JP2000063136A - Stepped glass plate - Google Patents

Stepped glass plate

Info

Publication number
JP2000063136A
JP2000063136A JP11160945A JP16094599A JP2000063136A JP 2000063136 A JP2000063136 A JP 2000063136A JP 11160945 A JP11160945 A JP 11160945A JP 16094599 A JP16094599 A JP 16094599A JP 2000063136 A JP2000063136 A JP 2000063136A
Authority
JP
Japan
Prior art keywords
glass plate
stepped
region
stress
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11160945A
Other languages
Japanese (ja)
Other versions
JP4438126B2 (en
Inventor
Shigeyuki Seto
茂之 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16094599A priority Critical patent/JP4438126B2/en
Publication of JP2000063136A publication Critical patent/JP2000063136A/en
Application granted granted Critical
Publication of JP4438126B2 publication Critical patent/JP4438126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a stepped glass plate capable of inconsiderably standing a severe mechanical load applied to an end part by making the average surface compressive stress at a middle zone of a tempered glass plate larger than the value of a central zone. SOLUTION: Both the surfaces of a glass plate heated to a temperature close to a softening point is sprayed with a cooling medium in a jet flow state and quenched. A peripheral zone A, a central zone C and a difference in step at a boundary between the peripheral zone A and the central zone C are formed in such a way that the plate thickness of the peripheral zone A is thinner than that of the central zone C. A middle zone B having 5-30 mm width from the boundary between the peripheral zone A and the central zone B toward the inside of the glass plate is formed and the average surface compressive stress at the middle zone B is made 100-500 kg/cm2 higher than that at the central zone C. The value of the average surface compressive stress at the peripheral zone A can be 100-300 kg/cm2 higher than that at the central zone C and the value of the average surface compressive stress at the central zone C is 850-1,200 kg/cm2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、段付きガラス板に
関し、特に自動車側方の窓ガラス板等に用いられる段付
き強化ガラス板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stepped glass plate, and more particularly to a stepped tempered glass plate used as a window glass plate on the side of an automobile.

【0002】[0002]

【従来の技術】従来、ガラス板の強化方法として、吹口
面上に冷却用ノズルを格子状あるいは千鳥状に配置した
吹口により、ガラスの軟化点付近の温度まで加熱された
ガラス板の両表面に噴流状の冷却媒体を吹きつけて急冷
する方法が知られている。この強化方法においては、ガ
ラス板は、その冷却時にガラス板の内部と表面とに温度
差がつけられ、最終的に固化されたガラス板の表面に残
留圧縮応力層を生成させることにより強化される。
2. Description of the Related Art Conventionally, as a method of strengthening a glass sheet, cooling nozzles are arranged on the surface of the glass sheet in a lattice pattern or in a staggered pattern on both surfaces of the glass sheet heated to a temperature near the softening point of the glass. A method is known in which a jet-like cooling medium is blown to quench the material. In this strengthening method, the glass plate is strengthened by creating a residual compressive stress layer on the surface of the finally solidified glass plate by providing a temperature difference between the inside and the surface of the glass plate during cooling. .

【0003】もし、ガラス板が無限寸法の一定の板厚を
有し且つその両面が均一に冷却されれば、板厚方向の応
力分布は、いわゆる放物線上の分布に従う。そして表面
圧縮応力の値がガラス板の板厚方向内部中心での引張応
力値の2倍に等しくなり、板厚方向の応力の積分値は0
となる。ところが、実際は、ガラス板は有限寸法であ
る。なお、ガラス板の端部は冷却時の割れ防止や意匠性
の観点から、通常面取り処理がなされている。
If the glass plate has a constant plate thickness of infinite size and both sides thereof are uniformly cooled, the stress distribution in the plate thickness direction follows a so-called parabolic distribution. Then, the value of the surface compressive stress becomes equal to twice the tensile stress value at the inner center of the glass plate in the plate thickness direction, and the integrated value of the stress in the plate thickness direction is 0.
Becomes However, in reality, the glass plate has a finite size. The edge of the glass plate is usually chamfered from the viewpoint of preventing cracks during cooling and design.

【0004】このようなガラス板を冷却する場合には、
端部の影響が殆んどない中央領域とは異なり、ガラス板
の端部における冷却は面取り部分の全面に作用し、且つ
ガラス板端部の全厚に局所的に影響を及ぼす。これによ
り、ガラス板の最端部に板厚の2倍から3倍の幅で、板
厚方向の応力の積分平均値が圧縮を示す領域と、これに
釣り合う形でガラス板の内周側に板厚方向の応力の積分
平均値が引張を示す中間領域とが生成される。このこと
は、ガラス板端部の若干内周側に、一定幅で、外部から
の衝撃に対して弱い領域が存在することを意味する。
When cooling such a glass plate,
Unlike the central region, where the edge effects are negligible, the cooling at the edges of the glass sheet acts on the entire chamfered portion and locally affects the total thickness of the edge of the glass sheet. As a result, a region having a width of 2 to 3 times the plate thickness at the outermost portion of the glass plate, in which the integrated average value of stress in the plate thickness direction shows compression, and the region on the inner peripheral side of the glass plate in a balanced manner An intermediate region in which the integrated average value of the stress in the plate thickness direction indicates tension is generated. This means that there is a region having a constant width and slightly vulnerable to an external impact on the inner peripheral side of the edge of the glass plate.

【0005】ここで、積分平均値について、あわせて主
応力の方向、主応力差について説明する。まず、ガラス
板面に垂直なある1平面(ガラス板の断面)を選ぶ。選
ばれた平面は、ガラス板面に平行なある直線に対しあら
ゆる角度をとり得る。また、この平面内にある1点を選
ぶ。この点に働く選ばれた平面に垂直な方向の応力値
は、選ばれた平面の角度によってそれぞれ異なるので、
その角度のうち応力値が最大になる角度と最小になる角
度とが存在する。この、最大値を示す応力の方向と、こ
れに直交する最小値を示す方向とが、主応力方向であ
る。代表して、最大値を示す応力の方向を主応力方向と
呼ぶ。
Here, with respect to the integrated mean value, the direction of the principal stress and the principal stress difference will be described. First, one plane (cross section of the glass plate) perpendicular to the glass plate surface is selected. The plane chosen can be at any angle to some straight line parallel to the plane of the glass sheet. Also, select one point in this plane. Since the stress value acting on this point in the direction perpendicular to the selected plane is different depending on the angle of the selected plane,
Among the angles, there are an angle that maximizes the stress value and an angle that minimizes the stress value. The direction of the stress showing the maximum value and the direction showing the minimum value orthogonal to this are the principal stress directions. Typically, the direction of the stress showing the maximum value is called the principal stress direction.

【0006】ところで、主応力自身を直接測定すること
はできないので、強化ガラスにおいては、光弾性法によ
り得られる主応力差によって、主応力が評価される。こ
の光弾性法により得られる主応力差は、強化ガラスにお
いて、板厚方向に並んだ全ての点について、各点におけ
る応力の最大値から最小値を引いた値の総和を板厚で割
った値(応力の最大値から応力の最小値を引いた値の積
分値を板厚で平均化した値)に相当する。したがって、
ガラス板面上にある点を選び、この点から板厚方向につ
いての、各点の応力の最大値から応力の最小値を引いた
値の積分平均値が、その点での主応力差となる(このと
きの主応力方向が、その点での主応力方向となる)。な
お、本明細書において、主応力方向はすべてガラス板面
に平行な方向にある。
By the way, since the principal stress itself cannot be measured directly, in tempered glass, the principal stress is evaluated by the principal stress difference obtained by the photoelastic method. The main stress difference obtained by this photoelastic method is the value obtained by dividing the sum of the values obtained by subtracting the minimum value from the maximum value of stress at each point by the plate thickness for all points arranged in the plate thickness direction in tempered glass. It corresponds to (a value obtained by averaging the integrated value of values obtained by subtracting the minimum value of stress from the maximum value of stress by the plate thickness). Therefore,
Select a point on the glass plate surface, and from this point, the integrated average value of the values obtained by subtracting the minimum stress value from the maximum stress value at each point in the plate thickness direction is the principal stress difference at that point. (The principal stress direction at this time becomes the principal stress direction at that point). In this specification, the principal stress directions are all parallel to the glass plate surface.

【0007】ところで、自動車側方に配置される窓ガラ
スとして、自動車の空力性能の向上や意匠面でのニーズ
により、車体フランジとの段差をなくした窓ガラス板の
一種である段付きガラス板が開発されている。図3はそ
の端部形状、配置状態の1例を示す図である。図3中、
1はガラス板であり、図示のとおりガラス板の周縁が段
状に形成されている。2はサッシュであり、サッシュ2
には凹部3が設けられ、この凹部3にガラス板1の周縁
が嵌め込まれる。このガラス板は、ガラス板の端部に対
して段付き面取りを施すことにより、板厚の厚い部分の
周辺に一定幅で板厚の薄い部分を持つ自動車用ガラス板
である。
By the way, as a window glass disposed on the side of an automobile, a stepped glass plate which is a kind of a window glass plate which eliminates a step from a body flange due to improvement of aerodynamic performance of the automobile and design needs is used. Being developed. FIG. 3 is a view showing an example of the end shape and arrangement state. In FIG.
Reference numeral 1 denotes a glass plate, and the peripheral edge of the glass plate is formed in a step shape as shown in the drawing. 2 is sash, 2 sash
The concave portion 3 is provided in the concave portion 3, and the peripheral edge of the glass plate 1 is fitted into the concave portion 3. This glass plate is an automobile glass plate having a thin portion with a constant width around a thick portion by subjecting an end of the glass plate to a stepped chamfer.

【0008】特に、自動車側方に配置される段付き強化
ガラス板は、上下方向あるいは斜め上下方向へ摺動さ
れ、しかもそれが頻繁に行われる。このためガラス板の
端部部分に過酷な高い機械的負荷がかかる。そして、ガ
ラス板には、その負荷に耐え得る強度が求められる。と
ころが、上記のような段付き強化ガラス板については、
ガラス板の表面全体に渡って冷却速度を均一にする従来
方法で強化されたガラス板は、中間領域の表面に存在す
る圧縮応力層の応力値が小さくなり、強度を十分に付与
することは困難であった。
In particular, the stepped tempered glass sheet arranged on the side of the automobile is slid vertically or diagonally up and down, and is frequently performed. Therefore, a severe mechanical load is applied to the end portion of the glass plate. Then, the glass plate is required to have a strength capable of withstanding the load. However, regarding the stepped tempered glass plate as described above,
With a glass plate reinforced by a conventional method that makes the cooling rate uniform over the entire surface of the glass plate, the stress value of the compressive stress layer existing on the surface of the intermediate region becomes small, and it is difficult to give sufficient strength. Met.

【0009】[0009]

【発明が解決しようとする課題】本発明は、自動車側方
用窓ガラス板等に用いられる段付き強化ガラス板におけ
る上記のような課題に鑑みてなされたものであり、段付
き強化ガラス板においてその端部部分にかかる過酷な高
い機械的負荷に対して問題なく耐える段付き強化ガラス
板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems in a stepped tempered glass plate used for a window glass plate for a side of an automobile and the like. An object of the present invention is to provide a stepped tempered glass sheet that can endure a severe mechanical load applied to its end portion without any problem.

【0010】[0010]

【課題を解決するための手段】本発明は、周縁領域A
と、中央領域Cと、周縁領域Aと中央領域Cとの間の中
間領域Bとを有するガラス板であって、周縁領域Aと中
間領域Bとの境界に段部が設けられ、周縁領域Aの板厚
が中央領域Cの板厚に比べて薄くなるように形成されて
なる段付きガラス板において、前記ガラス板は強化処理
されたものであり、中間領域Bにおける平均表面圧縮応
力が、中央領域Cにおける平均表面圧縮応力に比べて1
00〜500kg/cm2 大きいことを特徴とする段付
きガラス板を提供する。
The present invention is directed to a peripheral area A
And a central region C and an intermediate region B between the peripheral region A and the central region C, wherein a step portion is provided at the boundary between the peripheral region A and the intermediate region B, and the peripheral region A In the stepped glass plate formed so that the plate thickness thereof is smaller than the plate thickness of the central region C, the glass plate is strengthened, and the average surface compressive stress in the intermediate region B is 1 compared to the average surface compressive stress in region C
Provided is a stepped glass plate having a large size of 0 to 500 kg / cm 2 .

【0011】[0011]

【発明の実施の形態】図1〜図2は本発明の段付き強化
ガラス板を説明する概略図であり、図1は平面図、図2
は図1中ZーZ線断面図である。図1より相対的に拡大
して示したものである。Aは周縁領域を示す。Cは中央
領域を示し、板厚の厚い部分に相当する。Bは中央領域
Cの周辺部で、中央領域Cと周縁領域Aとの間の中間領
域を示す。中間領域Bは中央領域Cと同じく板厚の厚い
部分である。図1に示すように各領域A、B、Cはガラ
ス板を平面視で見たときに定義づけられる領域である。
1 and 2 are schematic views for explaining a stepped tempered glass sheet of the present invention, FIG. 1 is a plan view, and FIG.
2 is a sectional view taken along line ZZ in FIG. It is a relatively enlarged view from FIG. 1. A indicates a peripheral area. C indicates a central region, which corresponds to a thick portion. B is a peripheral portion of the central region C, and indicates an intermediate region between the central region C and the peripheral region A. The intermediate region B is a thick plate portion like the central region C. As shown in FIG. 1, the areas A, B, and C are areas defined when the glass plate is viewed in a plan view.

【0012】本発明においては、上記のような段付きガ
ラス板は強化処理が施されたガラス板である。そして、
この段付きガラス板の中間領域Bにおける平均表面圧縮
応力を、中央領域Cにおける平均表面圧縮応力に比べて
100〜500kg/cm2大きくする。これにより、
板厚方向の応力の積分平均値が引張を示す中間領域であ
る板厚の厚い部分の周辺部における、板厚の薄い部分と
の境界領域(すなわち中間領域B)に十分な強度が付与
される。
In the present invention, the stepped glass plate as described above is a glass plate that has been strengthened. And
The average surface compressive stress in the intermediate region B of this stepped glass plate is set to be 100 to 500 kg / cm 2 larger than the average surface compressive stress in the central region C. This allows
Sufficient strength is imparted to the boundary region (that is, the intermediate region B) with the thin plate portion in the peripheral portion of the thick plate portion which is the intermediate region where the integrated average value of the stress in the plate thickness direction indicates tension. .

【0013】中間領域Bにおける平均表面圧縮応力が中
央領域Cにおける平均表面圧縮応力に比べて100kg
/cm2 未満大きい強度であれば、例えばこのガラス板
を自動車側方窓に用いる場合の頻繁に行われる上下摺動
に耐え得る強度が不足する。このため、中間領域Bにお
ける平均表面圧縮応力は、中央領域Cにおける平均表面
圧縮応力に比べて100kg/cm2大きい。
The average surface compressive stress in the intermediate area B is 100 kg compared to the average surface compressive stress in the central area C.
If the strength is larger than less than / cm 2, the strength that can withstand the frequent vertical sliding when this glass plate is used for an automobile side window is insufficient. Therefore, the average surface compressive stress in the intermediate region B is 100 kg / cm 2 larger than the average surface compressive stress in the central region C.

【0014】本発明においては、中間領域Bが好ましく
は周縁領域Aと中間領域Bとの境界からガラス板におけ
る内周に向けて5〜30mmの幅を有する。これにより
板厚方向の応力の積分平均値が引張を示す中間領域B
が、周縁領域A(板厚の薄い部分)と中央領域C(板厚
の厚い部分)との両方にまたがる場合にも所定の強度を
十分に確保することができる。
In the present invention, the intermediate region B preferably has a width of 5 to 30 mm from the boundary between the peripheral region A and the intermediate region B toward the inner circumference of the glass plate. As a result, the integrated average value of the stress in the plate thickness direction indicates the intermediate region B
However, a predetermined strength can be sufficiently ensured even when it extends over both the peripheral region A (thin plate thickness portion) and the central region C (thick plate thickness portion).

【0015】さらに、本発明においては、上記段付き強
化ガラス板が、平均表面圧縮応力の高い部分に近接周辺
の主応力差に比べて大きい主応力差を有する特徴点を有
することが好ましい。そして、この特徴点に最も近い、
近接周辺の主応力差に比べて大きい主応力差を有する第
2の特徴点と、前記の特徴点との距離が5〜15mmの
範囲であることが好ましい。このような主応力差を形成
することにより、ガラス板が破壊した場合にも大きな破
片の発生を抑制することができる。
Further, in the present invention, it is preferable that the stepped tempered glass sheet has a characteristic point having a large principal stress difference in a portion having a high average surface compression stress as compared with a principal stress difference in the vicinity of the vicinity. And the closest to this feature point,
It is preferable that the distance between the second feature point having a large main stress difference as compared with the main stress difference in the vicinity and the feature point is in the range of 5 to 15 mm. By forming such a main stress difference, it is possible to suppress the generation of large fragments even when the glass plate is broken.

【0016】図4を用いて、さらに詳細に説明する。図
4は、図1の要部(P)拡大概念図である。中間領域B
には、近接周辺に比べて大きな主応力差を有する特徴点
bが点在して設けられている。本例では、この特徴点b
での主応力方向はガラス板の縁方向に対し垂直方向であ
る。一方で、周縁領域Aには、近接周辺に比べて大きな
主応力差を有する特徴点aが散在して設けられている。
本例では、隣接する各特徴点aどうしについて、各特徴
点aの主応力方向はそれぞれ異なる方向を向いている。
本例では、特徴点bに最も近い点は特徴点aである。そ
して、図示の点線で示したLの値が、5〜10mmの範
囲にある。これにより、ガラス板の破砕時に大きな破片
の発生を防止できる。
Further details will be described with reference to FIG. FIG. 4 is an enlarged conceptual view of the main part (P) of FIG. Intermediate area B
Are dotted with characteristic points b having a large difference in principal stress as compared with the vicinity. In this example, this feature point b
The principal stress direction at is perpendicular to the edge direction of the glass plate. On the other hand, in the peripheral area A, the characteristic points a having a large difference in main stress as compared with the peripheral area are provided in a scattered manner.
In this example, the principal stress directions of the characteristic points a of the adjacent characteristic points a are different from each other.
In this example, the point closest to the characteristic point b is the characteristic point a. The value of L shown by the dotted line in the figure is in the range of 5 to 10 mm. As a result, it is possible to prevent the generation of large fragments when the glass plate is crushed.

【0017】このように、上記例では、特徴点bに最も
近い点は周縁領域Aにある特徴点aである。一方で、あ
る特徴点bに最も近い点が特徴点aではなく中間領域B
の他の特徴点bである場合には、上記Lは中間領域内に
ある特徴点b間にあることになる。中央領域Cに、近接
周辺の主応力差に比べて大きい主応力差を有する他の特
徴点があり、この特徴点が特徴点bから最も近い距離に
ある場合には、この距離がLに相当する。
Thus, in the above example, the point closest to the characteristic point b is the characteristic point a in the peripheral area A. On the other hand, the point closest to a certain feature point b is not the feature point a but the intermediate region B.
In the case of another feature point b of, the L is between the feature points b in the intermediate region. In the central region C, there are other characteristic points having a large principal stress difference compared to the principal stress difference in the vicinity, and when this characteristic point is the closest distance from the characteristic point b, this distance corresponds to L. To do.

【0018】ところで、上記例では周縁領域Aと中間領
域Bとの境界に、階段状の段部形成されたものである。
他に、周縁領域Aと中間領域Bとの境界が滑らかに形成
される場合にも、実質的にこの境界に段部を設けること
ができる。この場合、図5に示すように、中間領域Bか
ら周縁領域Aに向かって段部が形成されている側のガラ
ス板面(図示の上側)を左から右にたどっていくと、下
に凸曲線から上に凸曲線に変わっている、すなわち、周
縁領域Aから中間領域Bまでの間に変曲点が存在する。
この変曲点を、実質的な段部を形成する周縁領域Aと中
間領域Bとの境界と呼ぶことができる。なお、本発明に
おいて、段部の形状が階段状(図2)であっても滑らか
な形状(図5)であっても、周縁領域Aの幅は、ガラス
板の端縁から5〜15mmの範囲にあることが、車体と
の整合性の観点から好ましい。
By the way, in the above example, a stepped step is formed at the boundary between the peripheral region A and the intermediate region B.
In addition, even when the boundary between the peripheral region A and the intermediate region B is formed smoothly, a step can be provided substantially at this boundary. In this case, as shown in FIG. 5, when the glass plate surface (the upper side in the drawing) on the side where the step is formed is traced from the intermediate region B to the peripheral region A from left to right, it projects downward. The curve is changed to a convex curve, that is, there is an inflection point between the peripheral region A and the intermediate region B.
This inflection point can be referred to as a boundary between the peripheral region A and the intermediate region B forming a substantial step. In the present invention, the width of the peripheral region A is 5 to 15 mm from the edge of the glass plate regardless of whether the stepped portion has a stepped shape (FIG. 2) or a smooth shape (FIG. 5). The range is preferable from the viewpoint of compatibility with the vehicle body.

【0019】上記のような条件を満たす具体的なガラス
板の強化手段としては、ガラス板の軟化点付近の温度ま
で加熱されたガラス板の両表面に噴流状の冷却媒体を吹
きつけて急冷する方法により実施することができる。そ
の好ましい例としては、EP884286Aに記載の冷
却装置を用いることができる。
As a concrete means for strengthening a glass plate satisfying the above conditions, a jet-like cooling medium is sprayed on both surfaces of the glass plate heated to a temperature near the softening point of the glass plate to quench the glass plate. It can be carried out by a method. As a preferable example thereof, the cooling device described in EP884286A can be used.

【0020】この冷却装置は、ガラス板の両面に対向配
置された風箱と、該風箱のガラス板側に装着された複数
のノズルとを有し、所定温度に加熱されたガラス板に向
けて各ノズルから噴出する冷却風を吹き付けるガラス板
の冷却装置において、前記ノズルは、ガラス板に対向す
る側に凸状曲面形式の先端面を有する中空管状のもので
あって、前記先端面には、風箱内から供給される冷却風
をガラス板に向けて吹き付ける複数の開口孔が設けられ
てなる冷却装置である。
This cooling device has a wind box arranged opposite to each other on both sides of the glass plate and a plurality of nozzles mounted on the glass plate side of the wind box, and is directed toward the glass plate heated to a predetermined temperature. In a cooling device for a glass plate that blows cooling air ejected from each nozzle, the nozzle is a hollow tubular one having a convex curved surface type tip surface on the side facing the glass plate, and the tip surface is The cooling device is provided with a plurality of opening holes for blowing the cooling air supplied from the air box toward the glass plate.

【0021】この冷却装置における、先端面に複数の開
口孔が設けられたノズルを用いることは、以下の点で有
利である。すなわち、通常冷却時に必要なガラス板の摺
動動作によって、冷却能を高めるためにノズルをガラス
板に近づけた場合に生じるガラス板とノズルとの衝突、
を回避できる。具体的には、このノズルを用いることに
より、各ノズル間のピッチを小ピッチにすることができ
る。ノズルを小ピッチに配列することによって摺動距離
を小さくすることにより、ガラス板とノズルとの衝突を
避けることができ、冷却能の大きい部分と小さい部分と
の境界で冷却能に明瞭な差異を与えることができる。ま
た、開口孔の径を小さくすることでガラスーノズル間の
距離に対する冷却能の感度を高めることができる。こう
して、ガラスーノズル間の距離をガラス板における各領
域で変える場合に、異なる距離の差が小さくても、板厚
の薄い部分と板厚の厚い部分とで大きな冷却能の差を生
むことが可能であり、本発明に従った応力分布が得られ
る。
In this cooling device, it is advantageous to use a nozzle having a plurality of openings on the tip surface thereof in the following points. That is, due to the sliding operation of the glass plate required during normal cooling, the collision between the glass plate and the nozzle that occurs when the nozzle is brought close to the glass plate in order to enhance the cooling capacity,
Can be avoided. Specifically, by using this nozzle, the pitch between the nozzles can be made small. By arranging the nozzles at a small pitch to reduce the sliding distance, it is possible to avoid collision between the glass plate and the nozzles, and there is a clear difference in cooling capacity at the boundary between the large cooling area and the small cooling area. Can be given. Further, by reducing the diameter of the opening hole, the sensitivity of the cooling ability to the distance between the glass and the nozzle can be increased. In this way, when the distance between the glass and the nozzle is changed in each region of the glass plate, it is possible to make a large difference in cooling ability between the thin plate portion and the thick plate portion even if the difference in the different distance is small. Yes, the stress distribution according to the invention is obtained.

【0022】すなわち、上記冷却装置において、複数の
ノズルにおけるガラス板に向けて吹き付ける複数の開口
孔のうち、高い平均表面圧縮応力の必要な領域である中
間領域Bにおけるガラスーノズル間の距離を前記中央領
域Cにおける平均表面圧縮応力に比べて100〜500
kg/cm2 大きくするために必要な短い距離にし、高
い平均表面圧縮応力を必要としない面ではガラスーノズ
ル間距離を長くし、選択的に冷却能を変化させて行うこ
とで実施される。
That is, in the above cooling device, the distance between the glass and the nozzle in the intermediate region B, which is a region where a high average surface compressive stress is required, among the plurality of opening holes blown toward the glass plate in the plurality of nozzles is set to the central region. 100-500 compared to the average surface compressive stress in C
It is carried out by shortening the distance required to increase kg / cm 2 and increasing the distance between the glass and the nozzle on the surface that does not require high average surface compression stress, and selectively changing the cooling capacity.

【0023】なお、段付きガラス板は周縁領域Aの板厚
が中央領域Cの板厚より小さい。そのため中間領域Bに
おける平均表面圧縮応力を中央領域Cにおける平均表面
圧縮応力に比べて100〜500kg/cm2大きくする
と、周縁領域Aにおける平均表面圧縮応力の値は中央領
域Cにおける平均表面圧縮応力の値に比べて100〜3
00kg/cm2大きくできる。通常の使用状態における
好ましい強度を得るために、中央領域Cにおける平均表
面圧縮応力の値は850〜1200kg/cm2の範囲に
することが好ましい。
In the stepped glass plate, the plate thickness in the peripheral region A is smaller than the plate thickness in the central region C. Therefore, when the average surface compressive stress in the intermediate region B is increased by 100 to 500 kg / cm 2 as compared with the average surface compressive stress in the central region C, the value of the average surface compressive stress in the peripheral region A is equal to that of the average surface compressive stress in the central region C. 100 to 3 compared to the value
Can be increased by 00 kg / cm 2 . In order to obtain preferable strength under normal use conditions, the value of the average surface compressive stress in the central region C is preferably in the range of 850 to 1200 kg / cm 2 .

【0024】本発明で使用できる冷却装置としては、上
記のような冷却装置のほか、従来公知の冷却装置におい
ても、冷却能の大きい部分と小さい部分との境界が明瞭
に現れるように工夫することにより、必要領域以外の影
響を抑えことが可能である。さらに、従来公知の冷却装
置のうち、必要箇所のノズルを上記の開口孔を複数有す
るノズルに代えて使用することもできる。こうして中間
領域B、板厚が中間領域B及び中央領域Cの板厚に比べ
て薄い周縁領域Aにおいても所定強度を有するガラス板
が得られる。
As the cooling device which can be used in the present invention, in addition to the cooling device as described above, also in conventionally known cooling devices, devise such that the boundary between the portion having a large cooling capacity and the portion having a small cooling capacity appears clearly. Thus, it is possible to suppress the influence other than the necessary area. Furthermore, among the conventionally known cooling devices, the nozzles at the necessary locations may be used instead of the nozzles having a plurality of opening holes. In this way, a glass plate having a predetermined strength can be obtained even in the intermediate region B and the peripheral region A whose plate thickness is thinner than the plate thicknesses of the intermediate region B and the central region C.

【0025】こうした好ましい各応力値を有する段付き
ガラス板は、昇降する自動車サイドウインドウ用ガラス
板に好適に用いられる。すなわち、自動車の走行空力抵
抗の低減と意匠性の向上のために、自動車サッシュと昇
降する自動車サイドウインドウとの面一化が提案されて
いる。一方で、サイドウインドウとサッシュとの間は窃
盗工具を挿入する標的になりやすい。サッシュとサイド
ウインドウとの面一化のためには、サイドウインドウの
サッシュへのかみ込み量が小さくなるため、通常のサイ
ドウインドウの形状では、窃盗工具の進入を防止しにく
い。段付きガラス板をサイドウインドウ用のガラス板に
用いると、窃盗工具を挿入しにくいサイドウインドウの
組付け構造が得られる。そのため、段付きガラス板は、
昇降する自動車サイドウインドウ用ガラス板に好適に用
いられる。そして、段付きガラス板における各応力値を
上記の好ましい各応力値にすることで、自動車サイドウ
インドウに求められる、強度と破砕時の破片の大きさに
見合う段付きガラス板が得られる。
The stepped glass plate having each of these preferable stress values is suitably used for a glass plate for an automobile side window that moves up and down. That is, in order to reduce the running aerodynamic resistance of an automobile and improve the design, it has been proposed to make the automobile sash and the ascending / descending automobile side window flush. On the other hand, between the side window and the sash, it is easy to become a target for inserting a theft tool. In order to make the sash and the side window flush with each other, the amount of biting of the side window into the sash becomes small. Therefore, it is difficult to prevent the theft tool from entering with the normal shape of the side window. When the stepped glass plate is used as a glass plate for a side window, a side window assembly structure in which it is difficult to insert a theft tool is obtained. Therefore, the stepped glass plate is
It is suitable for use in glass plates for automobile side windows that move up and down. Then, by setting each stress value in the stepped glass plate to each of the above preferable stress values, a stepped glass plate corresponding to the strength required for the automobile side window and the size of the fragments at the time of crushing can be obtained.

【0026】自動車サイドウインドウ用ガラス板は、曲
げ成形されたガラス板であることが多い。一方で、サイ
ドウインドウとサッシュとの面一化には、車外側の面に
段部を設けることが、自動車へのガラス板の組付け構造
上好ましい。そのため、取付け状態において、ガラス板
における車外側となる凸部に段部を設けることが好まし
い。さらにこの場合、強度上の観点からガラス板におけ
る車外側となる凸面にのみ段部を設けることが好まし
い。
Glass plates for automobile side windows are often bent glass plates. On the other hand, in order to make the side window and the sash flush with each other, it is preferable to provide a step on the outer surface of the vehicle in terms of the structure for assembling the glass plate to the vehicle. Therefore, in the mounted state, it is preferable to provide the step portion on the convex portion on the outside of the glass plate on the vehicle side. Further, in this case, from the viewpoint of strength, it is preferable that the step portion is provided only on the convex surface of the glass plate, which is on the vehicle outer side.

【0027】昇降するサイドウインドウは、自動車のド
ア内部に設けられる昇降レギュレータと連結される。こ
の場合、取付け状態におけるサイドウインドウ用ガラス
板の下辺において、昇降レギュレータと連結される。こ
の昇降レギュレータとの連結部は、昇降駆動力が伝達さ
れることから過酷な機械的負荷がかかる部分である。そ
のため、本発明の段付きガラス板は、ガラス板の全周の
うちの下辺を除く部分に段部を形成することが好まし
い。さらに、ガラス板の側辺は、サッシュの側辺に係合
してサイドウインドウの昇降をガイドする。
The side window that moves up and down is connected to a lifting regulator provided inside the door of the automobile. In this case, the lower side of the side window glass plate in the attached state is connected to the lifting regulator. The connecting portion with the lifting regulator is a portion to which a severe mechanical load is applied because the lifting driving force is transmitted. Therefore, in the stepped glass plate of the present invention, it is preferable that the stepped part is formed in a portion of the entire circumference of the glass plate except the lower side. Further, the side edge of the glass plate engages with the side edge of the sash to guide the up and down movement of the side window.

【0028】このガイド動作の精度向上の観点とガイド
時における機械的負荷の観点とから、本発明の段付きガ
ラス板は、ガラス板の全周のうち、の下辺と側辺とを除
く部分(上辺のみ)に段部を形成することが好ましい。
一方で、自動車サッシュのサイドウインドウかみこみ溝
幅は、サッシュの上辺と側辺とを同じ幅にすることが、
サッシュの形成容易性の点から優位である。サッシュの
形成優位性の観点と、側辺にもサッシュとサイドウイン
ドウとの面一化を実現できる観点とから、本発明の段付
きガラス板の全周のうちの上辺及び側辺に段部を設ける
ことが好ましい。
From the viewpoint of improving the accuracy of the guide operation and the viewpoint of the mechanical load at the time of guiding, the stepped glass plate of the present invention has a portion (excluding the lower side and the side) of the entire circumference of the glass plate ( It is preferable to form a step on only the upper side).
On the other hand, the side window bite groove width of the car sash can be the same width as the upper side and the side of the sash.
It is superior in terms of ease of forming sash. From the viewpoint of forming superiority of the sash and the viewpoint that the sash and the side window can also be flushed to the side, the stepped portion is provided on the upper side and the side of the entire circumference of the stepped glass sheet of the present invention. It is preferable to provide.

【0029】本明細書における、自動車への取付け状態
における上辺、側辺、下辺の該当部位は、図1を用いて
説明できる。自動車への取付け状態における下辺は、図
1におけるガラス板の下辺である。自動車への取付け状
態における側辺は、図1におけるガラス板の左右の辺で
ある。自動車への取付け状態における上辺は、図1にお
けるガラス板の左上方の傾斜辺を含む上辺である。図1
における段付きガラス板は、ガラス板の全周に段部が設
けられた例を示すものである。そして、下辺にのみ段部
が設けられていない例は、図1におけるガラス板の上辺
及び左右辺の断面形状が図2に示す形状であり、下辺で
はガラス板の断面厚みが均一である例に相当する。上辺
にのみ段部が設けられる例は、図1におけるガラス板の
上辺の断面形状が図2に示す形状であり、側辺及び下辺
ではガラス板の断面厚みが均一である例に相当する。
In the present specification, the relevant parts of the upper side, the side side and the lower side in the state of being attached to the automobile can be explained with reference to FIG. The lower side in the state of being attached to the automobile is the lower side of the glass plate in FIG. The side edges in the state of being attached to the automobile are the left and right edges of the glass plate in FIG. The upper side in the state of being attached to the automobile is the upper side including the upper left inclined side of the glass plate in FIG. Figure 1
The stepped glass plate in 1 is an example in which a step portion is provided on the entire circumference of the glass plate. In the example in which the step is not provided only on the lower side, the cross-sectional shape of the upper side and the left and right sides of the glass plate in FIG. 1 is the shape shown in FIG. 2, and the cross-sectional thickness of the glass plate is uniform on the lower side. Equivalent to. The example in which the step portion is provided only on the upper side corresponds to an example in which the cross-sectional shape of the upper side of the glass plate in FIG. 1 is the shape shown in FIG. 2 and the cross-sectional thickness of the glass plate is uniform on the side and lower sides.

【0030】なお、図7に上辺に段部が設けられ、下辺
に段部が設けられていない、車外側に凸部を有する段付
きガラス板を示す。図7は、自動車へり取付け状態にお
けるガラス板の鉛直断面図に相当する。側辺の状態につ
いての図示は省略するが、側辺に段部を設ける場合は、
側辺の断面形状は図7の上辺の断面形状に概略一致し、
側辺に段部を設けない場合は、側辺の断面形状は図7の
下辺の断面形状に概略一致する。
FIG. 7 shows a stepped glass plate having a convex portion on the outside of the vehicle, in which a step portion is provided on the upper side and a step portion is not provided on the lower side. FIG. 7 corresponds to a vertical cross-sectional view of the glass plate in a state where the glass plate is attached to an automobile. Although illustration of the state of the side is omitted, when the step is provided on the side,
The cross-sectional shape of the side is approximately the same as the cross-sectional shape of the upper side of FIG.
When no step is provided on the side, the cross-sectional shape of the side is substantially the same as the cross-sectional shape of the lower side of FIG.

【0031】本発明の段付きガラス板は、1枚のガラス
板に厚みの異なる部分を設けたガラス板である。すなわ
ち、本発明の段付きガラス板は、1枚のガラス板の周縁
領域Aの板厚が中央領域Cの板厚よりも小さいガラス板
である。そのため、2枚のガラス板を中間膜を介して接
合した合せガラスのように、2枚のガラス板の接合精度
を考慮する必要がない。
The stepped glass plate of the present invention is a glass plate in which portions having different thicknesses are provided on one glass plate. That is, the stepped glass plate of the present invention is a glass plate in which the plate thickness of the peripheral region A of one glass plate is smaller than the plate thickness of the central region C. Therefore, it is not necessary to consider the bonding accuracy of the two glass plates unlike the laminated glass in which the two glass plates are bonded via the intermediate film.

【0032】次に、応力値の測定方法について説明す
る。 (A)平均表面圧縮応力の測定 表面圧縮応力の測定は、JIS R3222に準じて行
う。JIS R3222は、倍強度ガラスに関するもの
である。ここでの測定は、供試体が倍強度ガラスなの
で、本発明の段付き強化ガラス板を供試体として測定す
ることになる。測定点についての規定もあるが、本発明
の段付き強化ガラス板の圧縮応力を測定する際には、こ
の規定にとらわれず適宜の複数点を測定する。その後、
得られた複数点の表面圧縮応力の平均値を求める。測定
点としては、各領域において、表面圧縮応力値が最大値
に近いと予想される点と最小値に近いと予想される点
を、それぞれ同数選ぶことが好ましい。なお、ガラス板
を冷却するための冷却風の噴流の吹き付け方向線とガラ
ス板面との交点で、表面圧縮応力値が最大値になると考
えるのが妥当である。この交点について隣り合う2点の
中間点で、表面圧縮応力値が最小値になると考えるのが
妥当である。
Next, the method of measuring the stress value will be described. (A) Measurement of average surface compressive stress The surface compressive stress is measured according to JIS R3222. JIS R3222 relates to double strength glass. Since the specimen is a double-strength glass, the stepped tempered glass plate of the present invention is used as the specimen. Although there is a stipulation of the measurement point, when measuring the compressive stress of the stepped tempered glass sheet of the present invention, an appropriate plurality of points are measured without being restricted by this stipulation. afterwards,
The average value of the obtained surface compressive stresses at a plurality of points is calculated. As the measurement points, it is preferable to select the same number of points where the surface compressive stress value is expected to be close to the maximum value and the point where the surface compression stress value is expected to be close to the minimum value in each region. It should be noted that it is appropriate to consider that the surface compressive stress value becomes maximum at the intersection of the blowing direction line of the jet of cooling air for cooling the glass plate and the glass plate surface. It is appropriate to consider that the surface compressive stress value becomes the minimum value at the midpoint between two adjacent points at this intersection.

【0033】(B)主応力方向、主応力差の測定 図6に主応力方向、主応力差の測定装置を示す。基本的
には、強化ガラス板Gに円偏光光線を入射させ、段付き
強化ガラス板Gの歪の影響で楕円偏光となった透過光の
偏光状態を測定することによって、主応力方向、主応力
差を求める。光源4から発せられた光線は、偏光子5を
通過させて直線偏光になる。その後、1/4波長板6を
透過させて円偏光とする。段付き強化ガラス板Gの背後
には検光子7が配されている。段付き強化ガラス板G
は、入射する光線に対し垂直に配しておく。段付き強化
ガラス板Gに入射した円偏光光線は、段付き強化ガラス
板Gを通過し、段付き強化ガラス板Gの応力歪に応じて
楕円偏光となる。こうして得られた楕円偏光光線を、回
転する検光子7を通した後に光検出素子8の出力を測定
することにより、楕円偏光の状態を知ることができる。
(B) Measurement of principal stress direction and principal stress difference FIG. 6 shows an apparatus for measuring principal stress direction and principal stress difference. Basically, the principal stress direction and the principal stress are measured by injecting a circularly polarized light beam into the tempered glass plate G and measuring the polarization state of the transmitted light that has become elliptically polarized light due to the strain of the stepped tempered glass plate G. Find the difference. The light beam emitted from the light source 4 passes through the polarizer 5 and becomes linearly polarized light. After that, the light is transmitted through the quarter-wave plate 6 to be circularly polarized light. An analyzer 7 is arranged behind the stepped tempered glass plate G. Stepped tempered glass plate G
Are arranged perpendicular to the incident light rays. The circularly polarized light beam incident on the stepped strengthened glass plate G passes through the stepped strengthened glass plate G and becomes elliptically polarized light according to the stress strain of the stepped strengthened glass plate G. The state of elliptically polarized light can be known by measuring the output of the photodetector 8 after passing the elliptically polarized light beam thus obtained through the rotating analyzer 7.

【0034】主応力方向及び主応力差は、得られた楕円
偏光の状態から次のように求められる。主応力方向
θ1、θ2、主応力差に対応する位相差をδとする。光検
出素子の出力I(φ)は次式(1)で与えられる。但
し、式中、kは比例定数、φは検光子の回転角度であ
る。光検出素子の出力の最小値Iminと最大値Imaxとの
比は楕円率Rである。Rとδとは次式(2)で結ばれ
る。但し、δ>0とする。したがって、位相差δ、主応
力方向θ1、θ2は次の式(2)′〜(4)で表される。
すなわち、楕円偏光の楕円率Rと検光子の回転角度φ
(最大、最小の出力値が得られるときの楕円の長軸角
度)を求めることにより、主応力方向、主応力差を求め
ることができる。なお、主応力差Δρとこれに対応する
δとの関係は式(5)で表される。ここで、cは光弾性
定数(=2.63nm/cm/kg/cm2)、tは測定
部分のガラス板厚、λは光源4から発せられる光の波長
であり、本応力測定装置ではλ=623.8nmであ
る。
The principal stress direction and the principal stress difference can be obtained from the obtained elliptically polarized light state as follows. The principal stress directions θ 1 and θ 2 , and the phase difference corresponding to the principal stress difference is δ. The output I (φ) of the photodetector is given by the following equation (1). However, in the equation, k is a proportional constant and φ is a rotation angle of the analyzer. The ratio of the minimum value I min and the maximum value I max of the output of the photodetector is the ellipticity R. R and δ are connected by the following equation (2). However, δ> 0. Therefore, the phase difference δ and the principal stress directions θ 1 and θ 2 are expressed by the following equations (2) ′ to (4).
That is, the ellipticity R of elliptically polarized light and the rotation angle φ of the analyzer
The principal stress direction and the principal stress difference can be obtained by obtaining (the major axis angle of the ellipse when the maximum and minimum output values are obtained). The relationship between the principal stress difference Δρ and the corresponding δ is represented by equation (5). Here, c is the photoelastic constant (= 2.63 nm / cm / kg / cm 2 ), t is the glass plate thickness of the measurement portion, λ is the wavelength of the light emitted from the light source 4, and in the present stress measurement device, λ = 623.8 nm.

【0035】[0035]

【数1】 [Equation 1]

【0036】なお、この応力測定装置において、光源4
にはHeーNeレーザを使用した。強化ガラス板の強化
むら等の微小変化を検出するために、微小点に光線を絞
れるからである。偏光子5には偏光性のよいグラムトム
ソンプリズムを使用した。リファレンス光の取出しのた
めに偏光子5と1/4波長板6との間にガラス板9を配
置した。このリファレンス光を検出するにあたり、外光
の影響を少なくするためにガラス板9とリファレンス光
検出器との間に干渉フィルタ10を配した。1/4波長
板6には、水晶を研磨し、632.8nmの波長に対し
π/2の位相差を生じさせるものを用いた。回転検光子
7には、偏光子5と同じ素子を用いた。光検出器8に
は、リファレンス光用と同様に外光の影響を小さくする
ために前面に干渉フィルタを配した太陽電池を使用し
た。こうして主応力差および主応力方向を多数点測定す
ることによって、本発明における基準点a、bを定める
ことができる。なお、基準点a、bを定めることによっ
て、Lを定めることができる。
In this stress measuring device, the light source 4
A He-Ne laser was used for this. This is because the light beam can be focused on a minute point in order to detect a minute change such as uneven tempering of the tempered glass plate. As the polarizer 5, a Gram Thomson prism having a good polarization property is used. A glass plate 9 was arranged between the polarizer 5 and the quarter-wave plate 6 for taking out the reference light. In detecting this reference light, an interference filter 10 is arranged between the glass plate 9 and the reference light detector in order to reduce the influence of external light. The quarter-wave plate 6 used is one that polishes quartz to generate a phase difference of π / 2 with respect to a wavelength of 632.8 nm. The same element as the polarizer 5 was used for the rotation analyzer 7. As the photodetector 8, a solar cell in which an interference filter is arranged on the front surface is used in order to reduce the influence of external light as in the case of the reference light. Thus, the reference points a and b in the present invention can be determined by measuring the main stress difference and the main stress direction at a large number of points. Note that L can be determined by determining the reference points a and b.

【0037】[0037]

【実施例】以下、実施例に基づき本発明をさらに詳細に
説明するが、本発明が実施例に限定されないことは勿論
である。本実施例では図1〜図2に示すような段付きガ
ラス板に対して実施した。図示のとおり、この段付き強
化ガラス板は僅かに円筒状に湾曲した形状を有し、上下
方向あるいは斜め上下方向に摺動されるように装着した
自動車用側方ドアの窓ガラスとして用いられる。
The present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to the examples. In this example, the stepped glass plate as shown in FIGS. 1 and 2 was used. As shown in the figure, this stepped tempered glass sheet has a slightly cylindrical curved shape and is used as a window glass for a side door of an automobile mounted so as to be slid vertically or diagonally up and down.

【0038】冷却装置としてはEP884286Aに記
載された冷却装置を改良した冷却装置を使用した。すな
わち該冷却装置のノズルを小ピッチに配列し、ノズルの
径を小さくした冷却装置である。ノズルの小ピッチ配列
によって、必要な摺動距離を小さくすることができ、か
つ冷却能の大きい部分と小さい部分との境界で冷却能に
明瞭な差異を与えることができる。また、ノズルの径を
小さくすることによりガラスーノズル間の距離に対する
冷却能の感度を高めることができ、小さい距離の差で板
厚の薄い部分と板厚の厚い部分とで大きな冷却能を生む
ことが可能になり、本発明に従った応力分布が得られ
る。
As the cooling device, a cooling device obtained by improving the cooling device described in EP884286A was used. That is, it is a cooling device in which the nozzles of the cooling device are arranged at a small pitch to reduce the diameter of the nozzles. The small pitch arrangement of the nozzles makes it possible to reduce the required sliding distance and to give a clear difference in the cooling ability at the boundary between the portion having a large cooling ability and the portion having a small cooling ability. Further, by reducing the diameter of the nozzle, the sensitivity of the cooling capacity to the distance between the glass and the nozzle can be increased, and a large cooling capacity can be produced between the thin plate portion and the thick plate portion due to the small distance difference. It is possible and a stress distribution according to the invention is obtained.

【0039】所定の形状に切断されたガラス板は、周縁
部が面取り処理される。このとき、周縁部の所定箇所が
段状になるように、段付与用の面取りホイールを用いて
面取り処理を行う。その後、加熱曲げ工程を経た段付き
面取り処理されたガラス板を上記改良型冷却装置を用い
て強化した。この段付きガラス板は、外形寸法が110
0×500mm、中央領域Cの板厚が6mm、周縁領域
Aの板厚が3mm、周縁領域Aの幅が10mmのガラス
板である。この段付きガラス板を上記装置により成形強
化処理したガラス板に対し、各領域の平均表面圧縮応力
を、(A)平均表面圧縮応力の測定により測定した。中
央領域Cでは1100kg/cm2、周縁領域Aでは12
00kg/cm2、周縁領域B(板厚の厚い部分と板厚の
薄い部分との境界からガラス板の内周に向けて20mm
の幅の領域)では1300kg/cm2であった。
The peripheral edge of the glass plate cut into a predetermined shape is chamfered. At this time, the chamfering process is performed by using a chamfering wheel for giving a step so that a predetermined portion of the peripheral portion is stepped. After that, the glass plate which was subjected to the step of heating and bending and subjected to the stepped chamfering was strengthened by using the improved cooling device. This stepped glass plate has an outer dimension of 110.
The glass plate is 0 × 500 mm, the central region C has a plate thickness of 6 mm, the peripheral region A has a plate thickness of 3 mm, and the peripheral region A has a width of 10 mm. The average surface compressive stress of each region was measured by measuring (A) the average surface compressive stress of the glass plate obtained by subjecting this stepped glass plate to the forming and strengthening treatment by the above-mentioned apparatus. 1100 kg / cm 2 in central area C, 12 in peripheral area A
00 kg / cm 2 , peripheral region B (20 mm toward the inner circumference of the glass plate from the boundary between the thick plate portion and the thin plate portion)
Width region) was 1300 kg / cm 2 .

【0040】一方、上記の得られたガラス板について、
(B)主応力方向、主応力差の測定に基づき、近接周辺
に比べて大きな主応力差を有する特徴点を特定した。こ
れにより中間領域Bにある第1特徴点に最も近い、近接
周辺に比べて大きな主応力差を有する第2特徴点は周縁
領域Aにあった。第1特徴点と第2特徴点との間の距離
は10mmであった。強度を確認するための試験とし
て、当該領域を1.5ポンドのハンマーを40cmの高
さから落下させるハンマー試験、並びに、227gの鋼
球を落下させて破壊する高さが2m以上である落球試験
を実施した。この試験はJISーR3212に規定され
た自動車用窓ガラス試験に相当する。上記によって得ら
れた段付き強化ガラス板は、JISーR3212に規定
された試験に合格した。
On the other hand, for the glass plate obtained above,
(B) Based on the measurement of the principal stress direction and the principal stress difference, the characteristic points having a larger principal stress difference compared to the vicinity of the vicinity were identified. As a result, the second feature point, which is closest to the first feature point in the intermediate region B and has a larger principal stress difference than that of the neighboring periphery, was in the peripheral region A. The distance between the first feature point and the second feature point was 10 mm. As a test for confirming the strength, a hammer test in which a 1.5-pound hammer is dropped from a height of 40 cm in this region, and a drop ball test in which a 227 g steel ball is dropped and broken to a height of 2 m or more Was carried out. This test corresponds to the automobile window glass test specified in JIS-R3212. The stepped tempered glass plate obtained as described above passed the test specified in JIS-R3212.

【0041】[0041]

【発明の効果】本発明によれば、段付きガラス板につい
て、中央領域Cと板厚の小さい周縁領域Aとの間にある
中間領域Bに、大きな表面圧縮応力を付加し、自動車用
安全ガラス板等として十分な強度に保つことができると
いう優れた効果が得られる。
According to the present invention, in the stepped glass plate, a large surface compressive stress is applied to the intermediate region B between the central region C and the peripheral region A having a small thickness, and the safety glass for automobiles is manufactured. An excellent effect that a plate or the like can be maintained with sufficient strength is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の段付きガラス板の一例を説明する概略
正面図。
FIG. 1 is a schematic front view illustrating an example of a stepped glass plate of the present invention.

【図2】本発明の段付きガラス板の一例を説明する概略
断面図。
FIG. 2 is a schematic sectional view illustrating an example of a stepped glass plate of the present invention.

【図3】段付きガラス板の配置状態の一例を示す図。FIG. 3 is a view showing an example of an arrangement state of stepped glass plates.

【図4】図1の要部(P)拡大概念図。FIG. 4 is an enlarged conceptual view of a main part (P) of FIG.

【図5】本発明の段付きガラス板の別の例を示す概略断
面図。
FIG. 5 is a schematic cross-sectional view showing another example of the stepped glass plate of the present invention.

【図6】主応力方向、主応力差の測定方法を説明する概
念図。
FIG. 6 is a conceptual diagram illustrating a method of measuring a principal stress direction and a principal stress difference.

【図7】本発明の段付きガラス板の一例を説明する概略
断面図。
FIG. 7 is a schematic sectional view illustrating an example of a stepped glass plate of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス板 2 サッシュ 3 サッシュ2の凹部 A 周縁領域 B 中央領域Cの周辺部で、中央領域Cと周縁領域Aと
の間の中間領域 C 中央領域 G 段付きガラス板
DESCRIPTION OF SYMBOLS 1 Glass plate 2 Sash 3 Recess A of sash 2 Peripheral region B Middle region C between the central region C and the peripheral region A at the peripheral region of the central region C Central region G Stepped glass plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】周縁領域Aと、中央領域Cと、周縁領域A
と中央領域Cとの間の中間領域Bとを有するガラス板で
あって、周縁領域Aと中間領域Bとの境界に段部が設け
られ、周縁領域Aの板厚が中央領域Cの板厚に比べて薄
くなるように形成されてなる段付きガラス板において、
前記ガラス板は強化処理されたものであり、中間領域B
における平均表面圧縮応力が、中央領域Cにおける平均
表面圧縮応力に比べて100〜500kg/cm2 大き
いことを特徴とする段付きガラス板。
1. A peripheral region A, a central region C, and a peripheral region A.
A glass plate having an intermediate region B between the central region C and a central region C, wherein a step portion is provided at the boundary between the peripheral region A and the intermediate region B, and the peripheral region A has a thickness equal to that of the central region C. In the stepped glass plate formed to be thinner than
The glass plate has been tempered and has an intermediate region B
The stepped glass plate is characterized in that the average surface compressive stress in (1) is larger than the average surface compressive stress in the central region (C) by 100 to 500 kg / cm 2 .
【請求項2】中間領域Bが、周縁領域Aと中間領域Bと
の境界からガラス板における内周に向けて5〜30mm
の幅を有する請求項1に記載の段付きガラス板。
2. The intermediate region B is 5 to 30 mm from the boundary between the peripheral region A and the intermediate region B toward the inner circumference of the glass plate.
The stepped glass sheet according to claim 1, having a width of.
【請求項3】中間領域Bには、近接周辺に比べて大きな
主応力差を有する第1特徴点が散在しており、第1特徴
点に最も近い、近接周辺に比べて大きな主応力差を有す
る第2特徴点と第1特徴点との間の距離が5〜15mm
である請求項1又は2に記載の段付きガラス板。
3. The intermediate region B is scattered with first characteristic points having a large difference in principal stress as compared with those in the vicinity of the vicinity, and has a large difference in principal stress as compared with those in the vicinity of the vicinity, which is closest to the first characteristic point. The distance between the second feature point and the first feature point has 5 to 15 mm
The stepped glass plate according to claim 1 or 2.
【請求項4】前記ガラス板は曲げ成形された自動車窓用
ガラス板であって、該曲げ成形されたガラス板の凸面が
自動車外側面である請求項1、2又は3に記載の段付き
ガラス板。
4. The stepped glass according to claim 1, 2 or 3, wherein the glass sheet is a bent glass sheet for automobile windows, and the convex surface of the bent glass sheet is an outer surface of the automobile. Board.
【請求項5】前記段部は、曲げ成形されたガラス板の凸
面であって自動車への取付け状態における上辺に形成さ
れている請求項4に記載の段付きガラス板。
5. The stepped glass sheet according to claim 4, wherein the stepped portion is a convex surface of a bent glass sheet and is formed on an upper side in a state of being attached to an automobile.
【請求項6】前記段部は、曲げ成形されたガラス板の凸
面であって、自動車への取付け状態における上辺及び側
辺に形成されている請求項5に記載の段付きガラス板。
6. The stepped glass sheet according to claim 5, wherein the stepped portion is a convex surface of a bent glass sheet and is formed on an upper side and a side edge in a state of being attached to an automobile.
JP16094599A 1998-06-08 1999-06-08 Stepped glass plate Expired - Fee Related JP4438126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16094599A JP4438126B2 (en) 1998-06-08 1999-06-08 Stepped glass plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17540398 1998-06-08
JP10-175403 1998-06-08
JP16094599A JP4438126B2 (en) 1998-06-08 1999-06-08 Stepped glass plate

Publications (2)

Publication Number Publication Date
JP2000063136A true JP2000063136A (en) 2000-02-29
JP4438126B2 JP4438126B2 (en) 2010-03-24

Family

ID=26487262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16094599A Expired - Fee Related JP4438126B2 (en) 1998-06-08 1999-06-08 Stepped glass plate

Country Status (1)

Country Link
JP (1) JP4438126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042966A (en) * 2002-03-05 2012-03-01 Corning Inc Low striation extreme ultraviolet optical element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP6701168B2 (en) 2014-07-31 2020-05-27 コーニング インコーポレイテッド Heat strengthened glass, and method and apparatus for heat strengthening glass
JP6923555B2 (en) 2016-01-12 2021-08-18 コーニング インコーポレイテッド Thin heat-strengthened and chemically-strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
CN111065609A (en) 2017-08-24 2020-04-24 康宁股份有限公司 Glass with improved tempering capability
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
WO2021025981A1 (en) 2019-08-06 2021-02-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042966A (en) * 2002-03-05 2012-03-01 Corning Inc Low striation extreme ultraviolet optical element

Also Published As

Publication number Publication date
JP4438126B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US6656597B2 (en) Laminated glass and glass plate used for producing laminated glass
US6180237B1 (en) Tempered glass
US6200665B1 (en) Stepped glass sheet
JP2000063136A (en) Stepped glass plate
US7670525B2 (en) Method for fabricating a curved beam from composite material
KR101122651B1 (en) Glazing comprising break lines
US20060070694A1 (en) Laminated glazing material
US20110250423A1 (en) Process and system for cutting a brittle-material plate, and window glass for a vehicle
JP6117803B2 (en) Manufacture of laminated glass panels
EP0684212B1 (en) Tempered glass sheet
EP0887180B1 (en) Laminated glass
US9067622B2 (en) Vehicle roof made of glass comprising localized zones of compressive stress
US20110151673A1 (en) Plasma etching method, plasma etching device, and method for producing photonic crystal
FI109350B (en) Laminated height adjustable car glass window, such as side windows to a car
JP4442463B2 (en) Manufacturing method of deflecting mirror to optical waveguide
US7306848B2 (en) Tempered glass sheet, process and apparatus therefor
JPH11199257A (en) Tempered glass plate, cooling of glass plate, and cooler
Abramov et al. Laser separation of chemically strengthened glass
JP4066648B2 (en) Laminated glass and glass plate used for the production of laminated glass
CN102782467B (en) Sleeper for supporting rails
Ocariz et al. Photothermal study of subsurface cylindrical structures. II. Experimental results
US20110063626A1 (en) Detection method of crack occurrence position
US11702357B2 (en) Nozzle strip for a blow box for thermally prestressing glass panes
CN114047001B (en) Honeycomb aluminum barrier, design method and application thereof
JP4539037B2 (en) Tempered glass plate, manufacturing method thereof and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees