JP2000063930A - Method for refining molten low sulfur steel containing little nitrogen - Google Patents

Method for refining molten low sulfur steel containing little nitrogen

Info

Publication number
JP2000063930A
JP2000063930A JP10247792A JP24779298A JP2000063930A JP 2000063930 A JP2000063930 A JP 2000063930A JP 10247792 A JP10247792 A JP 10247792A JP 24779298 A JP24779298 A JP 24779298A JP 2000063930 A JP2000063930 A JP 2000063930A
Authority
JP
Japan
Prior art keywords
molten steel
refining
nitrogen
ladle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10247792A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aoki
裕幸 青木
Kohei Kimura
晃平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10247792A priority Critical patent/JP2000063930A/en
Publication of JP2000063930A publication Critical patent/JP2000063930A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refining method of molten low sulfur steel containing little nitrogen, with which the increase of consumption of steam, etc., supplied into a booster, etc., used for reduction of the pressure and the lowering of temp. of the molten steel are prevented and the absorption of the nitrogen is restrained. SOLUTION: In the refining method of the molten steel for executing decarburization and degassing-refining by reducing the pressure in an immersion tube 13, while blowing inert gas from the bottom part 18 of a ladle 11 by dipping one piece of the immersion tube 13 into the molten steel 12 in the ladle 11, after executing the decarburization and the degassing-refining, fuel and oxygen-containing gas are supplied into the immersion tube 13 to raise the inner pressure in the immersion tube 13 higher than the atmospheric pressure while burning the fuel, and flux is added into the immersion tube 13 to execute the desulfurizing-refining of the molten steel 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脱炭及び脱ガス精
錬を行う減圧精錬装置を用いた吸窒素(窒素ピックアッ
プ)の少ない低硫黄溶鋼の精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining low-sulfur molten steel with a small amount of nitrogen absorption (nitrogen pickup) using a vacuum refining device for decarburization and degassing refining.

【0002】[0002]

【従来の技術】溶鋼の炭素、窒素あるいは水素濃度を低
下させる方法として、真空(減圧)を利用したRH、D
HやVOD等が広く用いられている。しかし、これ等の
方法では、溶鋼の炭素や窒素等をある程度にまで低減で
きるが、十分に低減した溶鋼の溶製は困難である。従っ
て、減圧下における精錬効率を高めて極低炭素、低水素
や低硫黄等の溶鋼の溶製を行う方法として、例えば、特
開平1−92314号公報には、脱炭及び脱ガス精錬時
には、取鍋内径の0.5以下の内径を有する円筒形の浸
漬管を用い、この浸漬管内を排気して減圧すると共に、
取鍋の底部から不活性ガスを吹き込んで溶鋼を攪拌し、
脱硫処理(精錬)時には、取鍋内径の0.5より大きい
内径を有する円筒形の浸漬管を用いて、取鍋の底部の羽
口あるいはランスから溶鋼中に不活性ガスや脱硫剤を供
給する取鍋精錬方法が提案されている。また、特開平7
−278639号公報には以下に示す精錬方法が記載さ
れている。すなわち浸漬管内径D1 /取鍋内径Dを0.
5〜0.8にした浸漬管を溶鋼に浸漬し、この浸漬管内
を減圧して溶鋼を吸い上げた状態で取鍋の底部から不活
性ガスを吹き込み、溶鋼を攪拌しながらAlあるいはA
l合金鉄を添加して吹酸を行って昇熱し、次いで、減圧
した状態で浸漬管内に脱硫用のフラックスを添加するこ
とにより脱硫精錬を行い、引き続き浸漬管内を大気圧に
複圧して浸漬管の浸漬深さを0.5m未満にして不活性
ガスによる攪拌を行なっている。この精錬は、溶鋼を吹
酸昇温できるので、脱硫精錬等に要する時間の経過によ
って低下する溶鋼の温度を保証したり、精錬炉(転炉)
等に配合する冷鉄源(スクラップ)の使用量を増加でき
る等の利点がある。
2. Description of the Related Art As a method for lowering the carbon, nitrogen or hydrogen concentration of molten steel, RH and D utilizing vacuum (reduced pressure)
H and VOD are widely used. However, although these methods can reduce carbon and nitrogen in the molten steel to a certain extent, it is difficult to produce the molten steel that has been sufficiently reduced. Therefore, as a method of increasing the refining efficiency under reduced pressure to produce molten steel such as ultra-low carbon, low hydrogen and low sulfur, for example, in JP-A-1-92314, during decarburization and degassing refining, A cylindrical dip tube having an inner diameter of 0.5 or less of the ladle inner diameter is used, and the dip tube is evacuated to reduce the pressure.
Blow inert gas from the bottom of the ladle to stir molten steel,
During desulfurization (refining), an inert gas or desulfurizing agent is supplied into molten steel from the tuyere or lance at the bottom of the ladle by using a cylindrical dipping tube having an inner diameter larger than 0.5 of the ladle. A ladle refining method has been proposed. In addition, JP-A-7
The following refining method is described in JP-A-278639. That is, the inner diameter D 1 of the dipping tube / the inner diameter D of the ladle is set to 0.
The immersion pipe adjusted to 5 to 0.8 is immersed in molten steel, the interior of the immersion pipe is decompressed and the molten steel is sucked up, and an inert gas is blown from the bottom of the ladle to mix Al or A while stirring the molten steel.
lAlloy iron was added to carry out blowing acid to heat up, and then desulfurization refining was carried out by adding a flux for desulfurization in the dipping pipe in a depressurized state, and then the dipping pipe was subjected to multiple pressure to atmospheric pressure to dip the dipping pipe. The immersion depth is less than 0.5 m, and stirring is performed with an inert gas. Since this refining can raise the temperature of the molten steel by blowing acid, it guarantees the temperature of the molten steel that decreases with the passage of time required for desulfurization refining, etc., and the refining furnace (converter)
There is an advantage that the amount of cold iron source (scrap) used in the above can be increased.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
1−92314号公報に記載された精錬方法では、脱炭
及び脱ガス精錬に用いる浸漬管と脱硫精錬に用いる浸漬
管の条件が異なるために二種類の浸漬管が必要になる。
従って、脱炭及び脱ガス精錬を行った浸漬管をそのまま
用いて、引き続き脱硫精錬を行うことが困難であり、そ
れぞれに別の浸漬管を用いているので、浸漬管の耐火物
の消耗を招いて耐火物コストが上昇する。更に、脱硫精
錬においても2torr近傍の高真空度に減圧して行な
うためにブースター等に供給する蒸気、電力等の消費量
が増大する。また、脱硫精錬の放熱により溶鋼の温度が
低下し、連続鋳造等の後工程で地金付きやノズル詰ま
り、鋳造歩留りの低下や鋳造の停止等の問題が生じる。
また、特開平7−278639号公報に記載された精錬
方法では、AlあるいはAl合金鉄を添加して、吹酸を
行って昇温するので、スラグが過剰に酸化されて脱硫反
応の阻害や昇熱の際に局部加熱による耐火物の損耗を招
く場合がある。更に、この精錬は、100torr以下
の高真空度に減圧して、溶鋼の攪拌を強めて脱硫するの
で、ブースター等に供給する蒸気や電力等の消費量が増
大し、脱硫精錬の放熱による溶鋼の温度低下を生じて、
特開平1−92314号公報に記載された精錬方法と同
様の地金付きやノズル詰まり、鋳造歩留りの低下、鋳造
の停止等の問題がある。また、この脱硫精錬を終了した
後に、浸漬管内を大気圧に複圧してから浸漬管の浸漬す
る深さを0.5m未満にして不活性ガスにより溶鋼の攪
拌を行うので、浸漬管及び排気系等から浸入した外気
(空気)によって、溶鋼への吸窒素(窒素ピックアッ
プ)が発生して低窒素の溶鋼の溶製が困難となる等の問
題がある。
However, in the refining method described in JP-A-1-92314, the conditions of the dipping pipe used for decarburization and degassing and the dipping pipe used for desulfurization refining are different. Different types of dip tubes are required.
Therefore, it is difficult to continue desulfurization refining using the decarburized and degassed refining dip pipes as they are, and because different dip pipes are used for each, the refractory of the dip pipe is consumed. And the cost of refractories increases. Further, even in desulfurization refining, since the pressure is reduced to a high degree of vacuum in the vicinity of 2 torr, the consumption of steam, electric power, etc. supplied to the booster and the like increases. Further, the heat of the desulfurization refining lowers the temperature of the molten steel, which causes problems such as metal clogging, nozzle clogging, lowering of casting yield and stopping of casting in the subsequent steps such as continuous casting.
Further, in the refining method described in Japanese Patent Application Laid-Open No. 7-278639, since Al or Al alloy iron is added and the temperature is raised by performing blowing acid, the slag is excessively oxidized to inhibit or increase the desulfurization reaction. In the case of heat, the refractory may be worn due to local heating. Further, in this refining, the pressure is reduced to a high vacuum degree of 100 torr or less to enhance the agitation of the molten steel to desulfurize, so that the consumption of steam, electric power, etc. supplied to the booster and the like increases, and the heat release of the desulfurization refining melts the molten steel. Causing a temperature drop,
As in the refining method described in Japanese Patent Application Laid-Open No. 1-92314, there are problems such as attaching metal, clogging of nozzle, lowering of casting yield, and stopping of casting. Further, after the desulfurization refining is completed, the inside of the dip pipe is subjected to multiple pressure to atmospheric pressure, and then the dipping depth of the dip pipe is set to less than 0.5 m to stir the molten steel with an inert gas. However, there is a problem in that nitrogen absorption (nitrogen pickup) occurs in the molten steel due to the outside air (air) infiltrating from the above, which makes it difficult to produce the molten steel having a low nitrogen content.

【0004】本発明はかかる事情に鑑みてなされたもの
で、減圧に用いるブースター等に供給する蒸気等の消費
量の増大や溶鋼の温度低下を防止し、溶鋼の吸窒素を抑
制した窒素の少ない低硫黄溶鋼の精錬方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and prevents an increase in consumption of steam or the like supplied to a booster or the like used for depressurization and a decrease in temperature of molten steel, and suppresses nitrogen absorption of molten steel to reduce the amount of nitrogen. An object is to provide a refining method for low-sulfur molten steel.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の窒素の少ない低硫黄溶鋼の精錬方法は、一本の浸
漬管を取鍋内の溶鋼に浸漬して、前記取鍋の底部から不
活性ガスを吹き込みながら、前記浸漬管内を減圧して脱
炭及び脱ガス精錬を行う溶鋼の精錬方法において、前記
脱炭及び脱ガス精錬を行って後、前記浸漬管内に燃料と
酸素含有気体を供給して、該燃料を燃焼させながら前記
浸漬管内の内圧を大気圧より高めて、該浸漬管内にフラ
ックスを添加して前記溶鋼の脱硫精錬を行う。
A method according to the above-mentioned object.
The method for refining low-sulfur molten steel containing less nitrogen is described by immersing a single dip tube in molten steel in a ladle and depressurizing the dip tube while depressurizing the dipping tube while blowing an inert gas from the bottom of the ladle. In a method for refining molten steel for performing charcoal and degassing refining, after performing the decarburization and degassing refining, supplying a fuel and an oxygen-containing gas into the immersion pipe, while burning the fuel, the internal pressure in the immersion pipe Is higher than atmospheric pressure, and a flux is added to the immersion pipe to desulfurize and refine the molten steel.

【0006】請求項2記載の窒素の少ない低硫黄溶鋼の
精錬方法は、請求項1記載の窒素の少ない低硫黄溶鋼の
精錬方法において、前記浸漬管内に添加するフラックス
のCaOの含有量を50〜99重量%とする。ここで、
浸漬管内に添加するフラックスのCaO含有量が50重
量%未満では、フラックス中のCaOの含有量が不足す
るので溶鋼の脱硫が悪くなる。一方、フラックスのCa
Oの含有量が99重量%を超えると、CaOの純度が高
くフラックスの価格が高くなり脱硫精錬費用が増大す
る。
The refining method for low-sulfur molten steel containing a small amount of nitrogen according to a second aspect is the refining method for a low-sulfur molten steel containing a small amount of nitrogen according to the first aspect, wherein the CaO content of the flux added to the dip pipe is 50 to 50%. It is set to 99% by weight. here,
If the CaO content of the flux added to the immersion pipe is less than 50% by weight, the content of CaO in the flux will be insufficient and the desulfurization of molten steel will be poor. On the other hand, Ca of flux
When the O content exceeds 99% by weight, the purity of CaO is high and the price of the flux is high, so that the desulfurization and refining cost is increased.

【0007】請求項3記載の窒素の少ない低硫黄溶鋼の
精錬方法は、請求項1又は2記載の窒素の少ない低硫黄
溶鋼の精錬方法において、前記浸漬管の溶鋼浸漬部の内
表面積が前記取鍋内の全溶鋼表面積の0.1〜0.7を
有する。
According to a third aspect of the present invention, there is provided a method for refining low-sulfur molten steel containing a small amount of nitrogen. Having a total molten steel surface area in the pan of 0.1-0.7.

【0008】[0008]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
窒素の少ない低硫黄溶鋼の精錬方法に適用する減圧精錬
装置10の断面図である。まず、減圧精錬装置10は、
鋼製で耐火物(図示せず)を内張りした取鍋11と、取
鍋11内の溶鋼12に浸漬する一本の浸漬管13及び真
空槽14と、浸漬管13及び真空槽14の内部を排気し
て減圧するためのエゼクターに連接した排気ダクト15
と、浸漬管13内に合金鉄等を添加するための貯蔵ホッ
パー16、添加シュート17を備えている。更に、取鍋
11の底部18には、取鍋11内に不活性ガスを吹き込
むためのポーラスプラグ19を設けており、不活性ガス
の吹き込みにより矢印で示す溶鋼12の流れを形成して
いる。また、真空槽14の上部には、燃料と酸素含有気
体を供給して混合燃焼するランス20を自在に昇降でき
るように設けている。なお、12aは浸漬管13内の溶
鋼12の湯面であり、13aと14aは浸漬管13と真
空槽14をボルト・ナット等の締結手段により接合する
ためのフランジである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. FIG. 1 is a cross-sectional view of a reduced pressure refining apparatus 10 applied to a method for refining low-sulfur molten steel containing less nitrogen according to an embodiment of the present invention. First, the vacuum refining device 10
A ladle 11 made of steel and lined with a refractory (not shown), a single dip tube 13 and a vacuum tank 14 for dipping in the molten steel 12 in the ladle 11, and an inside of the dip tube 13 and the vacuum tank 14 Exhaust duct 15 connected to an ejector for exhausting and reducing the pressure
In addition, the dipping tube 13 is provided with a storage hopper 16 and an addition chute 17 for adding iron alloy or the like. Further, a porous plug 19 for blowing an inert gas into the ladle 11 is provided on the bottom portion 18 of the ladle 11, and the flow of the molten steel 12 shown by the arrow is formed by the blowing of the inert gas. Further, a lance 20 for mixing and burning fuel and oxygen-containing gas is provided above the vacuum chamber 14 so that the lance 20 can be freely moved up and down. Incidentally, 12a is a molten metal surface of the molten steel 12 in the dip tube 13, and 13a and 14a are flanges for joining the dip tube 13 and the vacuum chamber 14 by fastening means such as bolts and nuts.

【0009】次に、減圧精錬装置10を適用した窒素の
少ない低硫黄溶鋼の精錬方法について説明する。取鍋1
1に図示しない精錬炉の一例である転炉により、炭素濃
度を100〜600ppmに脱炭精錬した150トンの
溶鋼12を受鋼し、ポーラスプラグ19から不活性ガス
の一例であるアルゴンガスを溶鋼12中に0.6〜15
NL/(分・溶鋼トン)吹き込みながら、この溶鋼12
内に浸漬管13を浸漬して、浸漬管13及び真空槽14
内を0.1〜100torrに減圧して脱炭及び脱ガス
精錬を行った。また、この取鍋11と浸漬管13の条件
としては、浸漬管13の溶鋼浸漬部の内表面積(S2
を取鍋11内の全溶鋼表面積(S1 )の0.1〜0.7
にした。これは、(S2 )/(S1 )が0.1より小さ
いと、浸漬管13内に吹き込まれたアルゴンガスにより
形成される気泡活性面(アルゴンガス気泡の放出面)が
狭くなり脱炭とその後に行う脱硫精錬の促進が阻害され
る。一方、(S2 )/(S1 )が0.7より大きくなる
とサンプリング等の作業性が阻害されるからである。こ
の理由から(S2 )/(S1 )を0.15〜0.65に
するとより好ましい結果が得られる。そして、ポーラス
プラグ19から供給されるアルゴンガスによって、図1
中の矢印で示すように、取鍋11内の溶鋼12が攪拌さ
れ、浸漬管13の溶鋼12の湯面12aで膨張したアル
ゴンガスの気泡活性面で、脱炭反応が促進され、減圧雰
囲気による脱水素等(脱ガス)が行われる。この脱炭及
び脱ガス精錬は、溶鋼12中の炭素濃度が3〜10pp
m、水素濃度が1〜5ppmに到達した時点で終了し
た。
Next, a method for refining low-sulfur molten steel containing a small amount of nitrogen, which is applied with the reduced pressure refining apparatus 10, will be described. Ladle 1
A converter, which is an example of a refining furnace (not shown in FIG. 1), receives 150 tons of molten steel 12 that has been decarburized and refined to a carbon concentration of 100 to 600 ppm, and argon gas, which is an example of an inert gas, is melted from the porous plug 19. 0.6 to 15 in 12
While blowing NL / (min./ton of molten steel), this molten steel 12
The immersion tube 13 is immersed in the inside of the immersion tube 13 and the vacuum chamber 14.
The inside was decompressed to 0.1 to 100 torr for decarburization and degassing refining. The conditions for the ladle 11 and the dipping pipe 13 are as follows: the inner surface area (S 2 ) of the molten steel dipping portion of the dipping pipe 13
0.1 to 0.7 of the total surface area of molten steel (S 1 ) in the ladle 11
I chose This is because when (S 2 ) / (S 1 ) is smaller than 0.1, the bubble activation surface (the emission surface of the argon gas bubbles) formed by the argon gas blown into the dip tube 13 becomes narrow and decarburization occurs. And the promotion of desulfurization refining performed thereafter is hindered. On the other hand, if (S 2 ) / (S 1 ) is larger than 0.7, workability such as sampling is hindered. For this reason, more preferable results can be obtained by setting (S 2 ) / (S 1 ) to 0.15 to 0.65. Then, by the argon gas supplied from the porous plug 19, as shown in FIG.
As indicated by the arrow in the middle, the molten steel 12 in the ladle 11 is agitated, and the decarburization reaction is promoted by the bubble activation surface of the argon gas expanded in the molten metal surface 12a of the molten steel 12 of the dip tube 13 by the reduced pressure atmosphere. Dehydrogenation (degassing) is performed. In this decarburization and degassing refining, the carbon concentration in the molten steel 12 is 3 to 10 pp.
m and the hydrogen concentration reached 1 to 5 ppm.

【0010】脱炭及び脱ガス精錬を終了した後、引き続
きポーラスプラグ19からアルゴンガス量を0.6〜1
0NL/(分・溶鋼トン)供給しながら、浸漬管13及
び真空槽14内を大気圧に複圧すると同時に、ランス2
0を所定位置に下降してから燃料の一例であるプロパン
ガスを15〜150Nm3 /時間、酸素含有気体として
酸素を60〜500Nm3 /時間供給し、混合して燃焼
を開始する。そして、貯蔵ホッパー16からCaOを5
0〜99重量%含有した脱硫用のフラックスを1〜5k
g/(溶鋼トン)を切り出して添加シュート17から浸
漬管13内に添加する。このフラックスは、CaOにホ
タル石、アルミナ等を1〜50重量%添加するか、又は
前述のフラックスの他にMgやMg合金を用いることに
より、溶解あるいは軟化が促進されて脱硫反応が向上す
るので好ましい。添加されたフラックスが、湯面12a
で熱により溶解あるいは軟化してスラグ化し、図1中の
矢印で示す流れによって攪拌される溶鋼12と接触する
ことにより溶鋼12中の硫黄をフラックスに補足するい
わゆる脱硫精錬が行われる。
After finishing the decarburization and degassing refining, the amount of argon gas from the porous plug 19 is changed to 0.6-1.
While supplying 0 NL / (min / mol steel ton), the pressure inside the dip pipe 13 and the vacuum tank 14 is doubled to the atmospheric pressure, and at the same time, the lance 2
After 0 is lowered to a predetermined position, propane gas, which is an example of fuel, is supplied at 15 to 150 Nm 3 / hour and oxygen as an oxygen-containing gas is supplied at 60 to 500 Nm 3 / hour, and the mixture is mixed and combustion is started. And 5 CaO from the storage hopper 16
Flux for desulfurization containing 0 to 99% by weight of 1 to 5 k
g / (ton of molten steel) is cut out and added into the dipping pipe 13 from the addition chute 17. For this flux, by adding 1 to 50% by weight of fluorspar, alumina or the like to CaO, or by using Mg or a Mg alloy in addition to the above-mentioned flux, dissolution or softening is promoted and the desulfurization reaction is improved. preferable. The added flux is on the molten metal surface 12a.
At that time, so-called desulfurization refining is performed in which the flux in the molten steel 12 is supplemented with sulfur in the molten steel 12 by contacting the molten steel 12 stirred by the flow indicated by the arrow in FIG.

【0011】ところで、この脱硫精錬の浸漬管13及び
真空槽14の内部は、外気と遮断された状態になるが、
実際は、排気ダクト15を含めたガスクーラーやエゼク
ター等の排気系に生じた隙間から外気(空気)が浸入し
て、浸漬管13及び真空槽14内の窒素濃度が高くな
り、この空気中の窒素がスラグや湯面12aと接触す
る。その結果、溶鋼12が吸窒して窒素ピックアップを
招く。この吸窒素を抑制するために、前記のように、浸
漬管13及び真空槽14内でランス20からプロパンガ
スと酸素を供給して混合燃焼させることにより、浸漬管
13及び真空槽14の内圧を大気圧よりも1〜200m
mH2 O高める。浸漬管13及び真空槽14の内圧を大
気圧より高くすることにより、内部に浸入する空気が抑
制されて雰囲気中の窒素濃度を低く維持できるので、溶
鋼12の窒素ピックアップを防止できる。また、浸漬管
13及び真空槽14内にプロパンガスと酸素を供給して
燃焼させるので、浸漬管13及び真空槽14の内部を十
分に保熱することができ、溶鋼12の温度低下を防止で
きる。この溶鋼12の温度低下を防止することにより、
スラグと溶鋼12の脱硫反応も促進できる。ここで、浸
漬管13及び真空槽14内が大気圧より1mmH2 O未
満高い場合は、内圧が低くなり過ぎて浸漬管13及び真
空槽14の煉瓦目地等から外気が浸入して、溶鋼12に
吸窒素による窒素ピックアップが発生する。一方、浸漬
管13及び真空槽14の内圧が大気圧より200mmH
2 Oを超えて高くなると、ランス20から発生する火炎
が湯面12aに到達し難くなり着熱効率を悪くする。更
に、ランス20の吐出圧を高めた場合は、浸漬管13及
び真空槽14の耐火物に火炎が当たるので、耐火物の損
傷を招く等の問題がある。この理由から内圧は、大気圧
より10〜100mmH2 O高くするとより好ましい。
By the way, the insides of the desulfurization and refining dip pipe 13 and the vacuum chamber 14 are isolated from the outside air.
Actually, outside air (air) invades through a gap formed in an exhaust system such as a gas cooler or an ejector including the exhaust duct 15, so that the nitrogen concentration in the immersion pipe 13 and the vacuum tank 14 becomes high, and the nitrogen in the air is increased. Comes into contact with the slag and the molten metal surface 12a. As a result, the molten steel 12 absorbs nitrogen and causes nitrogen pickup. In order to suppress this nitrogen absorption, as described above, propane gas and oxygen are supplied from the lance 20 in the immersion pipe 13 and the vacuum tank 14 to cause mixed combustion, so that the internal pressures of the immersion pipe 13 and the vacuum tank 14 are increased. 1 to 200m above atmospheric pressure
Increase mH 2 O. By making the internal pressures of the immersion pipe 13 and the vacuum chamber 14 higher than the atmospheric pressure, the air invading the inside is suppressed and the nitrogen concentration in the atmosphere can be kept low, so that the nitrogen pickup of the molten steel 12 can be prevented. In addition, since propane gas and oxygen are supplied and burned in the immersion pipe 13 and the vacuum tank 14, the insides of the immersion pipe 13 and the vacuum tank 14 can be sufficiently kept warm, and the temperature drop of the molten steel 12 can be prevented. . By preventing the temperature drop of the molten steel 12,
The desulfurization reaction between the slag and the molten steel 12 can also be promoted. Here, when the inside of the dip pipe 13 and the vacuum tank 14 is higher than the atmospheric pressure by less than 1 mmH 2 O, the internal pressure becomes too low and the outside air enters from the brick joints of the dip tube 13 and the vacuum tank 14 to the molten steel 12. Nitrogen pickup occurs due to nitrogen absorption. On the other hand, the internal pressure of the dip tube 13 and the vacuum chamber 14 is 200 mmH above atmospheric pressure.
If it exceeds 2 O and becomes higher, the flame generated from the lance 20 is hard to reach the molten metal surface 12a, and the heat-adhesion efficiency is deteriorated. Further, when the discharge pressure of the lance 20 is increased, the refractory in the dip tube 13 and the vacuum chamber 14 is hit by the flame, which causes a problem such as damage to the refractory. For this reason, the internal pressure is more preferably higher than the atmospheric pressure by 10 to 100 mmH 2 O.

【0012】[0012]

【実施例】次に、窒素の少ない低硫黄溶鋼の精錬方法の
実施例について説明する。転炉を用いて、炭素濃度を3
00ppmに脱炭した150トンの溶鋼12を入れた取
鍋11内に、ポーラスプラグ19から5NL/(分・溶
鋼トン)のアルゴンガスを吹き込みながら、浸漬管13
及び真空槽14内を減圧して脱炭及び脱ガス精錬を行っ
て後、引き続き燃料を燃焼させながら脱硫精錬を行っ
た。そして、溶鋼の窒素(N)及び硫黄(S)濃度等に
ついて調査した。
EXAMPLE Next, an example of a refining method for low-sulfur molten steel containing a small amount of nitrogen will be described. Use a converter to increase the carbon concentration to 3
While dipping 5 NL / (min. Molten steel ton) of argon gas from the porous plug 19 into the ladle 11 containing 150 ton of molten steel 12 decarburized to 00 ppm, the dipping pipe 13
Further, after decompressing and degassing refining by depressurizing the inside of the vacuum tank 14, desulfurization refining was carried out while burning fuel continuously. Then, the nitrogen (N) and sulfur (S) concentrations of the molten steel were investigated.

【0013】表1に示すように、まず、実施例1は、取
鍋11内の全溶鋼表面積に対する浸漬管13の溶鋼浸漬
部の内表面積(S2 /S1)が0.5に相当する浸漬管1
3を浸漬し、プロパンガスを112Nm3 /時間と酸素
を280Nm3 /時間を供給して燃焼して浸漬管13内
を大気圧より10mmH2 O高い内圧に維持しながら、
フラックスの一例である生石灰粉(CaOを98重量%
含有)を2kg/溶鋼トン添加して、6分間の脱硫精錬
を行った。その結果、硫黄濃度が19ppmと良好な値
が得られ、溶鋼12の窒素ピックアップも全く無く窒素
濃度15ppmの低硫黄の溶鋼が得られ、総合評価とし
ては優れた結果(○)であった。また、実施例2は、取
鍋11内の全溶鋼表面積に対する浸漬管13の溶鋼浸漬
部の内表面積(S2 /S1)が0.3に相当する浸漬管1
3を浸漬し、プロパンガスを168Nm3 /時間と酸素
を420Nm3 /時間を供給して燃焼して浸漬管13内
を大気圧より100mmH2 O高い内圧に維持しなが
ら、CaOを60重量%(残部がほたる石)含有した生
石灰粉を5kg/溶鋼トン添加して、6分間の脱硫精錬
を行った。その結果、硫黄濃度15ppmと良好な値が
得られ、溶鋼12の窒素ピックアップも全く無く窒素濃
度10ppmの低硫黄の溶鋼が得られ、総合評価として
は優れた結果(○)であった。
As shown in Table 1, first, in Example 1, the inner surface area (S 2 / S 1 ) of the molten steel dipping portion of the dipping tube 13 was 0.5 with respect to the total molten steel surface area in the ladle 11. Immersion tube 1
3 was immersed and propane gas was supplied at 112 Nm 3 / hr and oxygen was supplied at 280 Nm 3 / hr to burn the dip pipe 13 while maintaining the internal pressure at 10 mmH 2 O higher than the atmospheric pressure.
Quicklime powder (98% by weight of CaO is an example of flux.
2 kg / ton of molten steel was added, and desulfurization refining was performed for 6 minutes. As a result, a good value was obtained for the sulfur concentration of 19 ppm, a low-sulfur molten steel having a nitrogen concentration of 15 ppm was obtained without any nitrogen pickup of the molten steel 12, and the overall evaluation was an excellent result (◯). Further, in Example 2, the immersion pipe 1 in which the inner surface area (S 2 / S 1 ) of the molten steel immersion portion of the immersion pipe 13 with respect to the total surface area of the molten steel in the ladle 11 was 0.3.
3 was immersed and propane gas was supplied at 168 Nm 3 / hour and oxygen was supplied at 420 Nm 3 / hour to burn the inside of the immersion pipe 13 at an internal pressure 100 mmH 2 O higher than the atmospheric pressure, while CaO is contained at 60% by weight ( 5 kg / ton of molten steel was added to the quicklime powder containing the remainder (fluorite) and desulfurization refining was performed for 6 minutes. As a result, a good value was obtained with a sulfur concentration of 15 ppm, a low-sulfur molten steel with a nitrogen concentration of 10 ppm was obtained without any nitrogen pickup of the molten steel 12, and the overall evaluation was an excellent result (◯).

【0014】[0014]

【表1】 [Table 1]

【0015】これに対して、比較例は、取鍋11内の全
溶鋼表面積に対する浸漬管13の溶鋼浸漬部の内表面積
(S2 /S1)が0.3に相当する浸漬管13を浸漬し、
燃料及び酸素含有気体の供給は行わず大気圧に復圧して
から、CaOを60重量%(残部がほたる石)含有した
生石灰粉を5kg/溶鋼トン添加して6分間の脱硫精錬
を行った場合であり、硫黄濃度については18ppmと
略良好な値が得られた。しかし、溶鋼12に窒素ピック
アップを生じて窒素濃度が30ppmと高く、低窒素の
溶鋼を得ることができず、総合評価としては悪い(×)
結果となった。
On the other hand, in the comparative example, the immersion pipe 13 whose inner surface area (S 2 / S 1 ) of the molten steel immersion portion of the immersion pipe 13 is 0.3 with respect to the total surface area of the molten steel in the ladle 11 is immersed. Then
When the fuel and oxygen-containing gas are not supplied and the pressure is restored to atmospheric pressure, then 5 kg of quicklime powder containing 60% by weight of CaO (the balance is fluorite) / ton of molten steel is added and desulfurization refining is performed for 6 minutes. The sulfur concentration was 18 ppm, which was a substantially good value. However, nitrogen pickup was generated in the molten steel 12 and the nitrogen concentration was as high as 30 ppm, and low-nitrogen molten steel could not be obtained, which is poor as a comprehensive evaluation (×).
It became a result.

【0016】以上、本発明の一実施の形態を説明した
が、本発明は、上記した形態に限定されるものでなく、
要旨を逸脱しない条件の変更等は全て本発明の適用範囲
である。例えば、溶鋼の脱硫精錬の前に、溶鋼中にA
l、Al合金等の脱酸剤を添加してからフラックスを添
加しても良く、フラックスの添加の方法も一括、分割や
連続的に行うことができる。更に、ランスの他に、気体
や液体等の燃料とフラックスの粉体を混合して吹き付け
る多機能ランスあるいは燃焼バーナー等を用いることが
できる。また、脱炭精錬の条件として、極低炭素(炭素
濃度10ppm以下)までに脱炭させない低炭素の溶鋼
を用いて、前述の脱硫精錬を行って窒素の少ない低硫黄
の溶鋼を得ることもできる。また、浸漬管及び真空槽内
の複圧の方法について、ブースターへの蒸気の供給を停
止した後に、例えばランスから供給された燃料と酸素含
有気体等の燃焼ガスと取鍋の底部から吹き込むアルゴン
ガスにより内圧を高めても良く、CO2 ガスや不活性ガ
ス等の窒素を含まない気体を吹き込むこともできる。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-mentioned embodiment,
All changes in conditions without departing from the gist are within the scope of the present invention. For example, before the desulfurization and refining of molten steel, A
1, the flux may be added after adding a deoxidizing agent such as Al or Al alloy, and the method of adding the flux may be batch, divided or continuous. Further, in addition to the lance, it is possible to use a multifunctional lance or a combustion burner that mixes and sprays fuel such as gas or liquid with powder of flux. Further, as a condition for decarburizing and refining, it is possible to obtain a low-sulfur molten steel with a small amount of nitrogen by performing the desulfurization refining using a low-carbon molten steel that is not decarburized to an extremely low carbon (carbon concentration of 10 ppm or less). . Regarding the method of multiple pressure in the immersion pipe and the vacuum tank, after stopping the supply of steam to the booster, for example, fuel supplied from the lance, combustion gas such as oxygen-containing gas, and argon gas blown from the bottom of the ladle. Therefore, the internal pressure may be increased, and a nitrogen-free gas such as CO 2 gas or an inert gas may be blown.

【0017】[0017]

【発明の効果】請求項1〜3記載の窒素の少ない低硫黄
溶鋼の精錬方法は、一本の浸漬管を取鍋内の溶鋼に浸漬
して、取鍋の底部から不活性ガスを吹き込みながら、浸
漬管内を減圧して脱炭及び脱ガス精錬を行う溶鋼の精錬
方法において、脱炭及び脱ガス精錬を行って後、浸漬管
内に燃料と酸素含有気体を供給して、燃料を燃焼させな
がら浸漬管内の内圧を大気圧より高めて、浸漬管内にフ
ラックスを添加して溶鋼の脱硫精錬を行うので、同一の
浸漬管を用いてブースター等に供給する蒸気等の節減や
耐火物の損耗の防止、溶鋼の温度の低下の防止及び吸窒
素による窒素ピックアップを抑制して低窒素の低硫黄溶
鋼を溶製することができる。
According to the refining method of low-sulfur molten steel with low nitrogen content according to claims 1 to 3, a single dip pipe is immersed in the molten steel in the ladle, and an inert gas is blown from the bottom of the ladle. In the refining method of molten steel for decarburizing and degassing refining by reducing the pressure in the dip tube, after decarburizing and degassing refining, supplying fuel and oxygen-containing gas into the dip tube while burning the fuel Since the internal pressure in the dip pipe is raised above atmospheric pressure and flux is added to the dip pipe to perform desulfurization and refining of molten steel, the same dip pipe can be used to reduce the amount of steam supplied to boosters, etc. and prevent the wear of refractories. It is possible to produce a low-nitrogen low-sulfur molten steel by preventing the temperature of the molten steel from lowering and suppressing nitrogen pickup due to nitrogen absorption.

【0018】特に、請求項2記載の窒素の少ない低硫黄
溶鋼の精錬方法は、浸漬管内に添加するフラックスのC
aO含有量を50〜99重量%とするので、安定した脱
硫が可能となり、確実に低硫黄の溶鋼を溶製することが
できる。
Particularly, in the refining method of low-sulfur molten steel containing a small amount of nitrogen according to the second aspect, the C of the flux added in the dip pipe is
Since the aO content is 50 to 99% by weight, stable desulfurization is possible, and molten steel with low sulfur can be surely produced.

【0019】請求項3記載の窒素の少ない低硫黄溶鋼の
精錬方法は、浸漬管の溶鋼浸漬部の内表面積が取鍋内の
全溶鋼表面積の0.1〜0.7を有するので、脱硫反応
が促進され低硫黄の溶鋼を安定して溶製することができ
る。
In the method for refining low-sulfur molten steel with a small amount of nitrogen according to claim 3, the internal surface area of the molten steel dipping portion of the dipping pipe has a desulfurization reaction of 0.1 to 0.7 of the total molten steel surface area in the ladle. Therefore, molten steel with low sulfur can be stably produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る窒素の少ない低硫黄
の溶鋼の精錬方法に適用する減圧精錬装置10の断面図
である。
FIG. 1 is a sectional view of a reduced pressure refining apparatus 10 applied to a method for refining molten steel with low nitrogen and low sulfur according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 減圧精錬装置 11 取鍋 12 溶鋼 12a 湯面 13 浸漬管 13a フラン
ジ 14 真空槽 14a フラン
ジ 15 排気ダクト 16 貯蔵ホッ
パー 17 添加シュート 18 底部 19 ポーラスプラグ 20 ランス
10 Decompression refining equipment 11 Ladle 12 Molten steel 12a Hot water surface 13 Immersion pipe 13a Flange 14 Vacuum tank 14a Flange 15 Exhaust duct 16 Storage hopper 17 Addition chute 18 Bottom 19 Porous plug 20 Lance

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K013 BA02 BA05 BA07 BA11 CA01 CA11 CB09 CE02 CE05 CE07 CF13 DA03 DA05 DA10 DA12 EA03 FA04    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K013 BA02 BA05 BA07 BA11 CA01                       CA11 CB09 CE02 CE05 CE07                       CF13 DA03 DA05 DA10 DA12                       EA03 FA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一本の浸漬管を取鍋内の溶鋼に浸漬し
て、前記取鍋の底部から不活性ガスを吹き込みながら、
前記浸漬管内を減圧して脱炭及び脱ガス精錬を行う溶鋼
の精錬方法において、前記脱炭及び脱ガス精錬を行って
後、前記浸漬管内に燃料と酸素含有気体を供給して、該
燃料を燃焼させながら前記浸漬管内の内圧を大気圧より
高めて、該浸漬管内にフラックスを添加して前記溶鋼の
脱硫精錬を行うことを特徴とする窒素の少ない低硫黄溶
鋼の精錬方法。
1. A single dip tube is immersed in molten steel in a ladle, and while blowing an inert gas from the bottom of the ladle,
In a method for refining molten steel in which the inside of the immersion pipe is decompressed to perform decarburization and degassing refining, after performing the decarburization and degassing refining, a fuel and an oxygen-containing gas are supplied into the immersion pipe to supply the fuel. A method for refining low-sulfur molten steel with a small amount of nitrogen, characterized by increasing the internal pressure in the immersion pipe above atmospheric pressure while burning it and adding a flux to the immersion pipe to desulfurize and refine the molten steel.
【請求項2】 前記浸漬管内に添加するフラックスのC
aOの含有量を50〜99重量%とすることを特徴とす
る請求項1記載の窒素の少ない低硫黄溶鋼の精錬方法。
2. The C of the flux added in the dip tube
The method for refining low-sulfur molten steel containing a small amount of nitrogen according to claim 1, wherein the content of aO is 50 to 99% by weight.
【請求項3】 前記浸漬管の溶鋼浸漬部の内表面積が前
記取鍋内の全溶鋼表面積の0.1〜0.7を有すること
を特徴とする請求項1又は2記載の窒素の少ない低硫黄
溶鋼の精錬方法。
3. The low nitrogen content low according to claim 1 or 2, wherein the internal surface area of the molten steel immersion portion of the immersion pipe has 0.1 to 0.7 of the total molten steel surface area in the ladle. Refining method of molten sulfur steel.
JP10247792A 1998-08-17 1998-08-17 Method for refining molten low sulfur steel containing little nitrogen Withdrawn JP2000063930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247792A JP2000063930A (en) 1998-08-17 1998-08-17 Method for refining molten low sulfur steel containing little nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247792A JP2000063930A (en) 1998-08-17 1998-08-17 Method for refining molten low sulfur steel containing little nitrogen

Publications (1)

Publication Number Publication Date
JP2000063930A true JP2000063930A (en) 2000-02-29

Family

ID=17168728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247792A Withdrawn JP2000063930A (en) 1998-08-17 1998-08-17 Method for refining molten low sulfur steel containing little nitrogen

Country Status (1)

Country Link
JP (1) JP2000063930A (en)

Similar Documents

Publication Publication Date Title
JP4735169B2 (en) Hot metal dephosphorization method
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP2006233264A (en) Method for smelting high-chromium molten steel
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JP2008169407A (en) Method for desulfurizing molten steel
JP2007254844A (en) Method for desulfurizing molten steel
JP4360270B2 (en) Method for refining molten steel
JP2000063930A (en) Method for refining molten low sulfur steel containing little nitrogen
JP4085898B2 (en) Melting method of low carbon high manganese steel
EP0073274B1 (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
JP2008150710A (en) Method for melting low carbon high manganese steel
EP1757706B1 (en) Method for refining molten steel
JPS6056051A (en) Production of medium- and low-carbon ferromanganese
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JP3918695B2 (en) Method for producing ultra-low sulfur steel
JPS5810967B2 (en) How to operate a converter
JP2006152368A (en) Method for melting low carbon high manganese steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP2000119730A (en) Method for refining molten steel under reduced pressure
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JPH0128807B2 (en)
JPH0361725B2 (en)
SU1125257A1 (en) Method for smelting low-carbon steel in converter
JP2000096128A (en) Method for vacuum-refining low nitrogen molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101