound pressure, and the position where the lowest sound pressure is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、吸音率
や伝播定数は、音響材料の材質は同一であっても、その
厚さが違ったり、その音響材料の背面側の構造が違うと
値が異なり、しかも、同一の音響材料であっても、ある
厚さの音響材料について測定した吸音率や伝播定数から
他の厚さの音響材料の吸音率や伝播定数を知ることはで
きず、また、音響材料の背面側の構造が異なる場合も同
様であり、音響材料の厚さや背面側の構造が異なる各状
態ごとに測定し直さなければならないという問題があ
る。
However, even if the material of the acoustic material is the same, the values of the sound absorption coefficient and the propagation constant are different if the thickness of the material is different or the structure of the back side of the acoustic material is different. Moreover, even with the same acoustic material, the sound absorption coefficient and propagation constant of an acoustic material of another thickness cannot be known from the sound absorption coefficient and propagation constant measured for an acoustic material of a certain thickness. The same is true when the structure on the back side of the material is different, and there is a problem that the measurement must be performed again for each state where the thickness of the acoustic material and the structure on the back side are different.

【0004】本発明は、状態が変化したときには、その
変化した状態における音響特性、例えば垂直のみならず
斜め方向から入射する音波に対する吸音率や伝播定数等
を計算により求めることができるような音響特性を測定
する音響特性測定装置を提供することを目的とする。
According to the present invention, when the state changes, the acoustic characteristics in the changed state, such as the sound absorption coefficient and the propagation constant for sound waves incident not only vertically but also obliquely, can be obtained by calculation. It is an object of the present invention to provide an acoustic characteristic measuring device for measuring the acoustic characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の音響特性測定装置は、長手方向の一部分に測定対象
となる音響材料が充填される管と、管に充填された音響
材料の表面に向けて管内に音波を放射する音源と、管に
充填された音響材料の背面側に、空間を、その空間の長
さを変更自在に形成する空間形成部材と、管内の、管に
充填された音響材料の表面側の所定位置の音圧を測定す
る第1の音センサと、管に充填された音響材料の背面側
の、空間形成部材により形成された空間内の所定位置の
音圧を測定する第2の音センサとを備えたことを特徴と
する。
An acoustic characteristic measuring apparatus according to the present invention for achieving the above object comprises a tube in which a portion of a longitudinal direction is filled with an acoustic material to be measured, and a surface of the acoustic material filled in the tube. A sound source that radiates sound waves into the tube toward the tube, a space forming member that forms a space on the back side of the acoustic material filled in the tube so that the length of the space can be changed, and a tube inside the tube, A first sound sensor for measuring a sound pressure at a predetermined position on the front side of the acoustic material, and a sound pressure at a predetermined position in the space formed by the space forming member on the back side of the acoustic material filled in the tube. And a second sound sensor for measuring.

【0006】本発明の音響特性測定装置は、上記の構成
を備えたものであり、この音響特性測定装置を用いて、
上記空間の長さが相違する複数の条件下における、上記
第1の音センサおよび上記第2の音センサで音圧を得る
ことにより、それらの音圧に基づいて音響特性、すなわ
ち上述した4つの材料定数を求めることができ、それら
に基づく演算により、例えば音響材料の厚さが測定時に
おけるその音響材料の厚さとは異なるなど、異なる状態
に関しても、その状態における音響材料の吸音率等音響
的な特性を求めることができる。尚、本発明の音響特性
測定装置を用いた音圧測定によれば上述した4つの材料
定数全てを求めることも可能であるが、それら4つの材
料定数の全てを求めることは必ずしも必要ではなく、例
えば最終的に求めたい音響特性が吸音率である場合は、
吸音率に関係する材料特性のみ求めればよいことはもち
ろんである。
[0006] An acoustic characteristic measuring apparatus of the present invention has the above-described configuration.
By obtaining sound pressures with the first sound sensor and the second sound sensor under a plurality of conditions having different lengths of the space, acoustic characteristics based on those sound pressures, that is, the above-described four The material constants can be determined, and calculations based on them allow for acoustic properties such as the sound absorption of the acoustic material in that state, even in different states, for example, when the thickness of the acoustic material is different from the thickness of the acoustic material at the time of measurement. Characteristics can be obtained. In addition, according to the sound pressure measurement using the acoustic characteristic measuring device of the present invention, it is possible to obtain all the four material constants described above. However, it is not always necessary to obtain all the four material constants. For example, if the acoustic characteristic that you want to finally find is sound absorption,
It goes without saying that only the material properties related to the sound absorption coefficient need to be obtained.

【0007】ここで、上記本発明の音響特性測定装置に
おいて、上記空間の長さが相違する複数の条件下におけ
る、上記第1の音センサおよび上記第2の音センサで得
られた音圧に基づいて、管内に充填された音響材料の音
響的な特性を求める演算部を備えることが好ましい。
Here, in the acoustic characteristic measuring apparatus according to the present invention, the sound pressure obtained by the first sound sensor and the second sound sensor under a plurality of conditions where the lengths of the spaces are different from each other. It is preferable to include a calculation unit for determining the acoustic characteristics of the acoustic material filled in the pipe based on the calculation.

【0008】このような演算部を備えると、音圧からそ
の音響材料の音響的な特性が自動的に求められる。
When such an arithmetic unit is provided, the acoustic characteristics of the acoustic material are automatically obtained from the sound pressure.

【0009】ここで、上記本発明の音響特性測定装置に
おいて、空間形成部材は、管に充填された音響材料の背
面側に、空間を、その空間の長さを長さゼロを含んで変
更自在に形成するものであってもよく、上記第1のセン
サは管に充填された音響材料の表面位置の音圧を測定す
るものであってもよく、さらに、上記第2のセンサは、
空間内の、管内に充填された音響材料の背面から最も離
れた位置の音圧を測定するものであってもよい。
Here, in the acoustic characteristic measuring apparatus of the present invention, the space forming member can freely change the space including the length of zero on the back side of the acoustic material filled in the tube. The first sensor may measure a sound pressure at a surface position of the acoustic material filled in the tube, and the second sensor may further include:
The sound pressure at a position farthest from the back surface of the acoustic material filled in the tube in the space may be measured.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態の説明に
入るに先立ち、損失のある媒質で満たされた音響管内の
1次元波動現象を表す方程式をもとにして、測定法の理
論の元になる式を誘導する。 (一次元波動理論)図1は、音響伝搬に伴う損失を有す
る音響管の一部を示す模式図、図2は、図1に示す音響
管の、損失を考えたときの等価電気回路図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing embodiments of the present invention, the theory of a measurement method will be described based on an equation representing a one-dimensional wave phenomenon in an acoustic tube filled with a lossy medium. Induce the underlying expression. (One-dimensional Wave Theory) FIG. 1 is a schematic diagram showing a part of a sound tube having a loss accompanying sound propagation, and FIG. 2 is an equivalent electric circuit diagram of the sound tube shown in FIG. is there.

【0011】図1のように、無限に固い壁で作られた断
面積Sの音響管の中を、軸方向に音波が伝搬するとき
の、中の媒質の運動を考える。軸方向に空間座標xをと
ると、管の断面方向の寸法が波長よりも十分に小さけれ
ば、管内の音波の波面は平面で、xの方向にだけ伝搬す
る。ここでは、この音響管の中が損失を有する音響材料
で充填されているときの、波動を表す方程式である式
(1)と(2)を出発点とする。
As shown in FIG. 1, consider the motion of a medium in an acoustic tube having an infinitely hard wall and having a sectional area S when an acoustic wave propagates in an axial direction. Taking the spatial coordinate x in the axial direction, if the dimension in the cross-sectional direction of the tube is sufficiently smaller than the wavelength, the wavefront of the sound wave in the tube is flat and propagates only in the direction of x. Here, equations (1) and (2), which are equations representing waves, when the acoustic tube is filled with a lossy acoustic material, are set as starting points.

【0012】[0012]

【数1】 ここで、p(x,t)は音圧で原点からの距離xと時間
tの関数 v(x,t)は粒子速度で原点からの距離xと時間tの
関数 rは抵抗係数(速度に比例する損失の比例係数で電気回
路の抵抗に相当する) ρは媒質の密度(電気回路のインダクタンスに相当す
る)
(Equation 1) Here, p (x, t) is a sound pressure and a function of distance x from the origin x and time t v (x, t) is a particle velocity and a function of the distance x and time t from the origin r is a resistance coefficient (to speed) Ρ is the density of the medium (corresponding to the inductance of the electric circuit)

【0013】[0013]

【数2】 ここで、gは漏洩係数(音圧に比例する損失の比例係数
で電気回路の漏洩コンダクタンスに相当する) Kは媒質の体積弾性率(電気回路のキャパシスタンスの
逆数に相当する) 式(1)と(2)は、図2のような電気回路の従続接続
で表される損失のある送電線で一般的に成立する。
(Equation 2) Here, g is a leakage coefficient (a proportional coefficient of loss proportional to sound pressure and corresponds to a leakage conductance of an electric circuit) K is a bulk modulus of a medium (corresponding to a reciprocal of the capacitance of an electric circuit) Equation (1) And (2) generally hold for lossy transmission lines represented by cascaded electrical circuits as in FIG.

【0014】(1),(2)両式をフーリエ変換して周
波数領域の記述に置き換える。時間領域における時間に
よる微分は、周波数領域ではjω(j=√(−1)は虚
数単位)を乗じることになるので、式(1),(2)は
次のように置き換えられる。
(1) and (2) Fourier transform of both equations and replace them with the description in the frequency domain. The differentiation by time in the time domain is multiplied by jω (j = √ (−1) is an imaginary unit) in the frequency domain, and therefore, the equations (1) and (2) are replaced as follows.

【0015】[0015]

【数3】 ここで、P(x)はp(x,t)のフーリエ変換 V(x)はv(x,t)のフーリエ変換 Z=Z(jω)=r+jωρ、G=G(jω)=g+j
ω/Kとして上式を書き直す。
(Equation 3) Here, P (x) is a Fourier transform of p (x, t) V (x) is a Fourier transform of v (x, t) Z = Z (jω) = r + jωρ, G = G (jω) = g + j
Rewrite the above equation as ω / K.

【0016】[0016]

【数4】 両式は、次のように書き換えることができる。(Equation 4) Both equations can be rewritten as:

【0017】[0017]

【数5】 ここで、(Equation 5) here,

【0018】[0018]

【数6】 また、 γ=γ(jω)=α+jβ ……(10) と書き、αを減衰定数、βを波長定数という。(Equation 6) Γ = γ (jω) = α + jβ (10), where α is an attenuation constant and β is a wavelength constant.

【0019】損失がないとき、すなわち空気中では、When there is no loss, that is, in air,

【0020】[0020]

【数7】 ここで、 c=√(K/ρ) は音速(位相速度) ……(12) k=ω/c は波数(wave number) 式(5)と(6)、あるいは式(7)と(8)の解は次
のようになる。
(Equation 7) Here, c = √ (K / ρ) is a sound velocity (phase velocity) (12) k = ω / c is a wave number (wave number) Equations (5) and (6) or Equations (7) and (8) The solution of) is as follows.

【0021】 P=Cexp(−γx)+Dexp(γx) ……(13) V=(1/W){Cexp(−γx)−Dexp(γx)} ……(14) ここで、 CとDは積分定数P = Cexp (−γx) + Dexp (γx) (13) V = (1 / W) {Cexp (−γx) −Dexp (γx)} (14) where C and D are Integration constant

【0022】[0022]

【数8】 空中でr=g=0ならば、(Equation 8) If r = g = 0 in the air,

【0023】[0023]

【数9】 (境界条件)図3は、x=0からx=dまでに伝搬定数
γ1の音響材料を充填し、x=dからx=Lまでを空気
層とし、x=Lで閉じた音響管を示す模式図である。
(Equation 9) (Boundary condition) FIG. 3 shows an acoustic tube filled with an acoustic material having a propagation constant γ 1 from x = 0 to x = d, an air layer from x = d to x = L, and a closed acoustic tube at x = L. FIG.

【0024】図3に示すようなx=0からx=dまでに
伝搬定数γ1の音響材料を充填しx=dからx=Lまで
を空気層とし、x=Lで閉じた音響管を考える。x=0
からx=dまでを第1区間、x=dからx=Lまでの空
気層を第2区間と呼ぶことにする。すると、第1区間と
第2区間の波動方程式の解はそれぞれ次のようになる。
As shown in FIG. 3, an acoustic material having a propagation constant γ 1 is filled from x = 0 to x = d and an air layer is formed from x = d to x = L. Think. x = 0
To x = d is referred to as a first section, and the air layer from x = d to x = L is referred to as a second section. Then, the solutions of the wave equation in the first section and the second section are as follows.

【0025】第1区間x=0からx=dまでは、定数に
下添えの1をつけると P=C1exp(−γ1x)+D1exp(γ1x) ……(17) V=(1/W1){C1exp(−γ1x)−D1exp(γ1x)} ……(18) 第2区間については定数に下添えの2をつけ、第2区間
x=dからx=Lまでは空気層であるから、γ2=jω
/c=jkであり、 P=C2exp(−jkx)+D2exp(jkx) ……(19) V=(1/ρc){C2exp(−jkx)−D2exp(jkx)} ……(20) 境界条件はx=0での音圧がP0であることとx=dで
先が閉ざされた音響管が接続され、その音響管ではx=
Lで粒子速度が0ということである。さらに第1区間と
第2区間の接続面では、音圧、粒子速度がどちらも連続
という条件が必要である。
From the first section x = 0 to x = d, if a constant 1 is added to the constant, P = C 1 exp (−γ 1 x) + D 1 exp (γ 1 x) (17) V = (1 / W 1 ) {C 1 exp (−γ 1 x) −D 1 exp (γ 1 x)} (18) For the second section, a subscript 2 is added to the constant, and the second section x = D to x = L is an air layer, so γ 2 = jω
/ C = jk, and P = C 2 exp (−jkx) + D 2 exp (jkx) (19) V = (1 / ρc) {C 2 exp (−jkx) −D 2 exp (jkx)} (20) The boundary condition is that the sound pressure at x = 0 is P 0 , a sound tube closed at x = d is connected, and x = d
L means that the particle velocity is 0. Further, a condition that both the sound pressure and the particle velocity are continuous is required on the connection surface between the first section and the second section.

【0026】(第2区間の入力インピーダンス)まず、
第1区間の終端インピーダンスになっている第2区間の
入力インピーダンス、すなわち、長さL−dの音響管の
左端から右をみたインピーダンスZTを計算する。これ
は長さL−dの閉管の入力インピーダンスである。ここ
では座標の取り方が違うだけであるから要点のみを示
す。
(Input impedance of the second section) First,
Input impedance of the second section that is a terminal impedance of the first section, i.e., to calculate the impedance Z T viewed right from the left end of the acoustic tube length L-d. This is the input impedance of a closed tube of length Ld. Here, only the main points are shown because the method of obtaining the coordinates is different.

【0027】長さがL−dでx=Lの端が閉ざされた音
響管の左端x=dの音圧がPdのときの、管内の音圧と
粒子速度の分布は次式で与えられる。
The sound pressure and the particle velocity distribution in the pipe when the length L-d at x = L left x = d the sound pressure P d of the acoustic tube end is closed of by the following formula Can be

【0028】[0028]

【数10】 したがって、この音響管をx=dの端からみたインピー
ダンスは、
(Equation 10) Therefore, the impedance of this acoustic tube viewed from the end of x = d is

【0029】[0029]

【数11】 となる。[Equation 11] Becomes

【0030】これが、第1区間の終端インピーダンスに
なる。
This is the terminal impedance of the first section.

【0031】(第1区間内の音圧分布)次に、第1区間
を左端から音圧P0で駆動し、その右端にインピーダン
スZTを接続したときの、第1区間内の音圧と速度の分
布の式を示す。
(Sound Pressure Distribution in First Section) Next, the sound pressure in the first section when the first section is driven by the sound pressure P 0 from the left end, and the impedance Z T is connected to the right end thereof. The expression of the velocity distribution is shown.

【0032】[0032]

【数12】 (P0とPdによる材料定数計算式の誘導)これまでに説
明した音響管内の音圧分布を利用すると、x=0からx
=dの間に未知の材料を置き、その奥に長さL−dの終
端を閉ざした音響管を接続すれば、2点の音圧の測定か
ら、未知の材料定数が求められるはずである。ここで
は、それに用いる測定量を、x=−aの点の音圧Pa
x=dの点の音圧Pdとする。第2区間の音響管の長さ
L−dは変えられるものとする。
(Equation 12) (Derivation of material constant calculation formula by P 0 and P d ) If the sound pressure distribution in the acoustic tube described above is used, x = 0 to x
If an unknown material is placed between = d and an acoustic tube with a closed end at the length Ld is connected to the back, an unknown material constant should be obtained from the measurement of the sound pressure at two points. . Here, the measured quantity used therefor, and the sound pressure P d of the point x = sound pressure point -a P a and x = d. It is assumed that the length L-d of the sound tube in the second section can be changed.

【0033】第1区間(0≦x≦d)の音圧をP
1(x)、粒子速度をV1(x)として式(33)、(3
4)を書き直すと、次のようになる。
The sound pressure in the first section (0 ≦ x ≦ d) is P
Equation (33), (3) where 1 (x) and the particle velocity are V 1 (x).
Rewriting 4) is as follows.

【0034】[0034]

【数13】 第2区間(d≦x≦L)の音圧をP2(x)と粒子速度
をV2(x)は、式(25)、(26)によって与えら
れる。それを次に再掲する。
(Equation 13) The sound pressure P 2 (x) and the particle velocity V 2 (x) in the second section (d ≦ x ≦ L) are given by equations (25) and (26). I will repeat it next.

【0035】[0035]

【数14】 x=0の点の音圧P0とx=dの点の音圧Pdの関係が必
要であるが、そのためには第1区間の終端インピーダン
ス、すなわち第2区間の入力インピーダンスが必要であ
る。それは既に式(27)として与えられている。 ZT=Z(d)=−jpc・cotk(L−d) ……(27) これを式(33a),(34a)に代入すると第1区間
(0≦x≦d)の音圧・速度分布の式になる。
[Equation 14] Although the relationship of the sound pressure P d of the point of the sound pressure P 0 and x = d the point x = 0 is required, in order that the terminating impedance of the first section, i.e. it is necessary to input impedance of the second section . It has already been given as equation (27). Z T = Z (d) = − jpc · cotk (L−d) (27) When this is substituted into equations (33a) and (34a), the sound pressure and speed in the first section (0 ≦ x ≦ d) It becomes a distribution formula.

【0036】[0036]

【数15】 式(35)でx=dとすると、このときのP0とPdの関
係が得られる。
(Equation 15) If x = d in equation (35), the relationship between P 0 and P d at this time is obtained.

【0037】[0037]

【数16】 測定されたP0とPdからγ1およびW1を求めるため、式
(37)の両辺に、P d *を掛けて、多数回の平均をす
る。すると、
(Equation 16)Measured P0And PdTo γ1And W1To find
P on both sides of (37) d *Multiply the average
You. Then

【0038】[0038]

【数17】 のようになる。ここでPdとP0のクロススペクトルをP
dのパワースペクトルで割って、形式的にはx=dから
x=0までの音圧の伝達関数となるTd-0をつくる。
[Equation 17] become that way. Here, the cross spectrum of the P d and P 0 P
Dividing by the power spectrum of d produces T d-0 which is formally a transfer function of sound pressure from x = d to x = 0.

【0039】[0039]

【数18】 この式でL=dとすると、次のようになる。(Equation 18) If L = d in this equation, the following is obtained.

【0040】 Td-0=cosh(γ1d) ……(40) したがって、T d−0 = cosh (γ 1 d) (40)

【0041】[0041]

【数19】 この式の逆ハイパボリック関数内の分母は実数であるか
ら、Td-0の実数部をR,虚数部をIと書くと、
[Equation 19] Since the denominator in the inverse hyperbolic function of this equation is a real number, if the real part of T d-0 is written as R and the imaginary part as I,

【0042】[0042]

【数20】 のようになり、γ1の実数部α1と虚数部β1とが次のよ
うに計算される(岩波全書「数学公式II」参照)
(Equation 20) And the real part α 1 and the imaginary part β 1 of γ 1 are calculated as follows (see Iwanami Zensho “Mathematical Formula II”)

【0043】[0043]

【数21】 以上の手続きによってγ1が求まるので、次にL>dに
なる適当なLにしたときのP0とPdから第1区間の材料
の特性インピーダンスW1を求める。第2区間x=dか
らx=Lまでが空気層のときのx=dからx=0までの
音圧の伝達関数も、式(39)から次のように計算され
る。
(Equation 21) Since γ 1 is obtained by the above procedure, the characteristic impedance W 1 of the material in the first section is obtained from P 0 and P d when L is set to an appropriate value such that L> d. The transfer function of the sound pressure from x = d to x = 0 when the second section x = d to x = L is an air layer is also calculated from Expression (39) as follows.

【0044】[0044]

【数22】 式(10)のγ1=α1+jβ1を代入すると、(Equation 22) Substituting γ 1 = α 1 + jβ 1 in equation (10) gives

【0045】[0045]

【数23】 複素数のcosh関数とsinh関数を分解すると、(Equation 23) Decomposing the complex cosh function and sinh function gives

【0046】[0046]

【数24】 これにより、L=dのときにx=0すなわち材料表面の
音圧P0とx=dすなわち材料背面の音圧Pdを測定し、
次にL>dとしたときのx=0の音圧P0とx=dの点
の音圧Pdを測定すれば、それら2組の測定値を用いて
伝搬定数γ1と特性インピーダンスW1が計算できること
がわかる。
(Equation 24) Accordingly, when L = d, x = 0, ie, the sound pressure P 0 on the material surface, and x = d, ie, the sound pressure P d on the back surface of the material, are measured.
Next, if the sound pressure P 0 at x = 0 and the sound pressure P d at the point x = d when L> d are measured, the propagation constant γ 1 and the characteristic impedance W It can be seen that 1 can be calculated.

【0047】(P0とPLによる材料定数の計算)これま
でで、x=0すなわち材料表面の音圧P0とx=dすな
わち材料背面の音圧Pdという測定値を用いて、伝搬定
数と特性インピーダンスが計算できることを示した。し
かし、測定対象の吸音材の厚さが常に一定とは限らない
とすれば、音響管の壁にx=0とx=dの2ヵ所に穴を
あけることは実用的でなく、材料背面の音圧P0は測定
しにくいことが多いと考えられる。また音響管の長さL
を変える方法も必要である。
(Calculation of Material Constants Using P 0 and P L ) Up to now, the propagation using the measured values of x = 0, ie, the sound pressure P 0 on the material surface and x = d, ie, the sound pressure P d on the back surface of the material, It is shown that the constant and characteristic impedance can be calculated. However, assuming that the thickness of the sound-absorbing material to be measured is not always constant, it is not practical to make holes in the acoustic tube wall at x = 0 and x = d, and it is not practical. It is considered that the sound pressure P 0 is often difficult to measure. The length L of the acoustic tube
There is also a need for a way to change

【0048】そこで、次に、本発明の実施形態について
説明し、その実施形態を参照しながら、これまでの説明
の続きを説明する。
Therefore, an embodiment of the present invention will be described below, and a continuation of the above description will be described with reference to the embodiment.

【0049】図4は、本発明の音響特性測定装置の一実
施形態における、音響材料の背面に空間が存在しない
(長さL−d=0の空間が存在している)状態を示した
図、図5は、図4に示す実施形態における、音響材料の
背面に所定長L−dの空気層が存在している状態を示し
た図である。
FIG. 4 is a diagram showing a state in which no space exists on the back surface of the acoustic material (a space having a length Ld = 0) in one embodiment of the acoustic characteristic measuring apparatus of the present invention. FIG. 5 is a view showing a state in which an air layer having a predetermined length Ld is present on the back surface of the acoustic material in the embodiment shown in FIG.

【0050】図4、図5に示す音響特性測定装置10
は、音響管11と、スピーカ12と、ピストン13と、
2つのマイクロホン14,15と、演算部16とから構
成されている。
The acoustic characteristic measuring device 10 shown in FIGS.
Is a sound tube 11, a speaker 12, a piston 13,
It is composed of two microphones 14 and 15 and an operation unit 16.

【0051】音響管11の一部分x=0〜dの間には測
定対象となる音響材料20が充填されている。
A portion of the acoustic tube 11 between x = 0 to d is filled with an acoustic material 20 to be measured.

【0052】スピーカ12は、音響管11に充填された
音響材料20の表面21に向けて音響管11内に音波を
放射する音源である。
The speaker 12 is a sound source that emits a sound wave into the acoustic tube 11 toward the surface 21 of the acoustic material 20 filled in the acoustic tube 11.

【0053】また、ピストン13は、音響管11に充填
された音響材料20の背面22側に空間を形成する手段
である。そのピストン13をx方向に移動させることに
より、音響材料20の背面22側の空間の長さを、長さ
=0を含め、変更することができる。
The piston 13 is a means for forming a space on the back surface 22 side of the acoustic material 20 filled in the acoustic tube 11. By moving the piston 13 in the x direction, the length of the space on the back surface 22 side of the acoustic material 20 can be changed, including the length = 0.

【0054】2つのマイクロホン14,15のうちの一
方のマイクロホン14は、音響管11内部の、その音響
管11に充填された音響材料20の表面21側の所定位
置(本実施形態では音響材料20の表面21の位置)の
音圧を測定する音センサである。
One microphone 14 of the two microphones 14 and 15 is located at a predetermined position inside the acoustic tube 11 on the surface 21 side of the acoustic material 20 filled in the acoustic tube 11 (in the present embodiment, the acoustic material 20). This is a sound sensor for measuring the sound pressure of the surface 21 (position of the surface 21).

【0055】また、もう1つのマイクロホン15は、音
響管11に充填された音響材料20の背面22側の、ピ
ストン13により形成された空間内の所定位置(本実施
形態では、音響材料20の背面22から最も離れた位
置、すなわちピストン13の表面位置)の音圧を測定す
る音センサである。
The other microphone 15 is located at a predetermined position in the space formed by the piston 13 on the side of the back surface 22 of the acoustic material 20 filled in the acoustic tube 11 (in this embodiment, the back surface of the acoustic material 20). This is a sound sensor that measures the sound pressure at the position farthest from the position 22 (ie, the surface position of the piston 13).

【0056】さらに、演算部16は、ピストン13を動
かして音響材料20の背面22側の空間の長さが相違す
る複数の条件下(ここでは図4に示す空間の長さ=0の
条件下と、図5に示す空間の長さ=L−dの条件下)に
おける、2つのマイクロホン14,15で得られた音圧
に基づいて、音響管11内に充填された音響材料20の
音響的な特性を求める手段である。
Further, the arithmetic section 16 operates the piston 13 to move the piston 13 so that the space on the back surface 22 side of the acoustic material 20 has different lengths (here, the condition of the space length = 0 shown in FIG. 4). Of the acoustic material 20 filled in the acoustic tube 11 based on the sound pressures obtained by the two microphones 14 and 15 under the condition of the length of the space = Ld shown in FIG. It is a means to obtain a characteristic.

【0057】図4、図5に示す本発明の一実施形態とし
ての音響特性測定装置10に関する以上の説明を踏ま
え、前述の理論説明の続きを行なう。
Based on the above description of the acoustic characteristic measuring device 10 as an embodiment of the present invention shown in FIGS.

【0058】ここでは、図4および図5に示すように、
音響管11を使いスピーカ12とは反対側、すなわちx
=Lの側の端から、マイクロホン15を表面に取り付け
たピストン13を挿入して、Lの値を調整できるように
している。
Here, as shown in FIGS. 4 and 5,
On the opposite side of the speaker 12 using the acoustic tube 11, ie, x
The piston 13 having the microphone 15 attached to the surface is inserted from the end on the = L side so that the value of L can be adjusted.

【0059】これにより、ピストン13を一番奥に押し
込めばL=d(空間の長さ=0)となり、このときの音
圧Pdをピストン13に取り付けたマイクロホン15で
測定して、そのときのP0とともに式(43)、式(4
4)に代入することにより伝搬定数γ1を求めることが
できる。
[0059] Thus, (length = 0 of the space) of the piston 13 most if pushed to the back L = d, and the measured by the microphone 15 fitted with a sound pressure P d to the piston 13 at this time, when the Equation (43) and Equation (4) together with P 0 of
By substituting in 4), the propagation constant γ 1 can be obtained.

【0060】次に適当なLの値にしたときのP0を測定
し、x=Lでの音圧PLをピストンに取り付けたマイク
ロホン15で測定すれば、特性インピーダンスW1を求
めることができるものと考えられる。
[0060] then measured P 0 when the value of the appropriate L, is measured by the microphone 15 fitted with a sound pressure P L in x = L to the piston, it is possible to obtain the characteristic impedance W 1 It is considered something.

【0061】x=0の音圧P0とx=Lの音圧PLによっ
て特性インピーダンスW1を求める方法を考える。
A method of obtaining the characteristic impedance W 1 from the sound pressure P 0 at x = 0 and the sound pressure P L at x = L will be considered.

【0062】x=Lの音圧PLは、式(25)により次
のようになる。
The sound pressure P L at x = L is as follows from equation (25).

【0063】[0063]

【数25】 このPdは式(37)によってP0との関係が与えられて
いるので、それを代入すると、
(Equation 25) This P d is given a relationship with P 0 by equation (37).

【0064】[0064]

【数26】 式(48)の両辺にPLの共役複素数PL *を掛け多数回
平均する。
(Equation 26) The average number of times over the complex conjugate P L * of P L to both sides of the equation (48).

【0065】[0065]

【数27】 LからP0への音圧伝達関数TL-0は、[Equation 27] Sound pressure transmission function T L-0 from the P L to P 0 is,

【0066】[0066]

【数28】 この式からW1は次のように計算される。[Equation 28] From this equation, W 1 is calculated as follows.

【0067】[0067]

【数29】 これにより、x=0すなわち音響材料20の表面21の
音圧P0とx=Lすなわち音響管11に差し込んだピス
トン13の表面の音圧PLとの測定によって第1区間の
吸音材の特性インピーダンスW1が求められることがわ
かる。
(Equation 29) Thus, x = 0 That is characteristic of the sound absorbing material of the first section by measurement of the sound pressure P L of the surface of the sound pressure P 0 and x = L In other words the piston 13 is inserted in the acoustic pipe 11 of the surface 21 of the acoustic material 20 it can be seen that the impedance W 1 is required.

【0068】(他の材料定数の計算)これまでで第1区
間の吸音材の伝搬定数γ1と特性インピーダンスW1を求
めることができることを説明した。次に、それらから媒
質の抵抗係数r1,密度ρ1,漏洩係数g1,体積弾性率
1あるいは音速c1というような、より基本的な材料定
数を求めることができることを示す。
(Calculation of Other Material Constants) It has been described above that the propagation constant γ 1 and the characteristic impedance W 1 of the sound absorbing material in the first section can be obtained. Next, it will be shown that more basic material constants such as the resistance coefficient r 1 , density ρ 1 , leakage coefficient g 1 , bulk modulus K 1 or sound velocity c 1 of the medium can be obtained therefrom.

【0069】式(9)の伝搬定数γ1と式(15)の特
性インピーダンスW1の積は次の様になる。
The product of the propagation constant γ 1 in equation (9) and the characteristic impedance W 1 in equation (15) is as follows.

【0070】[0070]

【数30】 すなわち、実数部は抵抗係数r1で、虚数部は角周波数
ωと密度ρ1の積である。
[Equation 30] That is, the real part is the resistance coefficient r 1 and the imaginary part is the product of the angular frequency ω and the density ρ 1 .

【0071】また、Also,

【0072】[0072]

【数31】 すなわち、伝搬定数γ1を特性インピーダンスW1で割っ
たものは、その実数部が漏洩係数g1で、虚数部は角周
波数ωと体積弾性率K1の逆数との積である。
(Equation 31) That is, when the propagation constant γ 1 is divided by the characteristic impedance W 1 , the real part is the leakage coefficient g 1 and the imaginary part is the product of the angular frequency ω and the reciprocal of the bulk modulus K 1 .

【0073】したがって、基本的な材料定数は全て求め
ることができる。
Therefore, all the basic material constants can be obtained.

【0074】音速cは、無損失の媒体中では前に示した
式で計算される。
The sound speed c is calculated in a lossless medium by the above formula.

【0075】 c=√(K/ρ) は音速 ……(12) この形を損失がある媒質中にそのまま適用すると、C = √ (K / ρ) is the speed of sound... (12) If this form is applied to a lossy medium as it is,

【0076】[0076]

【数32】 のように、複素数になる。(Equation 32) Becomes a complex number.

【0077】すなわち、損失がなければ伝搬定数は純虚
数で、波数kも、音速cも実数である。ところが損失が
ある媒質中では伝搬定数が複素数である。それを、損質
がないときと同じようにjω/cと表現しようとする
と、音速を式(53)のように複素数で表現することに
なる。これが複素音速という概念のもとである。 (吸音率の計算)上に求めた測定結果と、それによって
計算した材料定数やインピーダンスから、この音響材料
の垂直入射吸音率を計算することができる。
That is, if there is no loss, the propagation constant is a pure imaginary number, and both the wave number k and the sound speed c are real numbers. However, in a lossy medium, the propagation constant is a complex number. If this is expressed as jω / c in the same way as when there is no loss, the sound velocity is expressed by a complex number as in Expression (53). This is the concept of the speed of complex sound. (Calculation of sound absorption coefficient) The normal incidence sound absorption coefficient of this acoustic material can be calculated from the measurement results obtained above and the material constants and impedances calculated thereby.

【0078】吸音率を計算するためには、x=0の面か
ら右を見たインピーダンスが必要である。区間1の任意
の座標値xから見たインピーダンスは、式(35)と
(36)の比として次のように計算される。
In order to calculate the sound absorption coefficient, the impedance looking right from the plane of x = 0 is necessary. The impedance viewed from an arbitrary coordinate value x in the section 1 is calculated as a ratio of the equations (35) and (36) as follows.

【0079】[0079]

【数33】 L=dすなわち音響材料の背面に空間がないときには、
次のようになる。
[Equation 33] L = d, that is, when there is no space behind the acoustic material,
It looks like this:

【0080】[0080]

【数34】 特性インピーダンスがρcの媒質からこの媒質への入射
波に対する音圧の反射率Rは、次のように与えられる。
(Equation 34) The reflectance R of the sound pressure with respect to the incident wave from the medium having the characteristic impedance ρc to this medium is given as follows.

【0081】[0081]

【数35】 吸音率αは次のようになる。(Equation 35) The sound absorption coefficient α is as follows.

【0082】α=1−R2 ……(57) 以上、本実施形態によれば測定対象の音響材料に関する
どのような音響特性をも求めることができる旨説明した
が、これらの音響特性全てを求めることは必ずしも必要
ではなく、所望のもののみを求めればよい。
Α = 1−R 2 (57) As described above, according to the present embodiment, any acoustic characteristics of the acoustic material to be measured can be obtained. It is not always necessary to obtain it, but only the desired one may be obtained.

【0083】図4,図5に示す実施形態では、演算部1
6において、2つのマイクロホン14,15で得た音圧
に基づいて、これまで説明してきた理論に基づく演算が
行なわれ、所望の音響特性が求められる。
In the embodiment shown in FIG. 4 and FIG.
In step 6, based on the sound pressure obtained by the two microphones 14 and 15, an operation based on the above-described theory is performed, and a desired acoustic characteristic is obtained.

【0084】[0084]

【発明の効果】以上説明したように、本発明によれば、
音響材料の厚さが異なる、あるいは音波が斜め方向から
入射するなど、その音響特性の状態が測定時とは異なっ
ても、その異なった状態における音響特性を計算により
求めることができるような音響特性を測定することがで
きる。
As described above, according to the present invention,
Acoustic characteristics that allow calculation of acoustic characteristics in different states, even if the state of the acoustic properties is different from that at the time of measurement, such as when the thickness of the acoustic material is different or when sound waves are incident from an oblique direction. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】音響伝搬に伴う損失を有する音響管の一部を示
す模式図である。
FIG. 1 is a schematic diagram showing a part of an acoustic tube having a loss accompanying acoustic propagation.

【図2】図1に示す音響管の、損失を考えたときの等価
電気回路図である。
FIG. 2 is an equivalent electric circuit diagram of the acoustic tube shown in FIG. 1 when loss is considered.

【図3】x=0からx=dまでに伝搬定数γ1の音響材
料を充填し、x=dからx=Lまでを空気層とし、x=
Lで閉じた音響管を示す模式図である。
FIG. 3 shows that an acoustic material having a propagation constant γ 1 is filled from x = 0 to x = d, an air layer is formed from x = d to x = L, and x = d
It is a schematic diagram which shows the acoustic tube closed by L.

【図4】本発明の音響特性測定装置の一実施形態におけ
る、音響材料の背面に空間が存在しない(長さL−d=
0の空間が存在している)状態を示した図である。
FIG. 4 is a diagram illustrating an acoustic characteristic measuring apparatus according to an embodiment of the present invention, in which there is no space (length L−d =
FIG. 11 is a diagram illustrating a state where a space of 0 exists).

【図5】図4に示す実施形態における、音響材料の背面
に所定長L−dの空気層が存在している状態を示した図
である。
5 is a diagram showing a state in which an air layer having a predetermined length Ld exists on the back surface of the acoustic material in the embodiment shown in FIG. 4;

【符号の説明】[Explanation of symbols]

10 音響特性測定装置 11 音響管 12 スピーカ 13 ピストン 14,15 マイクロホン 16 演算部 20 音響材料 21 表面 22 背面 Reference Signs List 10 acoustic characteristic measuring device 11 acoustic tube 12 speaker 13 piston 14, 15 microphone 16 arithmetic unit 20 acoustic material 21 front surface 22 back surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大越 勝 神奈川県横浜市緑区白山1丁目16番1号 株式会社小野測器内 Fターム(参考) 2G064 AA11 AB01 AB02 AB12 AB16 BD05 BD20 CC13 CC29 CC41 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masaru Ogoshi 1-16-1 Hakusan, Midori-ku, Yokohama-shi, Kanagawa Prefecture Ono Sokki Co., Ltd. F-term (reference) 2G064 AA11 AB01 AB02 AB12 AB16 BD05 BD20 CC13 CC29 CC41

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 長手方向の一部分に測定対象となる音響
材料が充填される管と、 前記管に充填された音響材料の表面に向けて該管内に音
波を放射する音源と、 前記管に充填された音響材料の背面側に、空間を、該空
間の長さを変更自在に形成する空間形成部材と、 前記管内の、該管に充填された音響材料の表面側の所定
位置の音圧を測定する第1の音センサと、 前記管に充填された音響材料の背面側の、前記空間形成
部材により形成された前記空間内の所定位置の音圧を測
定する第2の音センサとを備えたことを特徴とする音響
特性測定装置。
1. A tube in which a portion of a longitudinal direction is filled with an acoustic material to be measured, a sound source that emits a sound wave into the tube toward a surface of the acoustic material filled in the tube, and a tube that fills the tube. A space forming member that forms a space so that the length of the space can be changed on the back side of the acoustic material that has been formed, and a sound pressure at a predetermined position on the surface side of the acoustic material filled in the tube in the tube. A first sound sensor for measuring, and a second sound sensor for measuring a sound pressure at a predetermined position in the space formed by the space forming member on the back side of the acoustic material filled in the tube. An acoustic characteristic measuring device, characterized in that:
【請求項2】 前記空間の長さが相違する複数の条件下
における、前記第1の音センサおよび前記第2の音セン
サで得られた音圧に基づいて、前記管内に充填された音
響材料の音響的な特性を求める演算部を備えたことを特
徴とする請求項1記載の音響特性測定装置。
2. An acoustic material filled in the pipe based on sound pressures obtained by the first sound sensor and the second sound sensor under a plurality of conditions having different lengths of the space. 2. The acoustic characteristic measuring device according to claim 1, further comprising a calculation unit for calculating acoustic characteristics of the acoustic characteristic.
【請求項3】 前記空間形成部材が、前記管に充填され
た音響材料の背面側に、前記空間を、該空間の長さを長
さゼロを含んで変更自在に形成するものであることを特
徴とする請求項1記載の音響特性測定装置。
3. The method according to claim 1, wherein the space forming member is formed on the back side of the acoustic material filled in the tube so as to freely change the length of the space including the length of zero. The acoustic characteristic measuring device according to claim 1, wherein:
【請求項4】 前記第1のセンサが前記管に充填された
音響材料の表面位置の音圧を測定するものであることを
特徴とする請求項1記載の音響特性測定装置。
4. The acoustic characteristic measuring apparatus according to claim 1, wherein said first sensor measures a sound pressure at a surface position of the acoustic material filled in said tube.
【請求項5】 前記第2のセンサが、前記空間内の、前
記管内に充填された音響材料の背面から最も離れた位置
の音圧を測定するものであることを特徴とする請求項1
記載の音響特性測定装置。
5. The sound sensor according to claim 1, wherein the second sensor measures a sound pressure at a position in the space farthest from a back surface of the acoustic material filled in the tube.
An acoustic characteristic measuring apparatus as described in the above.
JP23440298A 1998-08-20 1998-08-20 Acoustic characteristic measuring device Expired - Fee Related JP3845519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23440298A JP3845519B2 (en) 1998-08-20 1998-08-20 Acoustic characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23440298A JP3845519B2 (en) 1998-08-20 1998-08-20 Acoustic characteristic measuring device

Publications (2)

Publication Number Publication Date
JP2000065635A true JP2000065635A (en) 2000-03-03
JP3845519B2 JP3845519B2 (en) 2006-11-15

Family

ID=16970451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23440298A Expired - Fee Related JP3845519B2 (en) 1998-08-20 1998-08-20 Acoustic characteristic measuring device

Country Status (1)

Country Link
JP (1) JP3845519B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124187A (en) * 2005-10-27 2007-05-17 Audio Technica Corp Acoustic resistance measurement apparatus and acoustic resistance adjustment method of acoustic tube using the same
JP2010210363A (en) * 2009-03-10 2010-09-24 Howa Textile Industry Co Ltd Method for predicting acoustic characteristic of porous material
JP2012194029A (en) * 2011-03-16 2012-10-11 Foster Electric Co Ltd Acoustic characteristics measuring device
JP2012202802A (en) * 2011-03-25 2012-10-22 Foster Electric Co Ltd Acoustic characteristic measurement system and acoustic characteristic measurement method
JP2012202804A (en) * 2011-03-25 2012-10-22 Foster Electric Co Ltd Acoustic characteristic measurement device
JP2013140350A (en) * 2011-12-09 2013-07-18 Yamaha Corp Device and method for calculating transfer characteristic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124187A (en) * 2005-10-27 2007-05-17 Audio Technica Corp Acoustic resistance measurement apparatus and acoustic resistance adjustment method of acoustic tube using the same
JP4633598B2 (en) * 2005-10-27 2011-02-16 株式会社オーディオテクニカ Acoustic resistance measuring device and method for adjusting acoustic resistance of acoustic tube using the same
JP2010210363A (en) * 2009-03-10 2010-09-24 Howa Textile Industry Co Ltd Method for predicting acoustic characteristic of porous material
JP2012194029A (en) * 2011-03-16 2012-10-11 Foster Electric Co Ltd Acoustic characteristics measuring device
JP2012202802A (en) * 2011-03-25 2012-10-22 Foster Electric Co Ltd Acoustic characteristic measurement system and acoustic characteristic measurement method
JP2012202804A (en) * 2011-03-25 2012-10-22 Foster Electric Co Ltd Acoustic characteristic measurement device
JP2013140350A (en) * 2011-12-09 2013-07-18 Yamaha Corp Device and method for calculating transfer characteristic

Also Published As

Publication number Publication date
JP3845519B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
WO2020098477A1 (en) Low-frequency coupling sound absorbing structure
Selamet et al. Helmholtz resonator lined with absorbing material
Kang et al. Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space
Langfeldt et al. Resonance frequencies and sound absorption of Helmholtz resonators with multiple necks
Lee et al. A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials
Amir et al. A study of wave propagation in varying cross-section waveguides by modal decomposition. Part II. Results
Magnani et al. Acoustic absorption modeling of single and multiple coiled-up resonators
TW201424410A (en) Microphone test fixture
JP2000065635A (en) Apparatus for measuring acoustic characteristic
Hélie et al. One-dimensional acoustic models of horns and comparison with measurements
Jones et al. Impedance eduction for multisegment liners
Prasetiyo et al. Sound absorption characteristics of thin parallel microperforated panel (MPP) for random incidence field
Kennelly et al. Acoustic impedance and its measurement
Botts et al. Extension of a spectral time-stepping domain decomposition method for dispersive and dissipative wave propagation
Demír et al. Wiener–Hopf approach for predicting the transmission loss of a circular silencer with a locally reacting lining
Kang et al. Sound propagation in circular ducts lined with noise control foams
JP2004125662A (en) Transmission loss measuring method, transmission loss measuring instrument, and transmission loss measuring program
Randeberg A Helmholtz resonator with a lateral elongated orifice
Portí et al. TLM method and acoustics
Bykov et al. Design of helmholtz resonator with required characteristics
Algburi et al. Acoustic scattering reduction in elastic materials with Bat optimization algorithm
Nark et al. Development of a multi-fidelity approach to acoustic liner impedance eduction
Aballéa et al. Single and multiple reflections in plane obstacle using the parabolic equation method with a complementary Kirchhoff approximation
Pierce et al. Low-frequency models of sound transmission
JPH07333053A (en) Method and apparatus for measuring sound absorption performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140825

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees