JP2000065518A - Phase difference measurement method of optical heterodyne interferometer - Google Patents

Phase difference measurement method of optical heterodyne interferometer

Info

Publication number
JP2000065518A
JP2000065518A JP10276378A JP27637898A JP2000065518A JP 2000065518 A JP2000065518 A JP 2000065518A JP 10276378 A JP10276378 A JP 10276378A JP 27637898 A JP27637898 A JP 27637898A JP 2000065518 A JP2000065518 A JP 2000065518A
Authority
JP
Japan
Prior art keywords
beat
phase difference
light
target
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276378A
Other languages
Japanese (ja)
Inventor
Shiyuuko Yokoyama
修子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10276378A priority Critical patent/JP2000065518A/en
Publication of JP2000065518A publication Critical patent/JP2000065518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately obtain the position of a target in real time by obtaining the sum or the difference of the light beat signal waveforms between reference and measurement light, obtaining the maximum value of an envelope curve for connecting the extreme values of a beat signal and the amount of displacement at a certain point, and then performing the operation of both of them. SOLUTION: A laser 1 emits two frequency beams where polarized beams with a frequency difference of F cross each other and applies them to an optical heterodyne interferometer 2 and then emits reference light with a frequency difference of F and measurement light with a frequency difference of (f) being Doppler-shifted by the move of a target in the interferometer. They are detected by photodetectors 4 and 5, respectively, and light beat signals cos2πFt and cos2πft are outputted due to the square characteristics. Both amplitudes are aligned by an amplitude controller 3 and are added and subtracted by an adder/subtractor 6, thus outputting a beat waveform. Only a waveform a(t) of the envelope curve of the beat waveform is taken out by a demodulator 7 to obtain a maximum value D of a(t). A specific calculator 8 obtains the ratio of the both at time (t) and displays a phase difference ϕ(t) at the time (t) by an inverse trigonometric function calculator 9 and displays it on a phase difference display 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ヘテロダイン干渉計に
おいて移動中の標的の位置を、光の波長以下の目盛りで
計測する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position of a moving target in an optical heterodyne interferometer on a scale smaller than the wavelength of light.

【0002】[0002]

【従来の技術】元来、光ヘテロダイン干渉計は光源の光
の100分の1以下の目盛りで標的の位置を決定する方
法とされ、発展したものである。しかし、これはあくま
で移動した後に静止するという2つの条件を満足する標
的移動間の距離つまり移動量に関するものであった。
2. Description of the Related Art An optical heterodyne interferometer was originally developed as a method of determining the position of a target on a scale of 1/100 or less of the light of a light source. However, this relates only to the distance between the target movements that satisfies the two conditions of the movement and then the standstill, that is, the movement amount.

【0003】それに対し、光ヘテロダインの干渉腕の長
さつまり標的を静止させず、移動を続行したまま、ある
時点tにおける標的の位置を光の波長以下の目盛りで読
み取るという要請が増加している。
On the other hand, there is an increasing demand for reading the position of a target at a certain time point t on a scale equal to or smaller than the wavelength of light while keeping the movement of the interference arm of the optical heterodyne, that is, without stopping the target. .

【0004】この問題を近似的に解決する手段としては
光ヘテロダイン干渉計で変化する側を含む光ビートの周
波数(例えばゼーマンレーザの計測側の光ビート周波
数)をPLLとVCOを用いて例えば256倍にしてお
き、この256倍されたものを計数するもので、波長の
256分の1の目盛りで標的の位置の読み取りができる
ことになる。しかしこれは前記光ビートの一周期過去の
周期を用いて、それと現時点の周期が正確に等しいとい
う前提に立つもので、標的が256分の波長という世界
で一定速度で移動すると仮定すると正しい。
As a means for approximately solving this problem, a frequency of an optical beat including a changing side in an optical heterodyne interferometer (for example, an optical beat frequency on a measuring side of a Zeeman laser) is increased by, for example, 256 times using a PLL and a VCO. In this case, the value multiplied by 256 is counted, and the position of the target can be read on a scale of 1/256 of the wavelength. However, this is based on the premise that the period of the light beat is one period before and that the period at the present time is exactly equal, and it is correct to assume that the target moves at a constant speed in the world of a wavelength of 256 minutes.

【0005】しかし、標的の動きの把握の微細化、積極
的に細かい速度変化を標的に与える可能性も考えられる
今日、さらに実時間性の高い標的の位置決定の方法が求
められる。
[0005] However, with the possibility of finer grasp of the movement of the target and the possibility of positively giving a fine speed change to the target, a method for determining the position of the target with higher real time is required.

【0006】[0006]

【発明が解決しようとする課題】移動中の標的の位置を
光ヘテロダイン干渉における光ヘテロダイン信号の位相
の精度で原理的に実時間の型で知る方法を提供すること
を課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method in which the position of a moving target can be known in principle in real time with the accuracy of the phase of an optical heterodyne signal in optical heterodyne interference.

【0007】[0007]

【課題を解決するための手段】この課題の基本には、周
波数が異なる交流信号の位相差とは何かという、イメー
ジがはっきりしない問題の整理が必要となる。
The basis of this problem is to sort out the problem that the image is not clear, that is, what is the phase difference between AC signals having different frequencies.

【0008】光ヘテロダイン干渉計においては、光ビー
ト周波数の差は、光ビート周波数差として正確にこれを
とらえ、その異なる光ビート周波数の差が生む一周期内
の位相差の細かい変化を標的の位置の変化としてとらえ
なければならない。
In the optical heterodyne interferometer, the difference between the optical beat frequencies is accurately taken as the optical beat frequency difference, and the fine change in the phase difference within one cycle caused by the different optical beat frequency difference is detected by the target position. Must be seen as a change in

【0009】ここで本明細書における用語の整理をして
おく。すなわち光ビートとビートの違いである。光ビー
トは2つの周波数の異なる光のビートで検知器の持つ自
乗特性によって得られるものである。これに対してビー
トは2つの光ビートを重ねることによって得られる「う
なり」である。
Here, the terms used in this specification will be organized. That is, the difference between an optical beat and a beat. The optical beat is a beat of light having two different frequencies and is obtained by the square characteristic of the detector. A beat, on the other hand, is a "beat" obtained by overlapping two optical beats.

【0010】光ヘテロダインの摸式図をA schematic diagram of an optical heterodyne is shown in FIG.

【図1】に示す。ここでは参照光ビートの周波数はFで
標的(M)の移動によるドップラシフトを△f,計測
側の周波数をfとしている。D,Dは光検知器であ
り、入射光は周波差がFの直交偏光を持つレーザ光であ
る。今、標的がvで移動していると、ドップラーシフト
は△ω=2π△f=kvで与えられる。
FIG. 1 shows. Here, the frequency of the reference light beat is F, the Doppler shift due to the movement of the target (M 2 ) is Δf, and the frequency on the measurement side is f. D 1 and D 2 are photodetectors, and the incident light is a laser beam having orthogonal polarization with a frequency difference of F. Now, if the target is moving at v, the Doppler shift is given by △ ω = 2π △ f = kv.

【0011】ビートを求めるため、参照光ビートの波を
cos2πFt,計測側の波をcos2πftとして
In order to obtain a beat, the wave of the reference light beat is cos2πFt, and the wave on the measurement side is cos2πft.

【式1】 のように加算すると(Equation 1) If you add like

【式2】 が得られる。この式の後半のコサインは振幅が変化する
ビート信号であり、前半のコサインはビート信号の振幅
の変化を表している。この式で注目したいのは前半のコ
サインが零となる前後でありそこでは符号が反転してい
るということである。振幅の反転があるということは、
後半のコサインの位相が180°飛躍するということを
意味する。(
(Equation 2) Is obtained. The cosine in the second half of the equation is a beat signal whose amplitude changes, and the cosine in the first half indicates a change in the amplitude of the beat signal. What we want to pay attention to in this expression is that the sign is inverted before and after the first half cosine becomes zero. The fact that there is an inversion of the amplitude means that
This means that the phase of the second half cosine jumps 180 °. (

【図3】)[Fig. 3]

【0012】[0012]

【式1】のコサインの前半をa(t)で表したのがThe first half of the cosine of Equation 1 is represented by a (t).

【式3】 であるが、これはビート信号のピークを結んだとしたと
き考えられるもので、包絡線と呼んだがそのままでは実
在するものではない。さらにドップラーシフトの式
(Equation 3) However, this is considered when the peak of the beat signal is connected, and although it is called an envelope, it does not exist as it is. Further Doppler shift formula

【式4】 を用いて(Equation 4) Using

【式5】 (Equation 5) ,

【式6】 が得られる。(Equation 6) Is obtained.

【0013】次にNext,

【式7】 のように実関数を複素関数で書き換えて複素平面のベク
トルとしさらに加算においては一方のベクトルの回転を
とめて行った方が便利である。ここでは角周波数が2π
Fの方のベクトルを実軸上で固定している。その結果は
Equation 7 It is more convenient to rewrite the real function with a complex function to obtain a vector on a complex plane, and to stop the rotation of one of the vectors in addition. Here the angular frequency is 2π
The vector of F is fixed on the real axis. The result is

【図2】のようになる。FIG. 2 is as follows.

【図2】から[Fig. 2]

【式8】 (Equation 8) ,

【式9】 [Equation 9] ,

【式10】 が成立し2a(t)が前記包絡線の変位を表している。
また、ここでは信号の振幅を1とし トルを表す。
(Equation 10) Holds, and 2a (t) represents the displacement of the envelope.
Here, the amplitude of the signal is assumed to be 1. Tor.

【0014】 変位であり、そのときのアーギュメントφが位相差であ
ることがわかる。そして
[0014] It can be seen that the displacement is a phase difference. And

【式9】の通りφ=kvtであるので、もし標的の速度
が一定ならばφは次にa(t)が0になるまで線形的に
変化するが、vが一定でなくv=v(t)であるときは
φは
Since φ = kvt as shown in Equation 9, if the speed of the target is constant, φ changes linearly until a (t) becomes 0, but v is not constant and v = v ( When t), φ is

【式11】 のように変化する。[Equation 11] It changes like

【0015】以上の位相差φはThe above phase difference φ is

【式10】で見られる通りcosφ=a(t)/Dで与
えられる。従って、Dおよびa(t)を測定してφ=c
os−1a(t)/Dを求めれば、ψ=kvtの値を知
ることができる。また2つの光ビート波形の和の代わり
に差を求めてもよく、その場合は
As seen from Equation 10, it is given by cos φ = a (t) / D. Therefore, by measuring D and a (t), φ = c
By calculating os −1 a (t) / D, the value of ψ = kvt can be known. Alternatively, a difference may be obtained instead of the sum of two optical beat waveforms. In that case,

【式12】 のようにコサインがサインに変わる。(Equation 12) The cosine changes to a sine like.

【0016】[0016]

【発明の実施の形態】光ヘテロダイン干渉計の参照側、
計測側の2つの光ビートを光検知器で取り出し、両ビー
トの振幅が等しくなるよう制御し、この光ビート信号の
加、減算を行って光ビート信号のビート信号を作成し、
このビート信号の振幅の変化を示す包絡線の形a(t)
を求める。この包絡線の形の求め方は多様であるが、時
点t近傍におけるビート信号の極値を直接読み取り
DETAILED DESCRIPTION OF THE INVENTION Reference side of an optical heterodyne interferometer,
The two optical beats on the measurement side are taken out by the photodetector, and the amplitudes of both beats are controlled to be equal, and the addition and subtraction of the optical beat signals are performed to create a beat signal of the optical beat signal.
The shape of the envelope a (t) indicating the change in the amplitude of the beat signal
Ask for. Although there are various ways to determine the shape of the envelope, the extreme value of the beat signal near time t is directly read.

【図3】、高速A−D変換するのが好ましいが、他に自
乗検波、同期検波、整流検波を行って求めることもでき
る。a(t)の形と同時にその最大値Dを求める。
FIG. 3 shows that high-speed A / D conversion is preferable, but it can also be obtained by performing square detection, synchronous detection, and rectification detection. The maximum value D is obtained simultaneously with the form of a (t).

【0017】両者が判ると φ=cos−1[a(t)
/D](加算)、あるいはφ’=sin−1[a(t)
/D](減算)を計算し、位相差φを求める。そして、
When both are known, φ = cos −1 [a (t)
/ D] (addition) or φ ′ = sin −1 [a (t)
/ D] (subtraction) to determine the phase difference φ. And

【図2】における円周の右半分を用いる方が得策であ
る。そのためφ’=φ+90°あるいはφ−90°を用
いる。
It is better to use the right half of the circumference in FIG. Therefore, φ ′ = φ + 90 ° or φ−90 ° is used.

【0018】また、ここではビート信号の周期は一定し
ていなくてもよい。すなわち包絡線の形は半周期の間で
時間軸の目盛りの幅が変化してもよいすなわち標的の速
度に細かい変動が存在してもよい。
Here, the period of the beat signal may not be constant. That is, the shape of the envelope may vary in the width of the time axis scale during a half cycle, that is, there may be fine variations in the speed of the target.

【0019】[0019]

【実施例】レーザ1は周波数差がFの偏光が直交した2
周波光を放出する。この光は光ヘテロダイン干渉計2に
入射し、干渉計2からは周波数差がFの光と、干渉計内
の標的の移動によるドップラーシフトを受けた周波数差
fの計測光が取り出される。これらの光はそれぞれ光検
知器4、5で検知されるが、光検知器の持つ自乗特性の
ため周波数がそれぞれF,fの光ビート信号cos2π
Ft,cos2πftが得られる。2つの光ビート信号
の振幅を等しくするため振幅制御器3が設けられてい
る。この制御はポッケルスセルや液晶などで光学的に行
ってもよいし、光ビート信号に対し電気的に行ってもよ
い。この2つの光ビート信号の波形は加、減算器6で加
算あるいは減算され、「うなり」つまりビート波形を得
る。この得られたビート波形
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A laser 1 has a frequency difference F and a polarization 2 orthogonal to each other.
Emits high frequency light. This light is incident on the optical heterodyne interferometer 2, and from the interferometer 2, light having a frequency difference of F and measurement light having a frequency difference f subjected to Doppler shift due to movement of a target in the interferometer are extracted. These lights are detected by the photodetectors 4 and 5, respectively, but due to the square property of the photodetectors, the optical beat signals cos2π having frequencies of F and f, respectively.
Ft, cos2πft is obtained. An amplitude controller 3 is provided to equalize the amplitudes of the two optical beat signals. This control may be performed optically using a Pockels cell or a liquid crystal, or may be performed electrically for an optical beat signal. The waveforms of the two optical beat signals are added or subtracted by the adder / subtractor 6 to obtain a "beat", that is, a beat waveform. This obtained beat waveform

【図3】の包絡線の波形a(t)のみを復調器7で取り
出すと共にa(t)の最大値Dの決定を行う。さらに、
時点tにおける両者の比が比計算器8で求められ、逆三
角関数計算器9で時点tの位相差ψ(t)が位相差標示
器10で示される。
FIG. 3 shows that only the envelope waveform a (t) of FIG. 3 is extracted by the demodulator 7 and the maximum value D of a (t) is determined. further,
The ratio between the two at the time point t is determined by the ratio calculator 8, and the phase difference t (t) at the time point t is indicated by the inverse trigonometric function calculator 9 by the phase difference indicator 10.

【0020】[0020]

【発明の効果】光ヘテロダイン干渉計で2分の1波長以
下の長さの決定を実時間で行う。この場合、測定対象と
なる標的は移動中であってもよい。
The length of a half wavelength or less is determined in real time by an optical heterodyne interferometer. In this case, the target to be measured may be moving.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の基本を示す説明図である。FIG. 1 is an explanatory diagram showing the basics of the present invention.

【図2】 本発明に係る式の展開のための説明図であ
る。
FIG. 2 is an explanatory diagram for developing an equation according to the present invention.

【図3】 本発明で用いるビートの図である。FIG. 3 is a diagram of a beat used in the present invention.

【図4】 本発明の実施例である。FIG. 4 is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

k、 波数 1、 直交2周波レーザ 2、 光ヘテロダイン干渉計 3、 振幅制御器 4、5、 光検知器 6、 加減算器 7、 複調器 8、 比計算器 9、 逆三角関数計算器 10、 位相差表示器 k, wave number 1, quadrature two-frequency laser 2, optical heterodyne interferometer 3, amplitude controller 4, 5, photodetector 6, adder / subtractor 7, doubletoner 8, ratio calculator 9, inverse trigonometric function calculator 10, Phase difference display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】周波数の異なる参照光ビート信号と計測光
ビート信号の振幅が等しくなるように制御した後、該2
つの信号波形の加算あるいは減算を行い、その結果得ら
れる波形のうなり、すなわち、ビート信号の極値を結ん
で得られるところの包絡線a(t)の最大値Dと、ある
時点tにおける変位量、つまりa(t)を求めさらにa
(t)/Dのアークコサインあるいはアークサインを求
めることにより時点tにおける位相差決定を行うことを
特徴とする光ヘテロダイン位相差測定法。
After controlling the reference light beat signal and the measurement light beat signal having different frequencies to have the same amplitude,
Addition or subtraction of two signal waveforms is performed, and the resulting waveform beats, that is, the maximum value D of the envelope a (t) obtained by connecting the extreme values of the beat signal, and the displacement amount at a certain time t That is, a (t) is obtained and a
An optical heterodyne phase difference measuring method, wherein a phase difference is determined at a time point t by obtaining an arc cosine or an arc sine of (t) / D.
JP10276378A 1998-08-24 1998-08-24 Phase difference measurement method of optical heterodyne interferometer Pending JP2000065518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276378A JP2000065518A (en) 1998-08-24 1998-08-24 Phase difference measurement method of optical heterodyne interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276378A JP2000065518A (en) 1998-08-24 1998-08-24 Phase difference measurement method of optical heterodyne interferometer

Publications (1)

Publication Number Publication Date
JP2000065518A true JP2000065518A (en) 2000-03-03

Family

ID=17568601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276378A Pending JP2000065518A (en) 1998-08-24 1998-08-24 Phase difference measurement method of optical heterodyne interferometer

Country Status (1)

Country Link
JP (1) JP2000065518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025037B3 (en) * 2007-05-29 2008-12-18 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for determining frequency or phase difference between polarized ray of light and polarizing local oscillator ray of light, involves receiving of ray of light from transmission device, and decoupling local oscillator ray of light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025037B3 (en) * 2007-05-29 2008-12-18 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Method for determining frequency or phase difference between polarized ray of light and polarizing local oscillator ray of light, involves receiving of ray of light from transmission device, and decoupling local oscillator ray of light

Similar Documents

Publication Publication Date Title
CN110411335B (en) Differential sine phase modulation laser interference nano displacement measuring device and method
JP4559650B2 (en) Optical rotation measuring device and optical rotation measuring method
CN102840869B (en) Measuring method for fiber optic gyroscope eigenfrequency
CN107806821B (en) With the difference single-frequency interference signal processing unit and method of integrated four photodetectors
EP0396632B1 (en) Closed loop fiber optic gyroscope
JPH11511246A (en) Natural frequency tracker for fiber optic sensing coils
CN109631959B (en) Atomic spin precession detection device and method based on optical fiber Sagnac interference
JPS60228916A (en) Device for detecting and measuring physical parameter
JPH0375041B2 (en)
JP2000065518A (en) Phase difference measurement method of optical heterodyne interferometer
JPH09113217A (en) Optical heterodyne type displacement amount detection device
KR900005640B1 (en) Method of and apparatus for opicacly mesuring idsplacement
JPS60243509A (en) Interferometer
WO2022127137A1 (en) Atomic interference gyroscope signal resolving method and apparatus, computer device, and storage medium
JPH0660820B2 (en) Fiber optical rotation sensor
JPH0612333B2 (en) Automatic birefringence measuring device
JP4520560B2 (en) Method and apparatus for determining the number of fringes of an optical fiber gyro
JPH01502536A (en) Apparatus and method for determining the direction of an atomic beam
JP2647959B2 (en) Speed control device for moving mirror
JPS6280512A (en) Optical fiber gyro
JP2023119469A (en) Contactless distance measuring device and method
JPH03118415A (en) Interference measuring method, interference sensor, interference sensor circuit, interference sensor lsi, and optical fiber gyro apparatus
JPH02189412A (en) Optical fiber gyroscope
JPH0469731B2 (en)
JPH03226606A (en) Laser length measuring instrument