JP2000063811A - Heat accumulator composition - Google Patents

Heat accumulator composition

Info

Publication number
JP2000063811A
JP2000063811A JP10231364A JP23136498A JP2000063811A JP 2000063811 A JP2000063811 A JP 2000063811A JP 10231364 A JP10231364 A JP 10231364A JP 23136498 A JP23136498 A JP 23136498A JP 2000063811 A JP2000063811 A JP 2000063811A
Authority
JP
Japan
Prior art keywords
component
heat storage
storage material
water
phase transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10231364A
Other languages
Japanese (ja)
Inventor
Masayoshi Yabe
昌義 矢部
Hiroyuki Kakiuchi
博行 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10231364A priority Critical patent/JP2000063811A/en
Publication of JP2000063811A publication Critical patent/JP2000063811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compsn. contg. trimethylol ethane (A), water (B), and a compd. having a sulfonyl group in a moleclule (C), and having a phase transition point near room temp., a large heat accumulation density, and an excellent repetition stability without phase separation. SOLUTION: For component C, saccharin sodium, sulfosalicylic acid, and sulfolane are suitable. The contents of each component are component A: 20-80 wt.%, component B: 19-50 wt.%, and component C: 1-50 wt.%, and weight ratio of component A to component B (A/B) is pref. 75/25-50/50. Phase transition point which indicates the greatest latent heat is pref. 5-15 deg.C. The phase transition point of trimethylol ethane/water system heat accumulator is controlled to a desired temp. by adding a water soluble org. compd. having at least one non-covalent electron pair in a molecule to the mixture of trimethylol ethane and water. This accumulator compsn. has a phase transition point of 5-25 deg.C and is used favorably as a passive type heat accumulator or a cold accumulator in the field of construction material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱材組成物に関
する。詳しくは、相転移潜熱を利用した、トリメチロー
ルエタンと水を含有する蓄熱材組成物に関する。
TECHNICAL FIELD The present invention relates to a heat storage material composition. More specifically, it relates to a heat storage material composition containing trimethylolethane and water, which utilizes latent heat of phase transition.

【0002】[0002]

【従来の技術】潜熱型蓄熱材は、顕熱型蓄熱材に比べて
蓄熱密度が高く、相変化温度が一定であり、熱の取り出
し温度が安定であるなどの利点があるため、種々の用途
に実用化されている。この潜熱型蓄熱材の主成分として
は、氷、硫酸ナトリウム十水塩、塩化カルシウム六水塩
及び酢酸ナトリウム三水塩などが知られている。これら
潜熱型蓄熱材の実用化の代表例としては、深夜電力を利
用した氷蓄熱システムがある。
2. Description of the Related Art Latent heat type heat storage materials have various advantages such as high heat storage density, constant phase change temperature and stable heat extraction temperature as compared with sensible heat type heat storage materials. Has been put to practical use. As the main components of this latent heat storage material, ice, sodium sulfate decahydrate, calcium chloride hexahydrate, sodium acetate trihydrate, etc. are known. A typical example of practical application of these latent heat storage materials is an ice heat storage system that uses late-night power.

【0003】また、生活環境温度に近い20〜30℃に
相変化温度を有する蓄熱材は、温室や床暖房などを目的
に鋭意研究されている。その主成分としては、硫酸ナト
リウム十水塩または塩化カルシウム六水塩が多く用いら
れており、両者とも蓄熱密度が大きく、安価で優れた蓄
熱材原料といえる。しかしながら、硫酸ナトリウム十水
塩は融点以上で融解すると無水硫酸ナトリウムと硫酸ナ
トリウムの飽和水溶液の二相に分離し、これが凝固する
際には、沈殿した無水硫酸ナトリウムの表面でしか硫酸
ナトリウム十水塩に戻らないので、蓄熱量は大幅に低下
するという問題がある。これは相分離と呼ばれる現象で
あり、硫酸ナトリウム十水塩が、融解したときに完全に
水溶液化せず、いわゆる調和融解しないことに原因があ
る。
Further, a heat storage material having a phase change temperature of 20 to 30 ° C., which is close to the living environment temperature, has been earnestly studied for the purpose of greenhouse and floor heating. As its main component, sodium sulfate decahydrate or calcium chloride hexahydrate is often used, and both can be said to be inexpensive and excellent heat storage material raw materials because of their large heat storage densities. However, when sodium sulfate decahydrate melts above the melting point, it separates into two phases, anhydrous sodium sulfate and a saturated aqueous solution of sodium sulfate, and when it solidifies, it only forms on the surface of the precipitated anhydrous sodium sulfate decahydrate. However, there is a problem that the heat storage amount is significantly reduced. This is a phenomenon called phase separation, and is caused by the fact that sodium sulfate decahydrate does not completely become an aqueous solution when it is melted, and so-called harmonic melting does not occur.

【0004】また、塩化カルシウム六水塩は調和融解す
るものの、繰り返し使用するうちに、より融点の高い低
次の水和塩が生成し、硫酸ナトリウム十水塩と同様に不
溶解分が沈殿し、やはり蓄熱量が低下するという問題が
ある。以上の水和物系蓄熱材としては、融解したときに
完全に水溶液化する状態となる調和融解となり、かつ、
融点の異なる水和物が存在しないことが望ましい。しか
しながら、このような性能を持つ理想的な水和物系蓄熱
材は知られていない。
Further, although calcium chloride hexahydrate melts in harmony, when it is repeatedly used, a low-order hydrated salt having a higher melting point is produced, and an insoluble matter precipitates like sodium sulfate decahydrate. However, there is still a problem that the amount of heat storage decreases. As the above hydrate heat storage material, when it is melted, it becomes a state of complete melting to become an aqueous solution, and,
It is desirable that there be no hydrates with different melting points. However, an ideal hydrate heat storage material having such performance is not known.

【0005】更に、冷房用途に使用可能な20℃以下に
相転移点を有する蓄熱材としては、硫酸ナトリウム十水
塩/塩化アンモニウム/塩化ナトリウム/硫酸アンモニ
ウムから成り、融解温度8〜12℃の蓄熱材組成物が知
られている(特開平7−48564号公報)。該組成物
は、優れた蓄熱密度と安全性を有するものの、本質的に
前記の相分離の問題を抱えており、長期の繰り返し安定
性を確保するためには相分離防止剤として吸水性樹脂等
を添加する必要があり、相分離を完全に防止することは
困難である。
Further, as a heat storage material having a phase transition point of 20 ° C. or lower which can be used for cooling, it is composed of sodium sulfate decahydrate / ammonium chloride / sodium chloride / ammonium sulfate and has a melting temperature of 8 to 12 ° C. A composition is known (JP-A-7-48564). Although the composition has an excellent heat storage density and safety, it inherently has the above-mentioned problem of phase separation, and in order to secure long-term repetitive stability, a water-absorbing resin or the like as a phase separation inhibitor is used. Must be added, and it is difficult to completely prevent phase separation.

【0006】一方、トリメチロールエタン(別名:ペン
タグリセリン)は、融点が約200℃、固相転移点が8
9℃である昇華性を有する物質であり、固相転移熱が3
3.2cal/gと比較的大きく高温用の蓄熱材として
期待され、その諸物性に関して複数の報告がなされてい
る。例えば、特許第2581708号公報には、トリメ
チロールエタン水和物が21〜35℃の範囲に融点を有
することが示されている。また、Laugt,Mらは、トリメ
チロールエタンの4水和物では、融点が29.8℃、融
解潜熱量が185kJ/kgであることを報告している
(PowderDiffr.(1991),6(4),190-193)。
On the other hand, trimethylolethane (also known as pentaglycerin) has a melting point of about 200 ° C. and a solid phase transition point of 8
It is a substance that has a sublimability of 9 ° C and has a solid phase transition heat of 3
It is expected to be a relatively high heat storage material for high temperature of 3.2 cal / g, and several reports have been made regarding its physical properties. For example, Japanese Patent No. 2581708 discloses that trimethylolethane hydrate has a melting point in the range of 21 to 35 ° C. In addition, Laugt, M et al. Reported that trimethylolethane tetrahydrate had a melting point of 29.8 ° C. and a latent heat of fusion of 185 kJ / kg (Powder Diffr. (1991), 6 (4) ), 190-193).

【0007】[0007]

【発明が解決しようとする課題】上記のように、トリメ
チロールエタンは高温用の蓄熱材として期待できるもの
であるが、本発明者らの検討によれば、トリメチロール
エタンと水との蓄熱材では、過冷却現象が大きいという
問題があり、実際に実用化されているという報告はまだ
ない。
As described above, trimethylolethane can be expected as a heat storage material for high temperature, but according to the study by the present inventors, a heat storage material of trimethylolethane and water. However, there is a problem that the supercooling phenomenon is large, and there is no report that it is actually put to practical use.

【0008】そこで、本発明の目的は、建材分野等でパ
ッシプ蓄熱用途に使用可能な5〜25℃に相転移点を有
し、相分離がなく安定で、高蓄熱密度の蓄熱材組成物を
提供することにある。
Therefore, an object of the present invention is to provide a heat storage material composition having a phase transition point at 5 to 25 ° C., which is usable for passive heat storage in the field of building materials, etc., is stable without phase separation, and has a high heat storage density. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み鋭意検討した結果、トリメチロールエタンと水の
混合物に、非共有電子対を分子内に一以上有する水溶性
有機化合物を加えることにより、トリメチロールエタン
/水系蓄熱材の相転移点を所望の温度に調整することが
できることを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies in view of the above problems, the present inventors added a water-soluble organic compound having at least one unshared electron pair in the molecule to a mixture of trimethylolethane and water. As a result, they have found that the phase transition point of the trimethylolethane / water-based heat storage material can be adjusted to a desired temperature, and have reached the present invention.

【0010】すなわち、本発明の要旨は、(A)トリメ
チロールエタン、(B)水及び(C)分子内にスルホニ
ル基を有する化合物、の三成分を含有することを特徴と
する蓄熱材組成物に関する。
That is, the gist of the present invention is to provide a heat storage material composition containing three components: (A) trimethylolethane, (B) water and (C) a compound having a sulfonyl group in the molecule. Regarding

【0011】[0011]

【発明の実施の態様】以下、本発明を詳細に説明する。
本発明の特徴は、トリメチロールエタン/水系蓄熱材組
成物に、スルホニル基を分子内に有する化合物を含有さ
せることで、より低融点の蓄熱材組成物とした点にあ
る。なお、かかる化合物は水溶性であるのが好ましく、
その溶解度は特に限定されるものではないが、25℃の
純水100gに対して1g以上溶解する化合物であるこ
とがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The feature of the present invention resides in that the trimethylolethane / water-based heat storage material composition contains a compound having a sulfonyl group in the molecule to obtain a heat storage material composition having a lower melting point. Incidentally, such a compound is preferably water-soluble,
The solubility is not particularly limited, but a compound capable of dissolving 1 g or more in 100 g of pure water at 25 ° C. is more preferable.

【0012】以上のような分子内にスルホニル基を有す
る化合物の例としては、サッカリンナトリウム、サッカ
リンカリウム、スルホラン、ジメチルスルホキシド等が
挙げられる。また、安全性、経済性、結晶性、あるいは
融点降下効果の観点から、特に、サッカリンナトリウ
ム、スルホサリチル酸、若しくはスルホランが例示され
る。なお、以上に該当する化合物は二種以上を併用する
こともできる。
Examples of the compound having a sulfonyl group in the above molecule include sodium saccharin, potassium saccharin, sulfolane, dimethyl sulfoxide and the like. Further, saccharin sodium, sulfosalicylic acid, or sulfolane is particularly exemplified from the viewpoint of safety, economy, crystallinity, or melting point lowering effect. The compounds corresponding to the above may be used in combination of two or more kinds.

【0013】次に、本発明の蓄熱材組成物の組成につい
て特に限定されるものではないが、通常、成分(A)の
トリメチロールエタンが20〜80重量%、成分(B)
の水が19〜50重量%、かつ成分(C)の分子内にス
ルホニル基を有する化合物が1〜50重量%であり、好
ましくは、成分(A)が30〜70重量%、成分(B)
が20〜40重量%、かつ成分(C)が5〜40重量で
ある。
Next, the composition of the heat storage material composition of the present invention is not particularly limited, but usually 20 to 80% by weight of the component (A) trimethylolethane and the component (B).
Water of 19 to 50% by weight, and the compound having a sulfonyl group in the molecule of component (C) is 1 to 50% by weight, preferably 30 to 70% by weight of component (A) and component (B).
Is 20 to 40% by weight, and the component (C) is 5 to 40% by weight.

【0014】上記において、成分(A)のトリメチロー
ルエタンが20%未満であると、組成物中におけるトリ
メチロールエタンの水和物としての存在絶対量が少なく
なり、蓄熱密度が低下し、逆に、80%を越えると溶け
切らなくなったトリメチロールエタンの析出量が多くな
り蓄熱量が減少する。また、成分(B)の水が19%未
満であるとトリメチロールエタンの水和物としての存在
絶対量が少なくなり、蓄熱密度が低下し、逆に、50%
を越えると生成するトリメチロールエタン水和物の一部
または全部が余剰の水に溶解してしまい、水和物生成に
よる蓄熱量が減少する。更に、成分(C)の非共有電子
対を分子内に一以上有する水溶性有機化合物が1%未満
であるとトリメチロールエタンの水和物の相転移点調整
効果が少なくなり、逆に、50%を越えると生成するト
リメチロールエタン水和物の絶対量が少なくなり、蓄熱
密度が低下する。
In the above, if the content of trimethylolethane of the component (A) is less than 20%, the absolute amount of trimethylolethane present as a hydrate in the composition is small, and the heat storage density is lowered. When it exceeds 80%, the amount of trimethylolethane that has not completely melted is increased and the heat storage amount is decreased. If the water content of the component (B) is less than 19%, the absolute amount of trimethylolethane present as a hydrate will be small, and the heat storage density will decrease.
If it exceeds, a part or all of the trimethylolethane hydrate produced will be dissolved in excess water, and the heat storage amount due to hydrate formation will decrease. Further, if the content of the water-soluble organic compound having at least one unshared electron pair of the component (C) in the molecule is less than 1%, the effect of adjusting the phase transition point of the hydrate of trimethylolethane decreases, and conversely 50 If it exceeds%, the absolute amount of trimethylolethane hydrate produced becomes small, and the heat storage density decreases.

【0015】また、成分(A)と成分(B)との重量比
(A/B)としては、好ましくは75/25〜50/5
0の範囲である。75/25を越えると水和物となり得
ない成分(A)の量が多くなるため、蓄熱密度が低下す
る。一方、50/50未満では、生成した(A)の水和
物の一部または全部が余剰の水に溶解してしまい、水和
物生成による蓄熱量が減少する。
The weight ratio (A / B) of the component (A) and the component (B) is preferably 75/25 to 50/5.
The range is 0. If it exceeds 75/25, the amount of the component (A) that cannot become a hydrate increases, so that the heat storage density decreases. On the other hand, when it is less than 50/50, a part or all of the produced (A) hydrate is dissolved in excess water, and the heat storage amount due to the hydrate production is reduced.

【0016】以上の本発明の蓄熱材組成物は、最大潜熱
量を示す相転移点が通常5〜25℃の範囲、より好まし
くは10〜23℃の範囲、最も好ましくは15〜20℃
の範囲であるが、これに制限されるものではない。最大
潜熱量を示す相転移点が5℃未満であると、通常あり得
る排冷熱の範疇を越えてしまう。また、最大潜熱量を示
す相転移点が25℃を越えた場合は、通常あり得る環境
熱温度では短時間に蓄熱しきれない。
In the heat storage material composition of the present invention described above, the phase transition point showing the maximum latent heat amount is usually in the range of 5 to 25 ° C., more preferably in the range of 10 to 23 ° C., and most preferably in the range of 15 to 20 ° C.
However, the range is not limited to this. If the phase transition point showing the maximum latent heat amount is less than 5 ° C., the range of exhaust heat of heat that is usually possible is exceeded. Further, when the phase transition point showing the maximum latent heat amount exceeds 25 ° C., the heat cannot be stored in a short time at a normal environmental heat temperature.

【0017】また、場合によっては相転移点以下まで冷
却されても結晶化しない、いわゆる過冷却の問題が生じ
る可能性があるが、これを防止するため、必要に応じて
過冷却防止剤を添加しておいてもよい。過冷却防止剤と
しては、炭酸ナトリウム、炭酸ナトリウム一水塩、ピロ
リン酸ナトリウム、ピロリン酸ナトリウム十水塩、第三
リン酸カルシウムなどの無機塩又は水和無機塩が好まし
く例示される。
In some cases, a problem of so-called supercooling may occur in which crystallization does not occur even when cooled below the phase transition point. To prevent this, a supercooling inhibitor is added if necessary. You may keep it. Preferred examples of the supercooling inhibitor include inorganic salts or hydrated inorganic salts such as sodium carbonate, sodium carbonate monohydrate, sodium pyrophosphate, sodium pyrophosphate decahydrate, and tricalcium phosphate.

【0018】また、本発明の蓄熱材組成物は、必要に応
じて、増粘剤を配合してもよい。増粘剤としては、水不
溶性吸水性ポリマー、ポリアクリル酸ナトリウム、ポリ
アクリルアミド、ポリグリセリン、カルボキシメチルセ
ルロース、ヒドロキシエチルセルロース、ポリビニルア
ルコール、アルギン酸塩、キサンタンガム、ガラーギナ
ン、ゼラチン、寒天などが挙げられるがこれに限定され
ることはない。これら増粘剤の配合量は、蓄熱材組成物
の(A)〜(C)の三成分の合計量100重量部に対し
て、通常0.1〜5重量部である。更に、本発明の蓄熱
材組成物にはは、フェノール類、アミン類、ヒドロキシ
アミン類などの酸化防止剤、クロム酸塩、ポリリン酸
塩、亜硝酸ナトリウムなどの金属腐食防止剤、安息香酸
ナトリウムや2,6−ジ−t−ブチルヒドロキシトルエ
ンなどの防腐剤を含有させてもよい。
Further, the heat storage material composition of the present invention may contain a thickener, if necessary. Examples of the thickener include water-insoluble water-absorbing polymer, sodium polyacrylate, polyacrylamide, polyglycerin, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, alginate, xanthan gum, galarginan, gelatin and agar, but are not limited thereto. It will not be done. The blending amount of these thickeners is usually 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the three components (A) to (C) of the heat storage material composition. Furthermore, the heat storage material composition of the present invention includes antioxidants such as phenols, amines, hydroxyamines, chromate salts, polyphosphate salts, metal corrosion inhibitors such as sodium nitrite, sodium benzoate and the like. Preservatives such as 2,6-di-t-butylhydroxytoluene may be included.

【0019】本発明の蓄熱材組成物の調合方法は、特に
限定されず、既知の各種混合方法を採用することがで
き、成分(A)、(B)、(C)及び必要に応じて他の
添加剤を混合して均一に混合すればよい。一例として
は、蓄熱材組成物を40〜50℃まで加熱し、撹拌混合
する方法が挙げられる。
The method of preparing the heat storage material composition of the present invention is not particularly limited, and various known mixing methods can be adopted, and the components (A), (B), (C) and, if necessary, other components can be used. It suffices to mix the additives described in 1 above and mix them uniformly. As an example, a method of heating the heat storage material composition to 40 to 50 ° C. and stirring and mixing the same can be mentioned.

【0020】本発明の蓄熱材組成物の使用方法として
は、例えば、蓄熱容器に蓄熱材組成物を充填するカプセ
ル型、蓄熱容器を必要としないシェルアンドチューブ型
が挙げられる。カプセル型は、蓄熱材組成物をカプセル
などの蓄熱容器に注入し、蓄熱容器を密封することによ
り得られる。カプセルの材質は、鉄、アルミニウムなど
の金属、高密度ポリエチレンやポリプロピレンおよびポ
リカーボネートなどのプラスチックなどが挙げられ、高
密度ポリエチレンが好ましい。カプセルの形状は、特に
限定されず、例えば、球状、板状、パイプ状、くびれ筒
状、双子球状、波板状などが挙げられ、用途に応じて適
宜選択される。シェルアンドチューブ型は、シェル側に
本発明蓄熱材組成物を充填し、チューブ側を水や不凍液
などの熱媒体を流し、チューブの周りに蓄熱材を凍結さ
せる方法である。
Examples of the method of using the heat storage material composition of the present invention include a capsule type for filling the heat storage material composition with the heat storage material and a shell-and-tube type which does not require the heat storage material. The capsule type is obtained by injecting the heat storage material composition into a heat storage container such as a capsule and sealing the heat storage container. Examples of the material of the capsule include metals such as iron and aluminum, and plastics such as high-density polyethylene, polypropylene and polycarbonate, and high-density polyethylene is preferable. The shape of the capsule is not particularly limited, and examples thereof include a spherical shape, a plate shape, a pipe shape, a constricted cylinder shape, a twin spherical shape, and a corrugated plate shape, and are appropriately selected depending on the application. The shell-and-tube type is a method in which the shell side is filled with the heat storage material composition of the present invention, and a heat medium such as water or an antifreeze solution is flowed through the tube side to freeze the heat storage material around the tube.

【0021】[0021]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はその要旨を超えない限り、以下の実
施例に限定されるものではない。 実施例1 トリメチロールエタン(東京化成工業社製試薬)44
g、純水36g及びスルホサリチル酸・二水和物(和光
純薬株式会社製試薬)20gを、40℃で撹拌混合し
た。得られた無色透明均一溶液状の蓄熱材組成物を示差
走査熱量計(セイコー電子工業社製DSC210)に
て、10℃/分で−50℃まで降温し、2℃/分で40
℃まで昇温させたときの融解潜熱量および融解ピーク温
度を測定した。その結果、融点19.9℃、融解潜熱1
00J/gであった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 Trimethylolethane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 44
g, pure water 36 g, and sulfosalicylic acid dihydrate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 20 g were mixed with stirring at 40 ° C. The obtained colorless transparent uniform solution heat storage material composition was cooled with a differential scanning calorimeter (DSC210 manufactured by Seiko Denshi Kogyo Co., Ltd.) at 10 ° C./min to −50 ° C., and at 2 ° C./min 40.
The latent heat of fusion and the melting peak temperature when the temperature was raised to ℃ were measured. As a result, the melting point was 19.9 ° C and the latent heat of fusion was 1
It was 00 J / g.

【0022】実施例2 トリメチロールエタン(東京化成工業社製試薬)38.
5g、純水31.5g及びスルホラン(和光純薬株式会
社製試薬)30gを、40℃で撹拌混合した。得られた
無色透明均一溶液状の蓄熱材組成物を示差走査熱量計
(セイコー電子工業社製DSC210)にて、10℃/
分で−50℃まで降温し、2℃/分で40℃まで昇温さ
せたときの融解潜熱量および融解ピーク温度を測定し
た。その結果、融点20.0℃、融解潜熱120J/g
であった。
Example 2 Trimethylolethane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 38.
5 g, pure water 31.5 g and sulfolane (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 30 g were mixed with stirring at 40 ° C. The obtained colorless transparent uniform solution heat storage material composition was analyzed by a differential scanning calorimeter (DSC210 manufactured by Seiko Instruments Inc.) at 10 ° C /
The temperature was lowered to −50 ° C. in minutes, and the latent heat of fusion and melting peak temperature were measured when the temperature was raised to 40 ° C. at 2 ° C./min. As a result, melting point 20.0 ° C, latent heat of fusion 120 J / g
Met.

【0023】実施例3 トリメチロールエタン(東京化成工業社製試薬)44
g、純水36g及びサッカリンナトリウム(和光純薬株
式会社製試薬)20gを、40℃で撹拌混合した。得ら
れた無色透明均一溶液状の蓄熱材組成物を示差走査熱量
計(セイコー電子工業社製DSC210)にて、10℃
/分で−50℃まで降温し、2℃/分で40℃まで昇温
させたときの融解潜熱量および融解ピーク温度を測定し
た。その結果、融点22.6℃、融解潜熱140J/g
であった。
Example 3 Trimethylolethane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 44
g, pure water 36 g, and sodium saccharin (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 20 g were mixed with stirring at 40 ° C. The obtained colorless transparent uniform solution heat storage material composition was subjected to a differential scanning calorimeter (DSC210 manufactured by Seiko Denshi Kogyo KK) at 10 ° C.
The temperature was lowered to −50 ° C./min, and the latent heat of fusion and melting peak temperature were measured when the temperature was raised to 40 ° C. at 2 ° C./min. As a result, melting point 22.6 ° C, latent heat of fusion 140 J / g
Met.

【0024】実施例4 実施例1で得られた無色透明均一溶液状の蓄熱材組成物
を内径64mmのポリエチレン製球状カプセルに充填
し、恒温水槽中、10℃から30℃の凝固融解の繰り返
しを50回行ったところ、1回目と50回目の蓄放熱特
性に何ら変化は見られず、また、試験後の溶液は均一な
透明溶液であった。この結果は、本発明の蓄熱材組成物
が、相分離の問題のない安定した蓄熱材であることを示
す。なお、融解開始温度は19℃で一定であった。 比較例1 スルホサリチル酸・二水和物を除いた以外は実施例1と
同様に実施した。その結果、融点29.7℃、融解潜熱
180J/gであった。
Example 4 A colorless transparent uniform solution heat storage material composition obtained in Example 1 was filled in a polyethylene spherical capsule having an inner diameter of 64 mm, and solidification and melting at 10 ° C. to 30 ° C. were repeated in a constant temperature water bath. When it was carried out 50 times, no change was observed in the heat storage and heat release characteristics at the 1st and 50th times, and the solution after the test was a uniform transparent solution. This result shows that the heat storage material composition of the present invention is a stable heat storage material having no problem of phase separation. The melting start temperature was constant at 19 ° C. Comparative Example 1 The procedure of Example 1 was repeated except that sulfosalicylic acid dihydrate was omitted. As a result, the melting point was 29.7 ° C. and the latent heat of fusion was 180 J / g.

【0025】[0025]

【発明の効果】本発明の蓄熱材組成物は、常温付近の5
〜25℃に相転移点を有し、蓄熱密度が大きく、且つ相
分離がなく繰り返し安定性に優れているので、建材分野
等でパッシブ型蓄熱材あるいは蓄冷材として好適に使用
することができる。
EFFECTS OF THE INVENTION The heat storage material composition of the present invention has a temperature
Since it has a phase transition point at -25 ° C, has a large heat storage density, and is excellent in repeated stability without phase separation, it can be suitably used as a passive heat storage material or a cold storage material in the field of building materials and the like.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A)トリメチロールエタン、(B)水
及び(C)分子内にスルホニル基を有する化合物、の三
成分を含有することを特徴とする蓄熱材組成物。
1. A heat storage material composition comprising three components: (A) trimethylolethane, (B) water, and (C) a compound having a sulfonyl group in the molecule.
【請求項2】 成分(C)が、サッカリンナトリウム、
スルホサリチル酸、若しくはスルホランであることを特
徴とする請求項1の蓄熱材組成物。
2. The component (C) is sodium saccharin,
The heat storage material composition according to claim 1, which is sulfosalicylic acid or sulfolane.
【請求項3】 成分(A)20〜80重量%、成分
(B)が19〜50重量%、かつ成分(C)が1〜50
重量%であることを特徴とする請求項1又は2の蓄熱材
組成物。
3. Component (A) 20 to 80% by weight, component (B) 19 to 50% by weight, and component (C) 1 to 50.
The heat storage material composition according to claim 1 or 2, wherein the heat storage material composition is wt%.
【請求項4】 成分(A)と成分(B)との重量比(A
/B)が75/25〜50/50であることを特徴とす
る請求項1〜3のいずれかの蓄熱材組成物。
4. A weight ratio of the component (A) and the component (B) (A
/ B) is 75 / 25-50 / 50, The heat storage material composition in any one of Claims 1-3 characterized by the above-mentioned.
【請求項5】 最大潜熱量を示す相転移点が5〜25℃
であることを特徴とする請求項1〜4のいずれかの蓄熱
材組成物。
5. The phase transition point showing the maximum latent heat amount is 5 to 25 ° C.
The heat storage material composition according to any one of claims 1 to 4, wherein
JP10231364A 1998-08-18 1998-08-18 Heat accumulator composition Pending JP2000063811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10231364A JP2000063811A (en) 1998-08-18 1998-08-18 Heat accumulator composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10231364A JP2000063811A (en) 1998-08-18 1998-08-18 Heat accumulator composition

Publications (1)

Publication Number Publication Date
JP2000063811A true JP2000063811A (en) 2000-02-29

Family

ID=16922472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10231364A Pending JP2000063811A (en) 1998-08-18 1998-08-18 Heat accumulator composition

Country Status (1)

Country Link
JP (1) JP2000063811A (en)

Similar Documents

Publication Publication Date Title
CA1103454A (en) Inorganic salt in hydrogel with cross-linked acidic polymer for thermal energy storage
JPH0225947B2 (en)
CN106590538B (en) Latent heat cold storage material
EP0030599B1 (en) Hydrated magnesium nitrate/magnesium chloride reversible phase change compositions and their preparation
EP3864106B1 (en) Metal nitrate based compositions for use as phase change materials
KR850001786B1 (en) Reversible liquid/solid phase change compositions
US4283298A (en) Hydrated Mg(NO3)2 /NH4 NO3 reversible phase change compositions
JP6219653B2 (en) Cooler
JP2000063811A (en) Heat accumulator composition
GB2587070A (en) Phase change material
JP3442155B2 (en) Heat storage material composition
JPH11181416A (en) Heat reservoir composition
JP2000256659A (en) Thermal storage material composition
US20230265332A1 (en) Phase change material
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
JP2000129251A (en) Heat storage material composition and heat storage device using same
US4619778A (en) Heat storage materials
FI70724B (en) HYDRERADE MG12 ELLER MG (NO3) 2 / MGC12 REVERSIBLE FASOMVANDLINGSKOMPOSITIONER
JPH11152463A (en) Heat storage material composition
WO2000052111A1 (en) Heat-storage material composition
JP2000063814A (en) Thermal storage material composition
JP3774530B2 (en) Manufacturing method of heat storage material
GB2600445A (en) Phase change material
JPH1143668A (en) Thermal storage medium composition
JPS6238398B2 (en)