JP2000060826A - Noninvasive vital component measuring instrument - Google Patents

Noninvasive vital component measuring instrument

Info

Publication number
JP2000060826A
JP2000060826A JP10232417A JP23241798A JP2000060826A JP 2000060826 A JP2000060826 A JP 2000060826A JP 10232417 A JP10232417 A JP 10232417A JP 23241798 A JP23241798 A JP 23241798A JP 2000060826 A JP2000060826 A JP 2000060826A
Authority
JP
Japan
Prior art keywords
calibration
physical quantity
measured
measuring device
biological component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10232417A
Other languages
Japanese (ja)
Inventor
Tomoki Kitawaki
知己 北脇
Muneo Tokita
宗雄 時田
Shinichi Hirako
進一 平子
Yusaku Sakota
勇策 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP10232417A priority Critical patent/JP2000060826A/en
Publication of JP2000060826A publication Critical patent/JP2000060826A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy. SOLUTION: At the time of calibration, the measurement spectra of plural living bodies are stored in a spectrum save memory 12 and the corresponding blood sugar values of the plural living bodies are stored in a blood sugar value save memory 14 from a blood sugar value information input section 13. A calibration equation is calculated from the measurement spectra of the spectrum save memory 12 and the blood sugar value data of the blood sugar value save memory 14 in a calibration work processing section 15 and is saved into a calibration equation save memory 16. At this time, the measurement spectra saved in a past measurement spectrum save memory 19 and the measurement spectra measured this time and saved in the spectrum save memory are compared. The calibration equation is stored in the save memory 16 only when there are no problems. At the time of the measurement the blood sugar value is estimated by applying the measurement spectra to the calibration equation of the calibration equation save memory 16 in a blood sugar value estimation section 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、非侵襲で生体内
の血糖などの生体成分を測定する非侵襲生体成分測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-invasive biological component measuring device for non-invasively measuring biological components such as blood glucose in a living body.

【0002】[0002]

【従来の技術】非侵襲的に血体内の血糖を測定する装置
として、生体に可視光、近赤外光や赤外光を照射し、そ
の透過又は反射光のスペクトルを解析するという分光分
析装置が一般によく知られている。例えば、特開平3−
173535号や特開平5−176917号では、近赤
外光を人体に照射し、その透過光の強度を測定すること
によって、生体内のグルコース濃度を推定している。上
記した方法以外にも、非侵襲的に血糖を測定する装置
は、各種提案されている。
2. Description of the Related Art As a device for non-invasively measuring blood glucose in a blood body, a spectroscopic analyzer for irradiating a living body with visible light, near infrared light or infrared light and analyzing the spectrum of transmitted or reflected light thereof. Is generally well known. For example, JP-A-3-
In 173535 and JP-A-5-176917, the glucose concentration in the living body is estimated by irradiating the human body with near infrared light and measuring the intensity of the transmitted light. In addition to the method described above, various devices for non-invasively measuring blood glucose have been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の光を用
いた非侵襲血糖測定装置では、原理的に生体内の絶対濃
度を測定することができない。なせならば、光学式の装
置で吸光度から血糖の絶対値を求めるためには、光路長
を知る必要があるが、皮膚の上から光を照射し、反射散
乱してくる光を検出したり、あるいは組織を透過した光
を検出する時は正確な光路長を求めることができないた
めである。したがって、非侵襲血糖測定装置による測定
を実現するためには、予め装置の校正作業(ここで言う
校正作業については、後に定義する)が必要である。
In principle, the above-mentioned conventional non-invasive blood glucose measuring device using light cannot measure the absolute concentration in the living body. In order to determine the absolute value of blood sugar from the absorbance with an optical device, it is necessary to know the optical path length, but light is radiated from above the skin and the light reflected and scattered is detected. Alternatively, it is not possible to obtain an accurate optical path length when detecting light that has passed through tissue. Therefore, in order to realize the measurement by the non-invasive blood glucose measuring device, the calibration work of the device (the calibration work here is defined later) is necessary.

【0004】しかし、これまで提案されている装置で
は、校正作業の実現上の問題から、必要とされる測定精
度が十分にあがっていないため、実用化が遅れていると
考えられる。ここで注意すべきは、非侵襲血糖測定装置
という名称を用いているものの、実際の装置では血糖を
測定しているわけではなく、血糖を推定していることで
ある。
However, it is considered that the devices proposed so far have not been put to practical use because the required measurement accuracy has not been sufficiently raised due to the problem in realizing the calibration work. It should be noted here that although the name non-invasive blood glucose measuring device is used, the actual device does not measure blood glucose but estimates blood glucose.

【0005】ここで言う校正作業とは、以下のような作
業を言う。 従来から用いられている侵襲型の血糖計で血糖の絶対
値を測定する。以下、この侵襲的に測定された血糖の絶
対値のことを血糖値と呼ぶ。 この血糖値の測定と同時に、非侵襲血糖測定装置によ
る物理量測定を行う。この物理量は、光学的方式を用い
た光強度や光情報のことが多いが、それ以外の方式で測
定された物理量、例えば高周波電流等の場合も基本的に
同じことである。以下、光学的手段で測定された値につ
いて説明を進めることとし、ここで測定された物理量の
ことを測定スペクトルと呼ぶ。
The calibration work here means the following work. The absolute value of blood glucose is measured with a conventional invasive blood glucose meter. Hereinafter, the absolute value of blood glucose measured invasively is referred to as blood glucose level. Simultaneously with the measurement of the blood glucose level, the physical quantity is measured by the non-invasive blood glucose measuring device. This physical quantity is often light intensity or optical information using an optical method, but is basically the same for physical quantities measured by other methods, such as high-frequency current. Hereinafter, the value measured by the optical means will be described, and the physical quantity measured here is referred to as a measurement spectrum.

【0006】この測定スペクトルを用いて、血糖値を
推定できるようにするための計算式を算出する。この推
定スペクトルから血糖値を推定するためには、様々なア
ルゴリズムが用いられ、装置によってその処理や手法は
大きく異なっており、装置を実現する上で最も重要な処
理である。この処理の例として、測定スペクトルに一定
の係数をかけて血糖値を推定することもできる。この場
合は、血糖値推定に用いられる計算式の係数を、血糖値
と測定スペクトルから定める処理のことを校正作業と呼
ぶ。一般化すると、予め与えられた血糖値と測定スペク
トルを用いて、血糖値推定のための計算処理を決定する
ことを校正作業と呼び、こうして計算された計算式のこ
とを校正式と呼ぶことができる。
Using this measurement spectrum, a calculation formula for estimating the blood glucose level is calculated. Various algorithms are used to estimate the blood glucose level from the estimated spectrum, and the processing and method are greatly different depending on the device, which is the most important process for realizing the device. As an example of this processing, the blood glucose level can be estimated by multiplying the measured spectrum by a constant coefficient. In this case, the process of determining the coefficient of the calculation formula used for blood sugar level estimation from the blood sugar level and the measurement spectrum is called a calibration operation. As a generalization, determining a calculation process for blood sugar level estimation using a blood sugar level and a measurement spectrum given in advance is called a calibration work, and the calculation formula thus calculated is called a calibration formula. it can.

【0007】通常、このような装置を用いる時、患者の
一人一人毎に校正式は異なるため、患者個別に校正作業
が必要である。しかし、同一の装置を用いて、別の患者
の測定を行う時には、予め患者に合わせて適切な校正式
を作成しておいて、測定の際には適切な校正式を選択し
て用いることで、それぞれの患者の血糖を推定すること
ができる。
[0007] Normally, when using such a device, the calibration formula is different for each patient, so that calibration work is required for each patient. However, when using the same device to measure another patient, create an appropriate calibration formula in advance according to the patient, and select and use an appropriate calibration formula during measurement. , The blood glucose of each patient can be estimated.

【0008】ここでは、校正という表現を用いたが、化
学定量の世界では、このような作業のことをキャリブレ
ーションと呼んでいる。この発明では、非侵襲的に血糖
を推定する装置において、測定精度が十分にあがらない
という従来の装置の問題点に着目してなされたものであ
って、校正作業を行う際に適正な方法を取ることによっ
て、測定精度を向上させることを目的としている。ま
た、こうして得られた校正式を装置内部に複数保存して
おき、これらを適切に選択して利用することにより、操
作利便性を向上することも目的としている。
Although the expression "calibration" is used here, in the world of chemical quantification, such an operation is called "calibration". In the present invention, in a device for estimating blood glucose non-invasively, the present invention has been made by paying attention to the problem of the conventional device that the measurement accuracy does not rise sufficiently, and an appropriate method for performing calibration work is provided. The purpose is to improve the measurement accuracy. It is also an object to improve the convenience of operation by preserving a plurality of calibration formulas thus obtained inside the apparatus and appropriately selecting and using them.

【0009】[0009]

【課題を解決するための手段】この出願の特許請求の範
囲の請求項1に係る非侵襲生体成分測定装置は、非侵襲
的に生体を測定した物理量を基に、血糖などの生体成分
量を推定するものにおいて、非侵襲的に生体情報を測定
する生体情報測定手段と、過去に生体を測定した物理量
を保存する過去測定データ保存手段と、この保存された
過去測定の物理量と、生体から測定した物理量とを比較
する比較手段と、を備えている。
A non-invasive biological component measuring device according to claim 1 of the present application determines a biological component amount such as blood glucose based on a physical amount of a non-invasively measured living body. In the estimation, the biological information measuring means for non-invasively measuring biological information, the past measurement data storage means for storing the physical quantity of the living body measured in the past, the stored physical quantity of the past measurement, and the measurement from the living body And a comparison means for comparing the physical quantity.

【0010】この非侵襲生体成分測定装置では、予め過
去測定データ保存手段に、正常に生体成分、例えば血糖
値推定を行うことができた時の物理量、例えば推定スペ
クトルを記憶しておく。この記憶された測定スペクトル
と、校正作業中に得られた測定スペクトルとの差を比較
手段で計算し、その結果が異常、つまり両者が大きく異
なっている場合には、再測定を指示したり、校正作業を
中断し、この患者による装置の利用を停止する。
In this non-invasive living body component measuring apparatus, the past measured data storage means stores in advance a living body component, for example, a physical quantity when the blood glucose level can be normally estimated, for example, an estimated spectrum. The difference between the stored measurement spectrum and the measurement spectrum obtained during the calibration work is calculated by the comparison means, and when the result is abnormal, that is, when the two are greatly different, re-measurement is instructed, or The calibration process is interrupted and the device is no longer used by the patient.

【0011】また、請求項4に係る非侵襲生体成分測定
装置は、非侵襲的に生体を測定した物理量を基に、血糖
などの生体成分量を推定するものにおいて、非侵襲的に
生体情報を測定する生体情報測定手段と、過去に算出さ
れた校正式を保存する校正式保存手段と、この保存され
た校正式と、生体から測定した物理量から算出された校
正式とを比較する校正式比較手段と、を備えている。
A non-invasive biological component measuring device according to a fourth aspect is a device for estimating a biological component amount such as blood glucose based on a physical amount obtained by non-invasively measuring a living body. Comparison of the biological information measuring means for measurement, the calibration expression storage means for saving the calibration expression calculated in the past, and the calibration expression comparison for comparing the saved calibration expression with the calibration expression calculated from the physical quantity measured from the living body. And means.

【0012】また、請求項7に係る非侵襲生体成分測定
装置は、非侵襲的に生体を測定した物理量を基に、血糖
などの生体成分量を推定するものにおいて、非侵襲的に
生体情報を測定する生体情報測定手段と、測定された複
数の物理量データを解析して、異常データの有無を判別
する異常データ有無判別手段と、を備えている。これら
の非侵襲生体成分測定装置では、校正作業を行う際に、
得られた測定スペクトルを多変量解析し、測定スペクト
ルの中に異常なデータがないかを調べる。この結果、異
常な測定スペクトルデータがあった場合に、この異常デ
ータを予め排除して校正作業を行うことで、より良い校
正式を作成することができる。また、異常データが出現
した際に、校正作業自体を中断し、この患者による装置
の利用を停止することもできる。
The non-invasive biological component measuring device according to claim 7 estimates the amount of biological components such as blood glucose based on the physical amount of a non-invasively measured living body. The biological information measuring means for measuring and the abnormal data presence / absence determining means for analyzing the plurality of measured physical quantity data to determine presence / absence of abnormal data are provided. With these non-invasive biological component measuring devices, when performing calibration work,
The obtained measured spectrum is subjected to multivariate analysis to check whether there is any abnormal data in the measured spectrum. As a result, when there is abnormal measured spectrum data, a better calibration formula can be created by excluding this abnormal data in advance and performing the calibration work. Further, when abnormal data appears, the calibration work itself can be interrupted and the use of the device by this patient can be stopped.

【0013】[0013]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。図1は、この発明の一実施
形態非侵襲生体成分測定装置の外観斜視図である。この
実施形態非侵襲生体成分測定装置は、近赤外光を用いて
生体からの光スペクトルを測定することで、生体内の血
糖を非侵襲的に測定する装置である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is an external perspective view of a non-invasive biological component measuring device according to an embodiment of the present invention. The non-invasive biological component measuring device of this embodiment is a device that non-invasively measures blood glucose in the living body by measuring an optical spectrum from the living body using near infrared light.

【0014】図1において、非侵襲生体成分測定装置1
は、内部で種々のデータ処理を行うコンピュータ部2
と、生体情報を検出する検出部3とから構成されてい
る。検出部3の上面凹部4には、内部に設けられる光フ
ァイバの先端に連通する開口5が設けられており、測定
時には凹部4に腕が載置されることになる。検出部3内
の光学系は、概略を図2に示すように、光源11と、こ
の光源11からの光を受けて分光する回析格子12と、
この回析格子12からの光を開口5に載置する生体14
に導くための光ファイバ13と、生体14からの光を取
り込むための光ファイバ15と、この光ファイバ15か
らの光を電気信号に変換する光検出器16を備えてい
る。この光学系では、光源11からの光が回析格子12
によって分光され、光ファイバ13を介して生体14に
照射される。生体14を透過(散乱)してきた光が再度
光ファイバ15を通じて光検出器16まて導かれ、受光
される。これによって、生体14からのスペクトルを得
ている。
In FIG. 1, a non-invasive biological component measuring device 1
Is a computer unit 2 that performs various data processing internally.
And a detection unit 3 that detects biological information. The upper surface recess 4 of the detection unit 3 is provided with an opening 5 communicating with the tip of an optical fiber provided inside, and the arm is placed in the recess 4 during measurement. As shown in FIG. 2, the optical system in the detection unit 3 includes a light source 11, a diffraction grating 12 that receives light from the light source 11 and splits the light.
A living body 14 on which the light from the diffraction grating 12 is placed on the opening 5.
An optical fiber 13 for guiding the light from the living body 14, an optical fiber 15 for taking in the light from the living body 14, and a photodetector 16 for converting the light from the optical fiber 15 into an electric signal. In this optical system, the light from the light source 11 is transmitted to the diffraction grating 12
The light is dispersed by the light and is irradiated onto the living body 14 through the optical fiber 13. The light transmitted (scattered) through the living body 14 is again guided to the photodetector 16 through the optical fiber 15 and received. Thereby, the spectrum from the living body 14 is obtained.

【0015】この種の装置では、原理的に血糖値の絶対
値を測定することができないため、 装置内部で血糖値を推定するための計算式を作成し
(=校正作業)、この計算式(校正式)を用いて、血
糖値を推定する(=測定作業)という2つの作業を行
う。図3は、上記2つの作業を実現するための従来の機
能回路であって、この発明の実施形態非侵襲生体成分測
定装置の前提となる。図3の装置は、測定スペクトル入
力部11と、スペクトル保存メモリ12と、血糖値情報
入力部13と、血糖値保存メモリ14と、校正作業処理
部15と、校正式保存メモリ16と、血糖値推定部17
と、血糖値表示・出力部18とを備えている。
Since the absolute value of the blood glucose level cannot be measured in principle in this type of device, a formula for estimating the blood glucose level is created inside the device (= calibration work), and this formula ( Using the calibration formula), two tasks of estimating the blood glucose level (= measurement task) are performed. FIG. 3 shows a conventional functional circuit for realizing the above two operations, which is a premise of the non-invasive biological component measuring device according to the embodiment of the present invention. The apparatus of FIG. 3 includes a measurement spectrum input unit 11, a spectrum storage memory 12, a blood glucose level information input unit 13, a blood glucose level storage memory 14, a calibration work processing unit 15, a calibration type storage memory 16, and a blood glucose level. Estimator 17
And a blood glucose level display / output unit 18.

【0016】この生体成分測定装置において、校正作業
を行う場合、複数の測定スペクトルが必要である。この
ため、得られた測定スペクトルは、入力部11より順次
スペクトル保存メモリ12に保存される。一方、スペク
トル測定と同時に、通常の侵襲的血糖測定装置を用いて
測定された血糖値は、血糖値入力部13を通じて入力さ
れ、血糖値保存メモリ14に保存される。このようなス
ペクトル測定と血糖値測定は複数回行われて、それぞれ
のメモリ内に対応つけて保存される。
In this biological component measuring apparatus, a plurality of measurement spectra are required when performing the calibration work. Therefore, the obtained measured spectra are sequentially stored in the spectrum storage memory 12 from the input unit 11. On the other hand, at the same time as the spectrum measurement, the blood glucose level measured using a normal invasive blood glucose measuring device is input through the blood glucose level input unit 13 and stored in the blood glucose level storage memory 14. Such spectrum measurement and blood glucose level measurement are performed a plurality of times and are stored in association with each other in each memory.

【0017】校正作業処理部15では、スペクトル保存
メモリ12に保存された複数の測定スペクトルと、血糖
値保存メモリ14に保存された複数の血糖値を用いて校
正式を算出し、算出された校正式を校正式保存メモリ1
6に保存する。このような校正式の算出については、公
知事例(特開平3−173535号、特開平5−176
917号)において詳細に記されているので、ここでは
省略する。
In the calibration work processing section 15, a calibration formula is calculated using the plurality of measured spectra stored in the spectrum storage memory 12 and the plurality of blood glucose levels stored in the blood glucose storage memory 14, and the calculated formula is calculated. Officially the calibration type storage memory 1
Save to 6. Regarding the calculation of such a calibration formula, there are known cases (Japanese Patent Laid-Open Nos. 3-173535 and 5-176.
No. 917), it is omitted here.

【0018】校正式が計算された後に、実際に血糖値を
推定する際(測定作業時)には、以下のような処理が行
われる。測定スペクトルは、測定スペクトル入力部11
より血糖値推定処理部17に送られて、校正式保存メモ
リ16に保存された校正式をもとに、推定血糖値が算出
される。こうして得られた血糖の推定値が血糖値表示・
出力部18によって装置外部へ出力される。
After the calibration formula is calculated, when the blood glucose level is actually estimated (at the time of measurement work), the following processing is performed. The measured spectrum is measured spectrum input section 11
Further, the estimated blood glucose level is calculated based on the calibration formula sent to the blood glucose level estimation processing unit 17 and stored in the calibration formula storage memory 16. The estimated value of blood glucose thus obtained is displayed on the blood glucose level.
It is output to the outside of the device by the output unit 18.

【0019】図4は、この発明の一実施形態である生体
成分測定装置の機能構成を示すブロック図である。この
実施形態生体成分測定装置は、図3の回路各部に加え
て、過去の測定スペクトル・校正式保存メモリ19を設
けている。この実施形態生体成分測定装置において、校
正作業を行うのに、通常の測定と同様に測定された測定
スペクトルは、測定スペクトル入力部11より、スペク
トル保存メモリ12に保存される。一方、通常の侵襲的
に測定した血糖値は血糖値情報入力部13を通じて入力
され、血糖値保存メモリ14に保存される。ここまでは
図3と同様である。
FIG. 4 is a block diagram showing the functional arrangement of a biological component measuring apparatus according to an embodiment of the present invention. The biological component measuring apparatus according to this embodiment is provided with a past measurement spectrum / calibration type storage memory 19 in addition to the circuit units shown in FIG. In the biological component measuring apparatus of this embodiment, when performing the calibration operation, the measured spectrum measured in the same manner as the normal measurement is stored in the spectrum storage memory 12 from the measured spectrum input unit 11. On the other hand, a normal invasively measured blood sugar level is input through the blood sugar level information input unit 13 and stored in the blood sugar level storage memory 14. Up to this point, the process is the same as in FIG.

【0020】校正作業処理部15では、スペクトル保存
メモリ12に保存された測定スペクトルと血糖値保存メ
モリ14に保存された血糖値を用いて、校正式を算出す
る。この時、過去の測定スペクトル保存メモリ19に保
存された測定スペクトルと、スペクトル保存メモリ12
に保存されている今回測定した測定スペクトルとを比較
し、問題がない場合にのみ、校正式を校正式保存メモリ
16に保存する。この時、同時に測定スペクトルを過去
の測定スペクトル保存メモリ19の方にも保存する。
The calibration work processing section 15 uses the measured spectrum stored in the spectrum storage memory 12 and the blood glucose level stored in the blood glucose storage memory 14 to calculate a calibration formula. At this time, the measured spectrum stored in the past measured spectrum storage memory 19 and the spectrum storage memory 12
The measurement formula stored in the above is compared with the measurement spectrum measured this time, and the calibration formula is stored in the calibration formula storage memory 16 only when there is no problem. At this time, the measured spectrum is simultaneously stored in the past measured spectrum storage memory 19.

【0021】あるいは、過去の測定スペクトル・校正式
保存メモリ19に校正式を保存することもできる。校正
作業処理部15で、スペクトル保存メモリ12に保存さ
れた測定スペクトルと、血糖値保存メモリ14に保存さ
れた血糖値を用いて校正式を算出する時に、算出した校
正式を過去の測定スペクトル・校正式保存メモリ19に
保存された校正式と比較し、問題がない場合には、校正
式を校正式保存メモリ16に保存する。この時、同時に
過去の測定スペクトル・校正式保存メモリ19の方に
も、校正式を保存する。
Alternatively, the calibration formula can be stored in the past measurement spectrum / calibration formula storage memory 19. When the calibration work processing unit 15 calculates the calibration formula using the measured spectrum stored in the spectrum storage memory 12 and the blood glucose level stored in the blood glucose storage memory 14, the calculated calibration formula is set to the past measured spectrum. The calibration formula is compared with the calibration formula stored in the calibration formula storage memory 19, and if there is no problem, the calibration formula is stored in the calibration formula storage memory 16. At this time, at the same time, the calibration formula is also stored in the past measurement spectrum / calibration formula storage memory 19.

【0022】この校正作業処理部15において、正常に
測定できるとの判断は、例えば測定スペクトルまたは校
正式が過去の測定スペクトル・校正式保存メモリ19に
保存された過去のものと大幅に異なる場合が考えられ
る。例えば、図5に示すように、保存していたスペクト
ルと、測定したスペクトルの距離を計算し、距離がある
値以内に入っている場合は、正常に測定できると判定す
ることができる。または、図6にあるように、過去の測
定スペクトル・校正式保存メモリ19に保存された測定
スペクトルの分布を計算し、その分布状態をもとに、測
定したスペクトルの分布からの離れ度合い(マハラノビ
ス距離)を測定し、ある値よりも近い場合を正常に測定
することができる、との判断を下すことができる。保存
されている測定スペクトルが少ない場合は距離計算が、
大量の測定スペクトルが保存されていて、データベース
化されている場合は、マハラノビス距離の方が有効であ
る。
The calibration work processing unit 15 may judge that the measurement can be normally performed, for example, if the measured spectrum or the calibration formula is significantly different from the past one stored in the past measured spectrum / calibration formula storage memory 19. Conceivable. For example, as shown in FIG. 5, the distance between the stored spectrum and the measured spectrum is calculated, and when the distance is within a certain value, it can be determined that the measurement can be normally performed. Alternatively, as shown in FIG. 6, the distribution of the measured spectrum stored in the past measured spectrum / calibration formula storage memory 19 is calculated, and the degree of deviation from the distribution of the measured spectrum (Mahalanobis is calculated based on the distribution state). It is possible to judge that the distance can be measured, and the case where the distance is closer than a certain value can be normally measured. If there are few measurement spectra stored, the distance calculation
The Mahalanobis distance is more effective when a large number of measured spectra are stored and stored in a database.

【0023】このようにして判断した結果を用いて、校
正用の測定スペクトルを再測定することを促したり、こ
の患者での測定を停止させたりすることができる。この
ような校正作業の処理アルゴリズム例を校正式を保存し
ている例で、図7に示す。校正式が計算された後に、実
際に血糖値を推定する際には、前述の図3と同様に、血
糖推定処理と同じ処理を用いて、血糖が推定される。
By using the result of the determination thus made, it is possible to prompt the measurement spectrum for calibration to be measured again or to stop the measurement in this patient. An example of a processing algorithm for such a proofreading operation is shown in FIG. When the blood glucose level is actually estimated after the calibration formula is calculated, the blood glucose is estimated using the same process as the blood glucose estimation process, as in FIG. 3 described above.

【0024】図8は、この発明の他の実施形態である生
体成分測定装置の機能構成を示すブロック図である。こ
の実施形態生体成分測定装置は、図3の回路各部に加え
て、異常データ判別処理部20を設けている。この実施
形態生体成分測定装置において、校正作業は従来例の校
正作業と同様に、スペクトル保存メモリ12には測定ス
ペクトルが、血糖値保存メモリ14には血糖値が保存さ
れる。
FIG. 8 is a block diagram showing the functional arrangement of a biological component measuring apparatus according to another embodiment of the present invention. The biological component measuring apparatus of this embodiment is provided with an abnormal data discrimination processing unit 20 in addition to the circuit units shown in FIG. In the biological component measuring apparatus of this embodiment, the calibration work stores the measurement spectrum in the spectrum storage memory 12 and the blood glucose level in the blood glucose storage memory 14 as in the conventional calibration work.

【0025】校正作業処理部15では、スペクトル保存
メモリ12に保存された測定スペクトルを異常データ判
別処理部20において統計処理し、問題のあるスペクト
ルがあるかどうかを判別する。この判別は、例えば測定
スペクトルの多変量解析などを行って、スペクトルデー
タの分布からの外れ度合いが大きいものを判定する。こ
の判定には、既に述べたマハラノビスの距離が有効であ
る。また、多変量解析の手法である主成分分析を用いた
解析なども有効である。
In the calibration work processing section 15, the measured spectrum stored in the spectrum storage memory 12 is statistically processed in the abnormal data discrimination processing section 20 to discriminate whether or not there is a problem spectrum. In this determination, for example, multivariate analysis of the measured spectrum is performed to determine the one having a large deviation from the distribution of the spectrum data. The Mahalanobis distance described above is effective for this determination. Further, analysis using principal component analysis, which is a method of multivariate analysis, is also effective.

【0026】こうして判定された外れ度合いの大きな測
定スペクトルを、測定ミスとして除いたり、測定スペク
トルの再測定を促したり、測定スペクトルのバラツキが
大きすぎる場合には、この患者での測定を停止させたり
することができる。こうして校正式が計算された後に
は、前述のように、通常の血糖推定処理と同じ処理を用
いて血糖が推定される。
The measurement spectrum with a large degree of deviation determined in this way is removed as a measurement error, remeasurement of the measurement spectrum is urged, or when the variation of the measurement spectrum is too large, the measurement in this patient is stopped. can do. After the calibration formula is calculated in this manner, the blood glucose is estimated using the same process as the normal blood glucose estimating process as described above.

【0027】また、この血糖値の測定時にも、測定スペ
クトルの判別を行って、正常なスペクトルのみで血糖の
推定を行うこともできる。図9は、この発明のさらに他
の実施形態である生体成分測定装置の機能構成を示すブ
ロック図である。この実施形態生体成分測定装置は、図
3の校正式保存メモリ16の代わりに、複数の校正式保
存メモリ21、及び校正式選択処理部22を備えてい
る。
Also, when measuring the blood glucose level, it is possible to determine the measurement spectrum and estimate the blood glucose only with the normal spectrum. FIG. 9 is a block diagram showing a functional configuration of a biological component measuring device according to still another embodiment of the present invention. The biological component measuring apparatus according to this embodiment includes a plurality of calibration formula storage memories 21 and a calibration formula selection processing unit 22 instead of the calibration formula storage memory 16 of FIG.

【0028】この実施形態生体成分測定装置において、
校正作業は、先ず通常の校正作業を行う。通常の校正作
業を行った結果は、複数の校正式保存メモリ21に保存
される。この時、違う患者の校正式を多数の校正式デー
タベースとする時も、この複数の校正式保存メモリ21
のメモリ上に校正式を保存する。また、血糖値の範囲に
したがって、複数の校正式を作成することもできる。こ
うして作成した校正式は、すべて複数の校正式保存メモ
リ21のメモリ上に保存される。
In the biological component measuring device of this embodiment,
As for the calibration work, first, a normal calibration work is performed. The result of the normal calibration work is stored in a plurality of calibration formula storage memories 21. At this time, even when the calibration formulas of different patients are used as a large number of calibration formula databases, the plurality of calibration formula storage memories 21
Save the calibration formula in the memory of. It is also possible to create a plurality of calibration formulas according to the blood glucose level range. The calibration formulas thus created are all stored in the plurality of calibration formula storage memories 21.

【0029】血糖値の推定に関し、実際に血糖値を推定
する際には、予め校正式を選択する必要がある。例え
ば、ボタンで患者が選択する場合は、該当する校正式を
血糖推定処理部17に送ればよい。また、校正式選択処
理部22で自動判別する際には、測定スペクトル入力部
11に入力された測定スペクトルと複数の校正式保存メ
モリ21に保存された校正式を用いて、患者データベー
スから校正式を自動選択し、この校正式を用いて、血糖
値を推定する。血糖値の高低にしたがって、複数の校正
式がある場合も同様に、校正式を選択して、血糖推定処
理を行える。
Regarding the estimation of the blood glucose level, when actually estimating the blood glucose level, it is necessary to select a calibration formula in advance. For example, when the patient selects with the button, the corresponding calibration formula may be sent to the blood sugar estimation processing unit 17. When the calibration formula selection processing unit 22 automatically determines, the calibration formula stored in the measurement spectrum input unit 11 and the calibration formulas stored in the plurality of calibration formula storage memories 21 are used to calculate the calibration formula from the patient database. Is automatically selected, and the blood glucose level is estimated using this calibration formula. Even when there are a plurality of calibration formulas according to the level of the blood glucose level, the calibration formula can be similarly selected to perform the blood glucose estimation process.

【0030】なお、上記実施形態として、生体からの光
スペクトルを測定する方式について詳細に説明したが、
この発明は光を用いる方式以外の測定方式や血糖以外の
測定対象にも適用することができる。測定方式として、
例えば図10に示すような電極31、32を有する装置
を用いて、電極31、32を生体に接触させて、生体に
高周波電流を加える場合を考える(図11参照)。この
時の反射波の強度を周波数毎に測定し、この反射波強度
のスペクトル情報(図12参照)を用いて、生体内物質
を推定する方式が考えられる。この場合のスペクトルの
処理は、光スペクトルに対する処理と同様である。
As the above embodiment, the method of measuring the light spectrum from the living body has been described in detail.
The present invention can be applied to measurement methods other than the method using light and measurement targets other than blood glucose. As a measurement method,
For example, let us consider a case where a device having electrodes 31 and 32 as shown in FIG. 10 is used to bring the electrodes 31 and 32 into contact with a living body to apply a high-frequency current to the living body (see FIG. 11). A method is conceivable in which the intensity of the reflected wave at this time is measured for each frequency and the in-vivo substance is estimated using the spectral information of the reflected wave intensity (see FIG. 12). The processing of the spectrum in this case is similar to the processing for the optical spectrum.

【0031】また、生体内の測定対象とする成分も、血
糖以外にコレステロール、脂質、蛋白といった物質が考
えられる。
The components to be measured in vivo may be substances such as cholesterol, lipids and proteins in addition to blood glucose.

【0032】[0032]

【発明の効果】この出願の特許請求の範囲の請求項1、
請求項2、請求項3、請求項4、請求項5及び請求項6
に係る発明によれば、予め、装置内部に正常に血糖値推
定を行うことができた時の測定スペクトルを記憶してお
き、この記憶された測定スペクトルと、校正作業中に得
られた測定スペクトルとの差を計算し、両者が大きく異
なっている場合には、再測定を指示したり、校正作業を
中断し、この患者による装置の利用を停止するので、測
定スペクトルの測定ミスが校正作業に与える影響を小さ
くして、より精度良い測定を行うことができる。また、
測定スペクトルが大きく異なってしまう患者では、装置
を使用できないようにして、事故を未然に防ぐことがで
きる。
Advantageous Effects of Invention Claim 1 of the claims of this application,
Claim 2, Claim 3, Claim 4, Claim 5, and Claim 6
According to the invention, the measurement spectrum when the blood glucose level can be normally estimated is stored in advance inside the device, and the stored measurement spectrum and the measurement spectrum obtained during the calibration work are stored. If the difference between the two is significantly different, the remeasurement is instructed, the calibration work is interrupted, and the device is stopped from being used by this patient. It is possible to carry out more accurate measurement by reducing the influence exerted. Also,
For patients whose measured spectra are significantly different, the device can be disabled to prevent accidents.

【0033】また、請求項7、請求項8、請求項9に係
る発明によれば、校正作業を行う際に、得られた測定ス
ペクトルを多変量解析し、測定スペクトルの中に異常な
データがないか調べ、異常の測定スペクトルデータがあ
った場合に、この異常データを予め排除して校正作業を
行うので、より良い校正式を作成することができる。ま
た、異常データが出現した際に、校正作業自体を中断
し、この患者による装置の利用を停止することもでき
る。したがって、測定スペクトルのバラツキが大きく、
装置利用が困難な患者での装置利用を停止し、不正確な
推定値を患者に示すことを阻止できる。
Further, according to the inventions of claim 7, claim 8 and claim 9, when performing the calibration work, the obtained measurement spectrum is subjected to multivariate analysis, and abnormal data is found in the measurement spectrum. It is checked whether or not there is abnormal measured spectrum data, and since the abnormal data is eliminated in advance to perform the calibration work, a better calibration formula can be created. Further, when abnormal data appears, the calibration work itself can be interrupted and the use of the device by this patient can be stopped. Therefore, the variation of the measured spectrum is large,
It is possible to stop using the device in patients who have difficulty using the device and prevent showing an inaccurate estimate to the patient.

【0034】また、請求項10、請求項11に係る発明
によれば、複数の校正式を装置内部に保存するので、校
正式を選択する際に、測定スペクトルをもとに、内部に
保存した患者毎の理想スペクトルと比較して、患者を自
動選択することで、ボタンの押し間違いなどの操作ミス
をなくすことができる。予め、複数の患者グループによ
って校正作業を行い、その複数の患者グループ内の個々
人の校正式を装置内部に保存しておく。その上で、この
グループに含まれない患者に対する校正作業では、予め
得られている複数のグループ内の校正式の中から、最適
な校正式を選択して、この患者のために利用するので、
患者は複雑な校正作業を行うことなしに、装置を利用す
ることができるようになる。
According to the tenth and eleventh aspects of the present invention, since a plurality of calibration formulas are stored inside the device, when the calibration formulas are selected, they are stored inside based on the measured spectrum. By automatically selecting a patient in comparison with the ideal spectrum for each patient, it is possible to eliminate erroneous operation such as button pressing error. The calibration work is performed in advance by a plurality of patient groups, and the calibration formula of each individual in the plurality of patient groups is stored in the apparatus. Moreover, in the calibration work for patients not included in this group, the optimum calibration formula is selected from the calibration formulas in multiple groups obtained in advance and used for this patient.
The patient will be able to use the device without performing complex calibration tasks.

【0035】また、請求項12に係る発明によれば、血
糖値範囲(例えば、高血糖領域と低血糖領域)毎に、複
数の校正式を計算するように校正作業を行い、血糖推定
を行うために、測定スペクトルが入力された段階で、こ
れらの複数の校正式の中から最適なものを選択して、血
糖値を推定するので、生体中で幅広く変化する血糖値の
推定を効果的に行うことができる。
According to the twelfth aspect of the invention, the calibration work is performed so as to calculate a plurality of calibration formulas for each blood glucose range (for example, the hyperglycemic region and the hypoglycemic region), and the blood glucose is estimated. For this reason, when the measurement spectrum is input, the optimum one is selected from among these multiple calibration formulas to estimate the blood glucose level, so it is possible to effectively estimate the blood glucose level that widely changes in the living body. It can be carried out.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態非侵襲生体成分測定装置
の外観斜視図である。
FIG. 1 is an external perspective view of a non-invasive biological component measuring device according to an embodiment of the present invention.

【図2】同実施形態非侵襲生体成分測定装置の検出部の
光学系の概略を示す図である。
FIG. 2 is a diagram showing an outline of an optical system of a detection unit of the non-invasive biological component measuring device according to the embodiment.

【図3】同実施形態非侵襲生体成分測定装置の前提とな
る従来装置のコンピュータ部の機能構成を示すブロック
図である。
FIG. 3 is a block diagram showing a functional configuration of a computer unit of a conventional device which is a prerequisite for the non-invasive biological component measuring device according to the embodiment.

【図4】この発明の一実施形態非侵襲生体成分測定装置
のコンピュータ部の機能構成を示すブロック図である。
FIG. 4 is a block diagram showing a functional configuration of a computer section of the non-invasive biological component measuring device according to the embodiment of the present invention.

【図5】2つのスペクトルの波長−吸収度特性における
距離を説明する図である。
FIG. 5 is a diagram illustrating a distance in wavelength-absorption characteristics of two spectra.

【図6】測定したデータの正常/異常を判別するための
マハラノビス距離を説明する図である。
FIG. 6 is a diagram illustrating a Mahalanobis distance for determining normality / abnormality of measured data.

【図7】上記実施形態生体成分測定装置において、校正
処理を説明するためのフロー図である。
FIG. 7 is a flowchart for explaining a calibration process in the biological component measuring device according to the embodiment.

【図8】この発明の他の実施形態生体成分測定装置のコ
ンピュータ部の機能構成を示すブロック図である。
FIG. 8 is a block diagram showing a functional configuration of a computer unit of a biological component measuring device according to another embodiment of the present invention.

【図9】この発明のさらに他の実施形態生体成分測定装
置のコンピュータ部の機能構成を示すブロック図であ
る。
FIG. 9 is a block diagram showing a functional configuration of a computer unit of a biological component measuring device according to still another embodiment of the present invention.

【図10】この発明のさらに他の実施形態である非侵襲
生体成分測定装置の外観斜視図である。
FIG. 10 is an external perspective view of a non-invasive biological component measuring device according to still another embodiment of the present invention.

【図11】同実施形態非侵襲生体成分測定装置の測定概
念を説明する図である。
FIG. 11 is a diagram illustrating a measurement concept of the non-invasive biological component measuring device according to the embodiment.

【図12】同実施形態非侵襲生体成分測定装置の周波数
と反射波の関係を示す図である。
FIG. 12 is a diagram showing a relationship between a frequency and a reflected wave of the non-invasive biological component measuring device according to the embodiment.

【符号の説明】[Explanation of symbols]

11 測定スペクトル入力部 12 スペクトル保存メモリ 13 血糖値情報入力部 14 血糖値保存メモリ 15 校正作業処理部 16 校正式保存メモリ 17 血糖値推定部 18 血糖値表示・出力部 19 過去の測定スペクトル・校正式保存メモリ 11 Measurement spectrum input section 12 Spectrum storage memory 13 Blood sugar level information input section 14 Blood glucose storage memory 15 Calibration work processing unit 16 Calibration storage memory 17 Blood glucose level estimation unit 18 Blood glucose level display / output unit 19 Past measurement spectrum / calibration formula storage memory

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平子 進一 京都市右京区山ノ内山ノ下町24番地 株式 会社オムロンライフサイエンス研究所内 (72)発明者 迫田 勇策 京都市右京区山ノ内山ノ下町24番地 株式 会社オムロンライフサイエンス研究所内 Fターム(参考) 4C038 KK10 KL07 KM00 KM01 KX02   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Hirako             24, Yamanouchi Yamanoshitamachi, Ukyo-ku, Kyoto             Company OMRON Life Science Institute (72) Inventor Yusaku Sakoda             24, Yamanouchi Yamanoshitamachi, Ukyo-ku, Kyoto             Company OMRON Life Science Institute F-term (reference) 4C038 KK10 KL07 KM00 KM01 KX02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】非侵襲的に生体を測定した物理量を基に、
血糖などの生体成分量を推定する非侵襲生体成分測定装
置において、 非侵襲的に生体情報を測定する生体情報測定手段と、 過去に生体を測定した物理量を保存する過去測定データ
保存手段と、 この保存された過去測定の物理量と、生体から測定した
物理量とを比較する比較手段と、 を備えたことを特徴とする非侵襲生体成分測定装置。
1. Based on a physical quantity obtained by non-invasively measuring a living body,
In a non-invasive biological component measuring device for estimating the amount of biological components such as blood glucose, a biological information measuring means for non-invasively measuring biological information, and a past measurement data storing means for storing a physical quantity of a living body measured in the past, A non-invasive biological component measuring device comprising: a comparison unit that compares a stored physical quantity measured in the past with a physical quantity measured from a living body.
【請求項2】前記過去測定データ保存手段に保存された
データと、生体から測定した物理量が異なる場合に、再
測定を促す手段を備えたことを特徴とする請求項1記載
の非侵襲生体成分測定装置。
2. The non-invasive biological component according to claim 1, further comprising means for urging re-measurement when the data stored in the past measurement data storage means and the physical quantity measured from the living body are different. measuring device.
【請求項3】前記過去測定データ保存手段に保存された
データと、生体から測定した物理量が異なる場合に、測
定を中止する手段を備えたことを特徴とする請求項1記
載の非侵襲生体成分測定装置。
3. The non-invasive living body component according to claim 1, further comprising means for stopping the measurement when the data stored in the past measurement data storage means and the physical quantity measured from the living body are different. measuring device.
【請求項4】非侵襲的に生体を測定した物理量を基に、
血糖などの生体成分量を推定する非侵襲生体成分測定装
置において、 非侵襲的に生体情報を測定する生体情報測定手段と、 過去に算出された校正式を保存する校正式保存手段と、 この保存された校正式と、生体から測定した物理量から
算出された校正式とを比較する校正式比較手段と、 を備えたことを特徴とする非侵襲生体成分測定装置。
4. A non-invasively measured physical quantity based on a physical quantity,
In a non-invasive biological component measuring device for estimating the amount of biological components such as blood glucose, a biological information measuring means for non-invasively measuring biological information, a calibration type storing means for storing a calibration formula calculated in the past, and this storage A non-invasive biological component measuring device, comprising: a calibration formula comparing means for comparing the prepared calibration formula with a calibration formula calculated from a physical quantity measured from a living body.
【請求項5】前記校正式保存手段に保存された校正式
と、生体から測定した物理量から算出された校正式が異
なる場合に、再測定を促す処理を行う手段を備えたこと
を特徴とする請求項4記載の非侵襲生体成分測定装置。
5. When the calibration formula stored in the calibration formula storage means and the calibration formula calculated from the physical quantity measured from the living body are different, a means for urging remeasurement is provided. The non-invasive biological component measuring device according to claim 4.
【請求項6】前記校正式保存手段に保存された校正式
と、生体から測定した物理量から算出された校正式が異
なる場合に、測定中止処理を行う手段を備えたことを特
徴とする請求項4記載の非侵襲生体成分測定装置。
6. A means for canceling the measurement when the calibration formula stored in the calibration formula storage means and the calibration formula calculated from the physical quantity measured from the living body are different from each other. 4. The non-invasive biological component measuring device according to 4.
【請求項7】非侵襲的に生体を測定した物理量を基に、
血糖などの生体成分量を推定する非侵襲生体成分測定装
置において、 非侵襲的に生体情報を測定する生体情報測定手段と、 測定された複数の物理量データを解析して、異常データ
の有無を判別する異常データ有無判別手段と、 を備えたことを特徴とする非侵襲生体成分測定装置。
7. A non-invasively measured physical quantity of a living body,
In a non-invasive biological component measuring device for estimating the amount of biological components such as blood glucose, a biological information measuring means for non-invasively measuring biological information and a plurality of measured physical quantity data are analyzed to determine the presence or absence of abnormal data. A non-invasive biological component measuring device comprising: abnormal data presence / absence determining means for
【請求項8】前記異常データ有無判別手段により、異常
データの存在が判別されると、その異常データを除去す
る手段を備え、異常データの除去後に、以降の処理を実
行することを特徴とする請求項7記載の非侵襲生体成分
測定装置。
8. When the presence / absence of abnormal data is determined by the abnormal data presence / absence determining means, a means for removing the abnormal data is provided, and after the abnormal data is removed, the subsequent processing is executed. The non-invasive biological component measuring device according to claim 7.
【請求項9】測定物理量が入力された際に、この物理量
の異常判別を行い、異常データと判別された場合に、再
測定を促す手段を備えたことを特徴とする請求項8記載
の非侵襲生体成分測定装置。
9. An apparatus according to claim 8, further comprising means for performing an abnormality determination of the physical quantity when the measured physical quantity is input and prompting a remeasurement when the physical quantity is determined to be abnormal data. Invasive biological component measuring device.
【請求項10】前記校正式保存手段は、複数の人から測
定した複数の校正式を保存することを特徴とする請求項
4記載の非侵襲生体成分測定装置。
10. The non-invasive biological component measuring device according to claim 4, wherein the calibration formula storing means stores a plurality of calibration formulas measured by a plurality of persons.
【請求項11】実際に測定された物理量を用いて、前記
複数の校正式の中から最適な校正式を選択する手段を備
えたことを特徴とする請求項10記載の非侵襲生体成分
測定装置。
11. The non-invasive biological component measuring device according to claim 10, further comprising means for selecting an optimum calibration formula from the plurality of calibration formulas by using a physical quantity actually measured. .
【請求項12】前記校正式保存手段には、推定する生体
成分量の範囲によって異なる校正式を保存し、実際に測
定された物理量を用いて、前記異なる校正式の中から最
適な校正式を選択する手段を備えたことを特徴とする請
求項4、請求項5又は請求項6記載の非侵襲生体成分測
定装置。
12. The calibration formula storage means stores different calibration formulas depending on the range of the estimated biological component amount, and uses the actually measured physical quantity to select the optimum calibration formula from the different calibration formulas. The non-invasive biological component measuring device according to claim 4, 5, or 6, further comprising a selecting unit.
JP10232417A 1998-08-19 1998-08-19 Noninvasive vital component measuring instrument Pending JP2000060826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10232417A JP2000060826A (en) 1998-08-19 1998-08-19 Noninvasive vital component measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10232417A JP2000060826A (en) 1998-08-19 1998-08-19 Noninvasive vital component measuring instrument

Publications (1)

Publication Number Publication Date
JP2000060826A true JP2000060826A (en) 2000-02-29

Family

ID=16938935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10232417A Pending JP2000060826A (en) 1998-08-19 1998-08-19 Noninvasive vital component measuring instrument

Country Status (1)

Country Link
JP (1) JP2000060826A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079900A1 (en) * 2002-03-25 2003-10-02 Ken-Ichi Yamakoshi Noninvasive blood component value measuring instrument and method
JP2007259967A (en) * 2006-03-27 2007-10-11 Matsushita Electric Works Ltd Internal component measuring instrument
JP2009011556A (en) * 2007-07-04 2009-01-22 Panasonic Corp Blood glucose measurement system
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8206297B2 (en) 2003-08-01 2012-06-26 Dexcom, Inc. System and methods for processing analyte sensor data
US8216139B2 (en) 2003-12-09 2012-07-10 Dexcom, Inc. Signal processing for continuous analyte sensor
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8280475B2 (en) 2004-07-13 2012-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8285354B2 (en) 2003-08-01 2012-10-09 Dexcom, Inc. System and methods for processing analyte sensor data
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8548553B2 (en) 2003-08-01 2013-10-01 Dexcom, Inc. System and methods for processing analyte sensor data
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8663109B2 (en) 2004-07-13 2014-03-04 Dexcom, Inc. Transcutaneous analyte sensor
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8750955B2 (en) 2004-07-13 2014-06-10 Dexcom, Inc. Analyte sensor
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8986209B2 (en) 2003-08-01 2015-03-24 Dexcom, Inc. Transcutaneous analyte sensor
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10052055B2 (en) 2003-08-01 2018-08-21 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774887B2 (en) 1998-04-30 2014-07-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734348B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8670815B2 (en) 1998-04-30 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8666469B2 (en) 1998-04-30 2014-03-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226558B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226555B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8231532B2 (en) 1998-04-30 2012-07-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8255031B2 (en) 1998-04-30 2012-08-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8260392B2 (en) 1998-04-30 2012-09-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8265726B2 (en) 1998-04-30 2012-09-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8275439B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8273022B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8660627B2 (en) 1998-04-30 2014-02-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8380273B2 (en) 1998-04-30 2013-02-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8353829B2 (en) 1998-04-30 2013-01-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8357091B2 (en) 1998-04-30 2013-01-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8366614B2 (en) 1998-04-30 2013-02-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8372005B2 (en) 1998-04-30 2013-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8306598B2 (en) 1998-04-30 2012-11-06 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8391945B2 (en) 1998-04-30 2013-03-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8409131B2 (en) 1998-04-30 2013-04-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8744545B2 (en) 1998-04-30 2014-06-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8473021B2 (en) 1998-04-30 2013-06-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8738109B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8649841B2 (en) 1998-04-30 2014-02-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734346B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8597189B2 (en) 1998-04-30 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8617071B2 (en) 1998-04-30 2013-12-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622906B2 (en) 1998-04-30 2014-01-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641619B2 (en) 1998-04-30 2014-02-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8668645B2 (en) 2001-01-02 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2003079900A1 (en) * 2002-03-25 2003-10-02 Ken-Ichi Yamakoshi Noninvasive blood component value measuring instrument and method
US8275433B2 (en) 2002-03-25 2012-09-25 Yu.Sys.Corporation Non-invasive blood constituent measuring instrument and measuring method
US8588882B2 (en) 2003-08-01 2013-11-19 Dexcom, Inc. System and methods for processing analyte sensor data
US8206297B2 (en) 2003-08-01 2012-06-26 Dexcom, Inc. System and methods for processing analyte sensor data
US9895089B2 (en) 2003-08-01 2018-02-20 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8548553B2 (en) 2003-08-01 2013-10-01 Dexcom, Inc. System and methods for processing analyte sensor data
US10052055B2 (en) 2003-08-01 2018-08-21 Dexcom, Inc. Analyte sensor
US10786185B2 (en) 2003-08-01 2020-09-29 Dexcom, Inc. System and methods for processing analyte sensor data
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US8332008B2 (en) 2003-08-01 2012-12-11 Dexcom, Inc. System and methods for processing analyte sensor data
US8788008B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. System and methods for processing analyte sensor data
US8788007B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. Transcutaneous analyte sensor
US8986209B2 (en) 2003-08-01 2015-03-24 Dexcom, Inc. Transcutaneous analyte sensor
US8801612B2 (en) 2003-08-01 2014-08-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8285354B2 (en) 2003-08-01 2012-10-09 Dexcom, Inc. System and methods for processing analyte sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11020031B1 (en) 2003-12-05 2021-06-01 Dexcom, Inc. Analyte sensor
US9192328B2 (en) 2003-12-09 2015-11-24 Dexcom, Inc. Signal processing for continuous analyte sensor
US9750441B2 (en) 2003-12-09 2017-09-05 Dexcom, Inc. Signal processing for continuous analyte sensor
US8282549B2 (en) 2003-12-09 2012-10-09 Dexcom, Inc. Signal processing for continuous analyte sensor
US8265725B2 (en) 2003-12-09 2012-09-11 Dexcom, Inc. Signal processing for continuous analyte sensor
US8257259B2 (en) 2003-12-09 2012-09-04 Dexcom, Inc. Signal processing for continuous analyte sensor
US9498155B2 (en) 2003-12-09 2016-11-22 Dexcom, Inc. Signal processing for continuous analyte sensor
US8251906B2 (en) 2003-12-09 2012-08-28 Dexcom, Inc. Signal processing for continuous analyte sensor
US10898113B2 (en) 2003-12-09 2021-01-26 Dexcom, Inc. Signal processing for continuous analyte sensor
US8233958B2 (en) 2003-12-09 2012-07-31 Dexcom, Inc. Signal processing for continuous analyte sensor
US9420965B2 (en) 2003-12-09 2016-08-23 Dexcom, Inc. Signal processing for continuous analyte sensor
US8216139B2 (en) 2003-12-09 2012-07-10 Dexcom, Inc. Signal processing for continuous analyte sensor
US8801610B2 (en) 2003-12-09 2014-08-12 Dexcom, Inc. Signal processing for continuous analyte sensor
US8290561B2 (en) 2003-12-09 2012-10-16 Dexcom, Inc. Signal processing for continuous analyte sensor
US9107623B2 (en) 2003-12-09 2015-08-18 Dexcom, Inc. Signal processing for continuous analyte sensor
US8469886B2 (en) 2003-12-09 2013-06-25 Dexcom, Inc. Signal processing for continuous analyte sensor
US9364173B2 (en) 2003-12-09 2016-06-14 Dexcom, Inc. Signal processing for continuous analyte sensor
US11638541B2 (en) 2003-12-09 2023-05-02 Dexconi, Inc. Signal processing for continuous analyte sensor
US8657745B2 (en) 2003-12-09 2014-02-25 Dexcom, Inc. Signal processing for continuous analyte sensor
US9351668B2 (en) 2003-12-09 2016-05-31 Dexcom, Inc. Signal processing for continuous analyte sensor
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US10835672B2 (en) 2004-02-26 2020-11-17 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9775543B2 (en) 2004-07-13 2017-10-03 Dexcom, Inc. Transcutaneous analyte sensor
US8750955B2 (en) 2004-07-13 2014-06-10 Dexcom, Inc. Analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US8280475B2 (en) 2004-07-13 2012-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US8663109B2 (en) 2004-07-13 2014-03-04 Dexcom, Inc. Transcutaneous analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US9055901B2 (en) 2004-07-13 2015-06-16 Dexcom, Inc. Transcutaneous analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11911151B1 (en) 2005-11-01 2024-02-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10952652B2 (en) 2005-11-01 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11399748B2 (en) 2005-11-01 2022-08-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11363975B2 (en) 2005-11-01 2022-06-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11272867B2 (en) 2005-11-01 2022-03-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10231654B2 (en) 2005-11-01 2019-03-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10201301B2 (en) 2005-11-01 2019-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11103165B2 (en) 2005-11-01 2021-08-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
JP4697000B2 (en) * 2006-03-27 2011-06-08 パナソニック電工株式会社 Body component measuring device
JP2007259967A (en) * 2006-03-27 2007-10-11 Matsushita Electric Works Ltd Internal component measuring instrument
US11399745B2 (en) 2006-10-04 2022-08-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
JP2009011556A (en) * 2007-07-04 2009-01-22 Panasonic Corp Blood glucose measurement system
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US11160926B1 (en) 2007-10-09 2021-11-02 Dexcom, Inc. Pre-connected analyte sensors
US11744943B2 (en) 2007-10-09 2023-09-05 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US11102306B2 (en) 2008-02-21 2021-08-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8591455B2 (en) 2008-02-21 2013-11-26 Dexcom, Inc. Systems and methods for customizing delivery of sensor data
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11706876B2 (en) 2017-10-24 2023-07-18 Dexcom, Inc. Pre-connected analyte sensors
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11943876B2 (en) 2017-10-24 2024-03-26 Dexcom, Inc. Pre-connected analyte sensors

Similar Documents

Publication Publication Date Title
JP2000060826A (en) Noninvasive vital component measuring instrument
EP1942790B1 (en) Method and device for non-invasive measurements in a subject
US9103793B2 (en) Intrinsic Raman spectroscopy
EP1437087B1 (en) Blood component spectroscopy analysis system for removing abnormal data
US7744541B2 (en) Cerebral vascular reactivity monitoring
RU2453266C2 (en) Measurement of glucose concentration in pulsing blood
US6542762B1 (en) Near-infrared noninvasive determination of pH in pulse mode
JP3619969B2 (en) Light sensor with multiple light sources
US7343185B2 (en) Measurement of body compounds
US20080004513A1 (en) VCSEL Tissue Spectrometer
JP3621699B2 (en) Highly reliable non-invasive blood gas measurement method
US6968221B2 (en) Low-cost method and apparatus for non-invasively measuring blood glucose levels
JP3931638B2 (en) Biological component determination device
US7672702B2 (en) Noninvasive in vivo measuring system and noninvasive in vivo measuring method by correcting influence of Hemoglobin
US8406839B2 (en) Method and apparatus for determining blood analytes
JP2005043343A (en) Non-invasive method of detecting analyte concentration using hyperosmotic fluid
JP6606082B2 (en) Glucose concentration determination method and glucose concentration measurement device
JP2009521972A (en) Non-invasive system and method for measuring skin hydration of a subject
JP2018519889A (en) Photoelectric volume pulse wave recording device
EP1459679B1 (en) Apparatus for noninvasively measuring a concentration of a blood component
AU4366800A (en) Method for improving calibration of a blood monitoring instrument
JP4329360B2 (en) Glucose concentration determination device
JP2004290412A (en) Blood analyzer
JPH11342123A (en) Non-invasion organic component measuring device
JPH1078437A (en) Blood sugar meter