JP2000060593A - Synthesis of precursor for glyphe - Google Patents

Synthesis of precursor for glyphe

Info

Publication number
JP2000060593A
JP2000060593A JP10236056A JP23605698A JP2000060593A JP 2000060593 A JP2000060593 A JP 2000060593A JP 10236056 A JP10236056 A JP 10236056A JP 23605698 A JP23605698 A JP 23605698A JP 2000060593 A JP2000060593 A JP 2000060593A
Authority
JP
Japan
Prior art keywords
organic solvent
precursor
glyphe
water
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10236056A
Other languages
Japanese (ja)
Inventor
Akira Hirata
彰 平田
Yoshihiko Murakami
義彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10236056A priority Critical patent/JP2000060593A/en
Publication of JP2000060593A publication Critical patent/JP2000060593A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain Glyphe for precursor of raw material or the like for antineoplastic agent by adding an enzyme and amino group protected Gly and carboxyl group protected Phe, into water/organic solvent mixed system and collecting the reaction product form the water phase. SOLUTION: The subject precursor for GlyPhe is obtained in high efficiency in an industrial scale by adding the enzyme, amino group protected Gly and carboxyl group protected Phe into the water/organic solvent mixed system to afford the precursor for GlyPhe by the reaction in water phase, transferring the precursor into the organic solvent phase, collecting the precursor from the organic solvent phase of the water/organic solvent phase. The N- benzyloxycarbonyl-L-glycyl-L-phenylalanine (Z-GlyPhe) a derivative of GlyPhe exhibits a disruption against only to carcinoma cell by administrating with a lysosomotropic cleaning agent to the organism because it acylates the lysosomotropic cleaning agent and shields the normal cell disrupting action.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、GlyPhe(グ
リシルフェニルアラニン)の前駆体を合成する方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for synthesizing a precursor of GlyPhe (glycylphenylalanine).

【0002】[0002]

【従来の技術】近年、ペプチドが有する呈味性,血圧降
下作用,免疫調整作用,血小板凝集阻害性等といった様
々な作用が明かとなり、医薬品や健康食品等の原料物質
として注目を集めている。
2. Description of the Related Art In recent years, various actions such as taste, blood pressure lowering action, immunoregulatory action, and platelet aggregation inhibitory property of peptides have been revealed, and have attracted attention as raw materials for pharmaceuticals and health foods.

【0003】特にGlyPheの誘導体であるN-ベンジ
ルオキシカルボニル−L-グリシル−L-フェニルアラニン
(N-Benzyloxycarbonyl-L-glycyl-L-phenylalanine:以
下、Z-GlyPheと記すことがある)は、リソソモトロピッ
ク清浄剤と併用して生体内に投与すると、該リソソモト
ロピック清浄剤をアシル化し、リソソモトロピック清浄
剤による正常細胞破壊作用を遮蔽するという効果を発揮
する。従ってリソソモトロピック清浄剤が癌細胞のみに
対して破壊作用を発現する様になる。尚上記リソソモト
ロピック清浄剤は抗癌剤の一種であって、癌細胞に侵入
してリソソーム膜を破壊し、これにより加水分解酵素で
あるリソソーム酵素の放出を促し、該リソソーム酵素の
内部作用によって細胞を破壊するという効果を発現する
ものである。
Particularly, N-benzyloxycarbonyl-L-glycyl-L-phenylalanine (hereinafter sometimes referred to as Z-GlyPhe), which is a derivative of GlyPhe, is a lysosome. When it is administered in vivo in combination with a tropic detergent, it exerts the effect of acylating the lysosotropic detergent and masking the normal cell-disrupting action of the lysomotropic detergent. Therefore, the lysosotropic detergent will exert a destructive action only on cancer cells. Incidentally, the lysosomotropic detergent is a kind of anti-cancer agent, invades cancer cells to destroy the lysosomal membrane, thereby promoting the release of the lysosomal enzyme that is a hydrolase, and the cells by the internal action of the lysosomal enzyme. It has the effect of destroying.

【0004】またGlyPheの誘導体であるp-ハイド
ロキベンゾイル−グリシルフェニルアラニン(p-hydrox
ybenzyl-GlyPhe)は、カルボキシペプチダーゼA(Carb
oxypeptidase A)の活性測定用の基質として有用であ
る。尚上記カルボキシペプチダーゼAの活性値は疾患の
種類によって変動するから、この活性測定は臨床的に意
義がある。
Further, p-hydroxybenzoyl-glycylphenylalanine (p-hydrox) which is a derivative of GlyPhe is used.
ybenzyl-GlyPhe) is carboxypeptidase A (Carb
It is useful as a substrate for measuring the activity of oxypeptidase A). Since the activity value of carboxypeptidase A varies depending on the type of disease, this activity measurement is clinically significant.

【0005】加えてGlyPhe誘導体のグリシルフェ
ニルアラニンメチルエステル(glycyl phenylalanine m
ethyl ester )も、アミノ酸の光学分割の際にアミノ酸
誘導体化試薬として用いられ、有用な物質である。
In addition, a glycyl phenylalanine methyl ester of a GlyPhe derivative
Ethyl ester) is also a useful substance, which is used as an amino acid derivatization reagent in the optical resolution of amino acids.

【0006】この様にGlyPhe誘導体は様々な方面
で有効な物質であり、現在大量生産が望まれている。
As described above, the GlyPhe derivative is an effective substance in various fields, and it is currently desired to be mass-produced.

【0007】ところで、従来よりペプチドの合成方法と
して化学合成法,微生物法,遺伝子工学法,酵素合成法
が提案されており、現在は専ら化学合成法によるペプチ
ド合成が行われている。
By the way, conventionally, a chemical synthesis method, a microorganism method, a genetic engineering method, and an enzymatic synthesis method have been proposed as peptide synthesis methods, and at present, peptide synthesis is exclusively carried out by the chemical synthesis method.

【0008】しかし該化学合成法では安価なラセミ体を
基質として用いることができない上、D体とL体の両方
が生成し、また不要な副生成物も産出される為に、これ
らを分離する必要があり、しかもこの分離が困難である
という問題がある。例えば特開昭58−105948号
公報には、p-ハイドロキベンゾイル−グリシルフェニル
アラニンの化学的合成方法が示されているが、該方法で
は操作が煩雑である上、生成物の精製にも困難を伴う。
However, the chemical synthesis method cannot use an inexpensive racemic body as a substrate, and both D-form and L-form are produced, and unnecessary by-products are also produced. Therefore, these are separated. There is a problem in that this separation is difficult and this separation is difficult. For example, Japanese Unexamined Patent Publication (Kokai) No. 58-105948 discloses a method for chemically synthesizing p-hydroxybenzoyl-glycylphenylalanine, but the method is complicated in operation and difficult to purify the product. Accompanied by.

【0009】また上記微生物法は、生成物の収率が極め
て低く、加えて大量培養や連続運転を行う際の制御が難
しく、上記遺伝子工学法は、天然タンパク質を構成する
20種類のL−アミノ酸しか使用することができず、得
られる反応生成物は極めて微量であり、その為に微生物
法,遺伝子工学法共に実用化にはほど遠いのが現状であ
る。
The above-mentioned microbial method has a very low yield of the product, and in addition, it is difficult to control when carrying out a large-scale culture or continuous operation. The above-mentioned genetic engineering method uses 20 kinds of L-amino acids constituting a natural protein. Since it can be used only, and the reaction product obtained is extremely minute, both the microbial method and the genetic engineering method are far from practical use at present.

【0010】一方酵素合成法は、安価なラセミ体を基質
として用いることができ、しかも生理活性のあるL体の
みが合成され、その上温和な条件下で合成反応が進むか
ら、化学合成法の様な耐高温高圧生産設備等は不要であ
り、好適な合成方法である。
On the other hand, in the enzymatic synthesis method, an inexpensive racemic body can be used as a substrate, and only the physiologically active L-form is synthesized, and the synthesis reaction proceeds under mild conditions. Such a high temperature and high pressure resistant production facility is not necessary, and it is a suitable synthesis method.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記酵素
合成法でペプチド合成(例えばGlyPhe前駆体の合
成)を行おうとしても、反応平衡がペプチド分解側に片
寄っている為、ペプチド収率が極めて低いという問題が
ある。
However, even if an attempt is made to perform peptide synthesis (for example, synthesis of a GlyPhe precursor) by the above-mentioned enzymatic synthesis method, the reaction equilibrium is biased toward the peptide decomposition side, and therefore the peptide yield is extremely low. There's a problem.

【0012】そこで反応平衡をペプチド合成側にシフト
させる手法として反応媒体を改変する方法が種々考えら
れており、例えば反応生成物を沈澱させることによっ
て、反応系内において溶解している生成物濃度を下げる
手法(以下、水一相沈澱生成系法と称することがある)
が検討されているが、該水一相沈澱生成系法は酵素表面
に沈澱が析出・堆積し、酵素反応が著しく阻害されると
いう問題がある。また上記反応媒体改変方法として、水
相に水溶性有機溶媒を添加し、この反応媒体で酵素反応
を行うという手法(以下、水溶性有機溶媒添加系法と称
することがある)が検討されているが、この手法は酵素
活性が低下する問題がある。更に有機溶媒を反応媒体と
して酵素反応を行うという手法(以下、有機溶媒一相系
法と称することがある)も検討されているが、酵素合成
から生成ペプチドの分離までを含めたプロセスの連続化
が難しいという問題があり、加えて多量の有機溶媒を使
用することにより装置内爆発を生じる恐れもある。
Therefore, various methods of modifying the reaction medium have been considered as a method of shifting the reaction equilibrium to the peptide synthesis side. For example, by precipitating a reaction product, the concentration of the dissolved product in the reaction system can be changed. Method of lowering (hereinafter sometimes referred to as water one-phase precipitation generation system method)
However, the water one-phase precipitation forming method has a problem that precipitates are deposited and accumulated on the surface of the enzyme and the enzyme reaction is significantly inhibited. Further, as a method for modifying the reaction medium, a method of adding a water-soluble organic solvent to an aqueous phase and conducting an enzymatic reaction in this reaction medium (hereinafter sometimes referred to as a water-soluble organic solvent addition system method) has been studied. However, this method has a problem that the enzyme activity decreases. Furthermore, a method of conducting an enzymatic reaction using an organic solvent as a reaction medium (hereinafter, also referred to as an organic solvent one-phase system method) has been studied, but the process including the enzymatic synthesis to the separation of the produced peptide is made continuous. However, the use of a large amount of organic solvent may cause an explosion in the device.

【0013】いずれにせよ従来のペプチド合成方法はペ
プチド合成効率が悪いものであり、よってGlyPhe
前駆体を大量生産することができない。
In any case, the conventional peptide synthesizing method has a poor peptide synthesizing efficiency, and therefore GlyPhe
The precursor cannot be mass-produced.

【0014】そこで本発明は、GlyPheの前駆体を
効率良く合成でき、工業的生産を可能にする方法を提供
することを目的とする。
Therefore, an object of the present invention is to provide a method capable of efficiently synthesizing a precursor of GlyPhe and enabling industrial production.

【0015】[0015]

【課題を解決するための手段】本発明に係るGlyPh
eの前駆体を合成する方法は、酵素と、アミノ基が保護
されたGly及びカルボキシル基が保護されたPhe
を、水/有機溶媒混相系に添加して、GlyPheの前
駆体の合成反応を行う工程と、該前駆体を前記水/有機
溶媒混相系の有機溶媒相から取り出す工程とを有するこ
とを要旨とする。
GlyPh according to the present invention
The method of synthesizing the precursor of e is composed of an enzyme, an amino-protected Gly and a carboxyl-protected Phe.
Is added to a water / organic solvent mixed phase system to perform a synthetic reaction of a GlyPhe precursor, and a step of taking out the precursor from the organic solvent phase of the water / organic solvent mixed phase system is summarized. To do.

【0016】また本発明に係るGlyPheの前駆体を
合成する方法は、水相中での酵素反応によりGlyPh
eの前駆体を合成し、該前駆体を有機溶媒相に移行させ
ることを要旨とする。
Further, the method for synthesizing the precursor of GlyPhe according to the present invention is carried out by enzymatic reaction in the aqueous phase.
The gist is to synthesize a precursor of e and transfer the precursor to an organic solvent phase.

【0017】本発明者らは、GlyPhe前駆体が分子
構造内に解離基を有しない非イオン型物質である点に着
目し、水/有機溶媒混相系において上記GlyPhe前
駆体が有機溶媒相に多く分配するという知見を得て本発
明をなしたものであり、上記本発明によれば、酵素水溶
液(水相)中において合成された生成物(GlyPhe
前駆体)は、合成されると同時に反応系外である有機溶
媒相に移行する。
The present inventors have paid attention to the fact that the GlyPhe precursor is a nonionic substance having no dissociative group in the molecular structure, and in the water / organic solvent mixed phase system, the GlyPhe precursor is mostly contained in the organic solvent phase. The present invention has been made with the knowledge that it is distributed, and according to the present invention, the product (GlyPhe) synthesized in the aqueous enzyme solution (aqueous phase) is obtained.
The precursor) is transferred to the organic solvent phase outside the reaction system at the same time as it is synthesized.

【0018】酵素によりペプチド合成を行った場合に、
反応は合成方向だけでなく分解方向にも可逆的に進行し
ており、例えばGlyPhe前駆体(生成物)が或一定
量合成されると、該GlyPhe前駆体が再びアミノ酸
(基質)に分解する反応が進行し、GlyPhe前駆体
量と基質量が平衡状態となってGlyPhe前駆体量が
それ以上増えない様になるが、本発明においては、酵素
反応の場である水相からGlyPhe前駆体が次々と取
り除かれるから、上記平衡状態とはならず、即ちGly
Phe前駆体がアミノ酸に分解される反応があまり進ま
ずに、GlyPhe前駆体を合成する反応が優位に進行
して、高いGlyPhe前駆体合成効率を示す様にな
る。
When peptide synthesis is carried out by an enzyme,
The reaction reversibly proceeds not only in the synthetic direction but also in the decomposition direction. For example, when a certain amount of GlyPhe precursor (product) is synthesized, the GlyPhe precursor is decomposed into amino acid (substrate) again. Progresses, and the amount of GlyPhe precursor and the mass of the substrate are in an equilibrium state so that the amount of GlyPhe precursor does not increase any more. However, in the present invention, the GlyPhe precursor is successively added from the aqueous phase, which is a site of the enzymatic reaction. Therefore, the above equilibrium state does not occur, that is, Gly
The reaction for decomposing the Phe precursor into amino acids does not proceed so much, and the reaction for synthesizing the GlyPhe precursor progresses predominantly to show high GlyPhe precursor synthesis efficiency.

【0019】[0019]

【発明の実施の形態及び実施例】以下、本発明に係るG
lyPhe前駆体の合成方法に関して、実施例を示しつ
つ具体的に説明するが、本発明はもとより該実施例に限
定される訳ではなく、前・後記の趣旨に適合し得る範囲
で適当に変更を加えて実施することも可能であり、それ
らはいずれも本発明の技術的範囲に包含される。
BEST MODE FOR CARRYING OUT THE INVENTION The G according to the present invention will be described below.
The method for synthesizing the lyPhe precursor will be specifically described with reference to examples, but the present invention is not limited to the examples as a matter of course, and may be appropriately modified within a range compatible with the gist of the preceding and the following. In addition, it is also possible to implement, and all of them are included in the technical scope of the present invention.

【0020】GlyPhe前駆体であるN-ベンジルオキ
シカルボニル−L-グリシル−L-フェニルアラニンメチル
エステル(N-Benzyloxycarbonyl-L-glycyl-L-phenylala
ninemethyl ester ,細胞遮蔽ペプチド前駆体:以下、Z
-GlyPheOMe と記すことがある)の合成を行った実験に
ついて以下に述べる。
GlyPhe precursor N-benzyloxycarbonyl-L-glycyl-L-phenylalanine methyl ester (N-Benzyloxycarbonyl-L-glycyl-L-phenylala)
nine methyl ester, cell-shielding peptide precursor: Below, Z
An experiment that performed the synthesis of -GlyPheOMe) is described below.

【0021】<実施例1:本発明の方法によるZ-GlyPhe
OMe の回分酵素合成>カルボキシル基質としてN-ベンジ
ルオキシカルボニル−L-グリシン(N-Benzyloxycarbony
l-L-glycine :以下、Z-Gly と記すことがある)[国産
化学社製]、アミン基質としてL-フェニルアラニンメチ
ルエステル(L-phenylalanine methylester:以下、L-P
heOMeと記すことがある)[国産化学社製]を用い、酵
素としてサーモライシン(thermolysin )[和光純薬工
業社製]を用いた。
<Example 1: Z-GlyPhe according to the method of the present invention
Batch enzyme synthesis of OMe> N-benzyloxycarbonyl-L-glycine (N-Benzyloxycarbony) as a carboxyl substrate
lL-glycine: hereinafter sometimes referred to as Z-Gly) [made by Kokusan Kagaku], L-phenylalanine methylester (hereinafter, LP) as an amine substrate
(sometimes referred to as heOMe) [manufactured by Kokusan Kagaku Co., Ltd.] and thermolysin (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the enzyme.

【0022】また水/有機溶媒混相系(水/有機溶媒二
相系)における水相として、有機溶媒の酢酸ブチルを飽
和した2-モルホリノエタンスルホン酸(MES)緩衝液
を用い、有機溶媒相として水を飽和した酢酸ブチルを用
いた。
As a water phase in a water / organic solvent mixed phase system (water / organic solvent two-phase system), a 2-morpholinoethanesulfonic acid (MES) buffer solution saturated with butyl acetate, which is an organic solvent, is used as an organic solvent phase. Butyl acetate saturated with water was used.

【0023】上記酢酸ブチル飽和MES緩衝液(終濃度
100mol/m3)10mlに上記Z-Gly,L-PheOMe及びサー
モライシンを溶解し、更に上記水飽和酢酸ブチル10ml
を混合して水/有機溶媒混相系(水/有機溶媒二相系)
とし、反応温度40℃,pH6.5で、Z-GlyPheOMe の
回分酵素合成を行った。このペプチド合成反応式を図1
に示す。尚Z-Gly の初濃度は50mol/m3、L-PheOMeの初
濃度は400mol/m3、サーモライシンの濃度は0.8kg
/m3 である。
Z-Gly, L-PheOMe and thermolysin were dissolved in 10 ml of the butyl acetate-saturated MES buffer solution (final concentration 100 mol / m 3 ) and further 10 ml of the water-saturated butyl acetate.
Water / organic solvent mixed phase system (water / organic solvent two-phase system)
Then, batch enzymatic synthesis of Z-GlyPheOMe was performed at a reaction temperature of 40 ° C. and pH 6.5. This peptide synthesis reaction formula is shown in FIG.
Shown in. Note initial concentration of Z-Gly is 50 mol / m 3, the initial concentration of L-PheOMe is 400 mol / m 3, the concentration of thermolysin is 0.8kg
/ m 3 .

【0024】その後上記水/有機溶媒混相系から有機溶
媒相を分離し、該有機溶媒相中にZ-GlyPheOMe を得た。
After that, the organic solvent phase was separated from the water / organic solvent mixed phase system to obtain Z-GlyPheOMe in the organic solvent phase.

【0025】上記合成反応について、水/有機溶媒混相
系の夫々の相におけるZ-Gly ,L-PheOMe及びZ-GlyPheOM
e の濃度を、一定時間毎に高速液体クロマトグラフィー
(HPLC)により測定した。
Regarding the above synthesis reaction, Z-Gly, L-PheOMe and Z-GlyPheOM in each phase of the water / organic solvent mixed phase system
The concentration of e was measured by high performance liquid chromatography (HPLC) at regular intervals.

【0026】図2は、水相及び有機溶媒相におけるZ-Gl
yPheOMe 濃度(縦軸)を示すグラフであり、該グラフの
横軸は反応時間である。
FIG. 2 shows Z-Gl in the aqueous phase and the organic solvent phase.
It is a graph showing the yPheOMe concentration (vertical axis), and the horizontal axis of the graph is the reaction time.

【0027】図2から分かる様に、生成物であるZ-GlyP
heOMe はほぼ100%選択的に有機溶媒相に抽出されて
いる。よってZ-GlyPheOMe は反応系の水相から有機溶媒
相に次々と移行し、水相ではZ-GlyPheOMe 合成反応が優
位に進行することが分かる。
As can be seen from FIG. 2, the product Z-GlyP
heOMe is almost 100% selectively extracted into the organic solvent phase. Therefore, it can be seen that Z-GlyPheOMe is transferred from the aqueous phase of the reaction system to the organic solvent phase one after another, and the Z-GlyPheOMe synthesis reaction predominantly proceeds in the aqueous phase.

【0028】またZ-Gly のZ-GlyPheOMe への転化率はZ-
Gly 基準で90%以上であり、高収率でZ-GlyPheOMe が
得られた。上述の様に水相においてZ-GlyPheOMe 合成反
応が優位に進行し続けるからである。
The conversion rate of Z-Gly to Z-GlyPheOMe is Z-
Z-GlyPheOMe was obtained in a high yield, which was 90% or more based on Gly. This is because the Z-GlyPheOMe synthesis reaction continues to proceed predominantly in the aqueous phase as described above.

【0029】<実施例2:本発明の方法によるZ-GlyPhe
OMe の連続酵素合成>カルボキシル基質としてZ-Gly
[国産化学社製]を用い、またアミン基質として、L-Ph
e [国産化学社製]をメチルエステル化した塩酸塩、若
しくはL-PheOMe[(株)東ソー社製]を用いた。酵素と
して粗精のサーモライシン[大和化成社製,(株)東ソ
ー社製]を使用した。
<Example 2: Z-GlyPhe according to the method of the present invention
OMe continuous enzyme synthesis> Z-Gly as carboxyl substrate
[Kokusan Kagaku] was used, and L-Ph was used as an amine substrate.
e [manufactured by Kokusan Kagaku] was used as a methyl esterified hydrochloride or L-PheOMe [manufactured by Tosoh Corporation]. As the enzyme, crude thermolysin [manufactured by Daiwa Kasei Co., Ltd., manufactured by Tosoh Co., Ltd.] was used.

【0030】酢酸ブチル飽和MES緩衝液に酵素を加
え、この酵素液を反応槽内に入れ、そして基質(Z-Gly
,L-Phe )を含有する水飽和酢酸ブチルを上記反応槽
内に連続的に供給して酵素合成反応を行いつつ(反応温
度40℃、pH6.5)、一方でセトラーによって有機
溶媒相と水相に分相後、有機溶媒を連続的に回収した。
An enzyme was added to a MES buffer saturated with butyl acetate, the enzyme solution was placed in a reaction vessel, and the substrate (Z-Gly) was added.
, L-Phe) containing water-saturated butyl acetate is continuously fed into the reaction vessel to carry out the enzymatic synthesis reaction (reaction temperature 40 ° C., pH 6.5), while the organic solvent phase and water are treated by the settler. After phase separation into phases, the organic solvent was continuously recovered.

【0031】上記合成反応における酵素濃度は20kg/m
3 、Z-Gly 流入濃度は5mol/m3、L-PheOMe流入濃度は8
0mol/m3、有機溶媒相の装置基準平均滞留時間は10時
間である。
The enzyme concentration in the above synthetic reaction is 20 kg / m 2.
3 , Z-Gly inflow concentration is 5 mol / m 3 , L-PheOMe inflow concentration is 8
0 mol / m 3 , the apparatus-based average residence time of the organic solvent phase is 10 hours.

【0032】尚図7は上記連続酵素合成を行う反応装置
を表す模式図であり、酵素液を入れた反応槽7に、基質
を含有する水飽和酢酸ブチルをタンク1からポンプ2に
より順次供給できる様になっている。該反応槽7には脈
動発生装置5が設けられ、反応槽7内の水/有機溶媒混
相系に一定振幅の脈動を加えている。また反応槽7には
恒温装置3が接続され、反応槽7内の温度を一定に保
つ。セトラー(図示せず)によって反応槽7上方に分離
した有機溶媒は、取出口8から取り出される。尚図中、
4はpH電極である。
FIG. 7 is a schematic diagram showing a reaction apparatus for carrying out the above-mentioned continuous enzymatic synthesis, and water-saturated butyl acetate containing a substrate can be sequentially supplied from a tank 1 by a pump 2 to a reaction tank 7 containing an enzyme solution. It has become like. The reaction tank 7 is provided with a pulsation generator 5, and a pulsation with a constant amplitude is applied to the water / organic solvent mixed phase system in the reaction tank 7. A constant temperature device 3 is connected to the reaction tank 7 to keep the temperature inside the reaction tank 7 constant. The organic solvent separated above the reaction tank 7 by a settler (not shown) is taken out from the take-out port 8. In the figure,
4 is a pH electrode.

【0033】図3は上記水/酢酸ブチル二相系(水/有
機溶媒混相系)におけるZ-GlyPheOMe 連続酵素合成の結
果を示すグラフであり、縦軸が各成分の濃度で、横軸が
反応時間である。
FIG. 3 is a graph showing the results of Z-GlyPheOMe continuous enzyme synthesis in the above water / butyl acetate two-phase system (water / organic solvent mixed phase system), in which the vertical axis represents the concentration of each component and the horizontal axis represents the reaction. It's time.

【0034】図3に示される様に、供給有機溶媒中のZ-
Gly 濃度(5mol/m3)に比べて、反応槽内における有機
溶媒相中のZ-Gly 濃度は0.02〜0.06mol/m3とい
う様に極めて低く保たれており、ほとんどZ-GlyPheOMe
へ転化していることが判る。一方生成物のZ-GlyPheOMe
は水相に比べ有機溶媒相の濃度が高く、有機溶媒に選択
的に抽出されていることが分かる。
As shown in FIG. 3, Z- in the feed organic solvent
Gly compared to the concentration (5mol / m 3), Z -Gly concentration of the organic solvent phase in the reactor is kept very low so as that 0.02~0.06mol / m 3, most Z-GlyPheOMe
You can see that it has been converted to. Meanwhile the product Z-GlyPheOMe
It can be seen that the organic solvent has a higher concentration in the organic solvent phase than the aqueous phase and is selectively extracted into the organic solvent.

【0035】また本実施例2の連続酵素合成におけるZ-
GlyPheOMe の転化率はZ-Gly 基準で98.9%と極めて
高く、非常に高収率でZ-GlyPheOMe が得られた。
Z- in the continuous enzymatic synthesis of Example 2
The conversion rate of GlyPheOMe was extremely high at 98.9% based on Z-Gly, and Z-GlyPheOMe was obtained in a very high yield.

【0036】<各種有機溶媒を用いた場合の水/有機溶
媒混相系における各成分分配挙動>水を飽和した有機溶
媒10mlと、有機溶媒を飽和した水10mlを用いて水/
有機溶媒混相系とし、該水/有機溶媒混相系にZ-Gly ,
L-PheOMe,Z-GlyPheOMe を添加し、温度を40℃に一定
として10分間攪拌した。その後20分間放置し、2相
に分相したのを確認し、水(下相),有機溶媒(上相)
の両相におけるZ-Gly ,L-PheOMe,Z-GlyPheOMe の各濃
度をHPLCにより測定した。尚有機溶媒としては、酢
酸イソアミル,酢酸イソブチル,酢酸エチル,酢酸ブチ
ル,酢酸s-ブチル,酢酸プロピル,酢酸ベンチルといっ
た7種類の酢酸エステルと、リン酸エステルのトリブチ
ルリン酸(TBP)を用いた。また様々なpHについて
の実験を行った。
<Distribution Behavior of Each Component in Water / Organic Solvent Mixed Phase System Using Various Organic Solvents> 10 ml of water-saturated organic solvent and 10 ml of water saturated with organic solvent
An organic solvent mixed phase system is used, and Z-Gly is added to the water / organic solvent mixed phase system.
L-PheOMe and Z-GlyPheOMe were added, and the temperature was kept constant at 40 ° C., followed by stirring for 10 minutes. After leaving it for 20 minutes, it was confirmed that it was separated into two phases. Water (lower phase), organic solvent (upper phase)
The respective concentrations of Z-Gly, L-PheOMe, and Z-GlyPheOMe in both phases were measured by HPLC. As the organic solvent, 7 kinds of acetic acid esters such as isoamyl acetate, isobutyl acetate, ethyl acetate, butyl acetate, s-butyl acetate, propyl acetate and benzyl acetate, and tributyl phosphoric acid (TBP) which is a phosphoric acid ester were used. Experiments were also conducted at various pHs.

【0037】図4の(a) に水/有機溶媒混相系における
Z-Gly の分配比(DZ-Gly :縦軸)とpH(横軸)の関
係を示し、図4の(b) に水/有機溶媒混相系におけるZ-
GlyPheOMe の分配比(DZ-GlyPheOMe :縦軸)とpH
(横軸)の関係を示す。上記分配比DZ-Gly とは、[有
機溶媒相中のZ-Gly の全濃度]/[水相中のZ-Gly の全
濃度]と定義し、上記分配比DZ-GlyPheOMe とは[有機
溶媒相中のZ-GlyPheOMeの全濃度]/[水相中のZ-GlyPh
eOMe の全濃度]と定義する。尚有機溶媒中へは非イオ
ン型成分しか分配しないと考えられるから、実質的に分
配比DZ-Gly は[有機溶媒相中の非イオン型Z-Gly 濃
度]/[水相中の非イオン型Z-Gly 濃度+イオン型Z-Gl
y 濃度]、DZ-GlyPheOMe は[有機溶媒相中の非イオン
型Z-GlyPheOMe 濃度]/[水相中の非イオン型Z-GlyPhe
OMe 濃度+イオン型Z-GlyPheOMe 濃度]となる。
FIG. 4 (a) shows a mixed phase system of water / organic solvent.
The relationship between the distribution ratio of Z-Gly (D Z-Gly : vertical axis) and pH (horizontal axis) is shown in Fig. 4 (b).
Distribution ratio of GlyPheOMe (D Z-GlyPheOMe : vertical axis) and pH
The relationship of (horizontal axis) is shown. The distribution ratio D Z-Gly is defined as [total concentration of Z-Gly in organic solvent phase] / [total concentration of Z-Gly in aqueous phase], and the distribution ratio D Z-GlyPheOMe is [ Total concentration of Z-GlyPheOMe in organic solvent phase] / [Z-GlyPh in water phase]
total concentration of eOMe]. Since it is considered that only nonionic components are distributed in the organic solvent, the distribution ratio D Z-Gly is substantially equal to [nonionic Z-Gly concentration in organic solvent phase] / [nonionic in aqueous phase]. Type Z-Gly concentration + ion type Z-Gl
y concentration], D Z-GlyPheOMe is [non-ionic Z-GlyPheOMe concentration in organic solvent phase] / [non-ionic Z-GlyPhe in aqueous phase]
OMe concentration + ion type Z-GlyPheOMe concentration].

【0038】図4の(a) から分かる様に、いずれの有機
溶媒を用いた場合もZ-Gly は低pHにおいて有機溶媒相
に分配し易くなっている。低pHの場合は水相中に高濃
度のプロトンが存在しており、非イオン型Z-Gly 濃度が
高くなるからである。逆に、水/有機溶媒混相系のpH
が中性、そしてアルカリ性に移行するに連れてZ-Glyは
水相に分配し易くなる。水相中のプロトン濃度が減少
し、イオン型Z-Gly 濃度が増加するからである。
As can be seen from FIG. 4 (a), Z-Gly is easily distributed to the organic solvent phase at low pH regardless of which organic solvent is used. This is because at low pH, a high concentration of protons is present in the aqueous phase, and the concentration of nonionic Z-Gly is high. Conversely, the pH of the water / organic solvent mixed phase system
Z-Gly becomes easy to partition into the aqueous phase as the neutralized and alkalinized. This is because the proton concentration in the aqueous phase decreases and the ionic Z-Gly concentration increases.

【0039】上記有機溶媒のうち特に酢酸エチル,酢酸
プロピル,TBPを用いた場合はZ-Gly が有機溶媒相に
比較的分配し易かった。
When ethyl acetate, propyl acetate and TBP were used among the above organic solvents, Z-Gly was relatively easy to partition into the organic solvent phase.

【0040】図4の(b) から分かる様に、Z-GlyPheOMe
分配挙動に関してpHの違いによる影響はほぼなく、ま
たいずれの有機溶媒を用いた場合もZ-GlyPheOMe は有機
溶媒相に多く分配した。
As can be seen from FIG. 4B, Z-GlyPheOMe
The partitioning behavior was almost unaffected by the difference in pH, and Z-GlyPheOMe distributed in the organic solvent phase in a large amount regardless of which organic solvent was used.

【0041】上記有機溶媒のうちでも特にTBP,酢酸
エチル,酢酸ブチルは分配比DZ-Gl yPheOMe が高く、本
発明の酵素合成法における有機溶媒として用いた場合
に、水相で合成されたGlyPhe前駆体が有機溶媒相
に移行し易く、より好ましい有機溶媒である。更にこの
うちでもTBPは分配比DZ-GlyPheOMe が非常に高く、
より一層好ましい。
Among the above organic solvents, TBP, ethyl acetate and butyl acetate have a high partition ratio D Z -GlyPheOMe , and when used as an organic solvent in the enzymatic synthesis method of the present invention, GlyPhe synthesized in an aqueous phase is used. It is a more preferable organic solvent because the precursor easily migrates to the organic solvent phase. Furthermore, among these, TBP has a very high distribution ratio D Z-GlyPheOMe ,
Even more preferable.

【0042】水/有機溶媒混相系におけるアミノ酸やペ
プチドの分配挙動は、有機溶媒の分子構造や誘電率によ
って影響を受けると考えられ、有機溶媒の種類としては
炭素直鎖の長さが短いもの、また炭素直鎖の長さが同じ
であれば枝分かれがないもののの方が誘電率が高くな
る。上記各有機溶媒はいずれも誘電率が高く、よってZ-
GlyPheOMe が有機溶媒相に良好に分配したものと考えら
れる。尚上記TBPは誘電率が非常に高いものである。
The distribution behavior of amino acids and peptides in a water / organic solvent mixed phase system is considered to be influenced by the molecular structure and dielectric constant of the organic solvent, and the type of organic solvent has a short carbon chain length, Further, if the carbon straight chain has the same length, the dielectric constant is higher even though there is no branching. Each of the above organic solvents has a high dielectric constant, and therefore Z-
It is considered that GlyPheOMe distributed well in the organic solvent phase. The TBP has a very high dielectric constant.

【0043】従って本発明に係るGlyPhe前駆体合
成方法に用いる有機溶媒としては、炭素直鎖の長さが短
いもの、また枝分かれがないものが好ましい。
Therefore, as the organic solvent used in the method for synthesizing the GlyPhe precursor according to the present invention, those having a short carbon straight chain and those having no branching are preferable.

【0044】尚水/有機溶媒混相系におけるL-PheOMeの
分配比は、有機溶媒の種類の違いによる影響が比較的少
ないことが既に分かっている。
It has already been known that the distribution ratio of L-PheOMe in a mixed phase system of water / organic solvent is relatively little affected by the difference in the type of organic solvent.

【0045】<比較例1:水一相系におけるZ-GlyPheOM
e の回分酵素合成>上記実施例1と同様に、カルボキシ
ル基質としてZ-Gly [国産化学社製]、アミン基質とし
てL-PheOMe[国産化学社製]を用い、酵素としてサーモ
ライシン[和光純薬工業社製]を用いた。
<Comparative Example 1: Z-GlyPheOM in a water one-phase system
Batch enzymatic synthesis of e> Similar to Example 1 above, Z-Gly [manufactured by Kokusan Kagaku] as the carboxyl substrate and L-PheOMe [manufactured by Kokusan Kagaku] as the amine substrate were used, and thermolysin [Wako Pure Chemical Industries] as the enzyme. Manufactured by the company.

【0046】Z-Gly が約50mol/m3、L-PheOMeが約10
0mol/m3、サーモライシンが約0.1kg/m3 となる様に
100mol/m3MES水溶液に添加し、反応温度40℃で
Z-GlyPheOMe の酵素合成を行った。尚反応体積は20ml
である。また一定時間毎にZ-Gly ,L-PheOMe,Z-GlyPhe
OMe の各濃度を高速液体クロマトグラフィー(HPL
C)によって測定した。
Z-Gly is about 50 mol / m 3 , L-PheOMe is about 10
0 mol / m 3 and thermolysin were added to 100 mol / m 3 MES aqueous solution so that the amount became about 0.1 kg / m 3, and the reaction temperature was 40 ° C.
Enzymatic synthesis of Z-GlyPheOMe was performed. The reaction volume is 20 ml
Is. In addition, Z-Gly, L-PheOMe, Z-GlyPhe
Each concentration of OMe was analyzed by high performance liquid chromatography (HPL
It was measured by C).

【0047】図5は上記比較例1の合成反応をpH6.
5で行った場合におけるZ-GlyPheOMe の生成濃度を示す
グラフであり、縦軸はZ-GlyPheOMe 濃度、横軸は反応時
間を表す。
FIG. 5 shows the synthesis reaction of Comparative Example 1 above at pH 6.
5 is a graph showing the concentration of Z-GlyPheOMe produced in the case of Example 5, wherein the vertical axis represents the Z-GlyPheOMe concentration and the horizontal axis represents the reaction time.

【0048】図5から分かる様にZ-GlyPheOMe は反応初
期の段階で急速に生成するが、飽和濃度に達すると、そ
の後徐々に濃度が低下している。本比較例1では生成し
たZ-GlyPheOMe が反応系から除かれない為、ペプチド分
解反応が進み、濃度が低下したものと考えられる。
As can be seen from FIG. 5, Z-GlyPheOMe is rapidly produced in the initial stage of the reaction, but when the saturated concentration is reached, the concentration is gradually decreased thereafter. In this Comparative Example 1, since the produced Z-GlyPheOMe was not removed from the reaction system, it is considered that the peptide decomposition reaction proceeded and the concentration decreased.

【0049】水一相系におけるZ-GlyPheOMe 酵素合成に
おいては、様々な実験条件で合成を行ってもZ-GlyPheOM
e 収率が10%以下であった。
In enzymatic synthesis of Z-GlyPheOMe in a one-phase system of water, Z-GlyPheOMe was synthesized even under various experimental conditions.
e The yield was 10% or less.

【0050】尚、図6は水一相系におけるZ-GlyPheOMe
の合成初速度とpHとの関係を表すグラフであり、縦軸
は各pHにおける反応初速度(V0 )を最適pH(pH
6.5)における反応初速度(V0pt : 6.91 ×10-2 mol
・m3・min.-1)に対する相対値を示し、横軸はpHであ
る。
Incidentally, FIG. 6 shows Z-GlyPheOMe in a water one-phase system.
Is a graph showing the relationship between the initial synthesis rate and the pH, and the vertical axis indicates the initial reaction rate (V 0 ) at each pH at the optimum pH (pH
Initial reaction rate (V 0pt : 6.91 × 10 -2 mol at 6.5)
・ M 3 · min. −1 ) relative value, and the horizontal axis is pH.

【0051】図6から分かる様に、サーモライシンを用
いたZ-GlyPheOMe の酵素合成反応において、pHを約
6.2〜6.8とすれば反応速度が速いから好ましく、
より好ましくはpH6.5である。
As can be seen from FIG. 6, in the enzymatic synthesis reaction of Z-GlyPheOMe using thermolysin, it is preferable to set the pH to about 6.2 to 6.8 because the reaction rate is high,
The pH is more preferably 6.5.

【0052】[0052]

【発明の効果】本発明に係るGlyPhe前駆体の合成
方法によれば、GlyPhe前駆体の選択的分離操作と
酵素反応を組み合わせているから、非常に高収率でGl
yPhe前駆体を酵素合成でき、従って生産性良好な工
業的生産が可能となる。
EFFECTS OF THE INVENTION According to the method for synthesizing a GlyPhe precursor according to the present invention, a selective separation operation of a GlyPhe precursor and an enzymatic reaction are combined, so that the GlPhe can be obtained in a very high yield.
The yPhe precursor can be enzymatically synthesized, and therefore industrial production with good productivity is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】Z-GlyPheOMe の合成反応式を表す図。FIG. 1 is a diagram showing a synthetic reaction formula of Z-GlyPheOMe.

【図2】本発明の方法によりZ-GlyPheOMe の回分酵素合
成を行った場合の、水相及び有機溶媒相中のZ-GlyPheOM
e 濃度を示すグラフ。
FIG. 2 shows Z-GlyPheOMe in an aqueous phase and an organic solvent phase when batch enzymatic synthesis of Z-GlyPheOMe is performed by the method of the present invention.
e Graph showing concentration.

【図3】本発明の方法によりZ-GlyPheOMe 連続酵素合成
を行った場合の、水相及び有機溶媒相中の各成分濃度を
示すグラフ。
FIG. 3 is a graph showing the concentration of each component in the aqueous phase and the organic solvent phase when Z-GlyPheOMe continuous enzymatic synthesis was performed by the method of the present invention.

【図4】水/有機溶媒混相系における各成分分配比とp
Hの関係を示すグラフ。
FIG. 4 is a distribution ratio of each component and p in a water / organic solvent mixed phase system.
The graph which shows the relationship of H.

【図5】比較例1の場合におけるZ-GlyPheOMe の生成濃
度を示すグラフ。
5 is a graph showing the production concentration of Z-GlyPheOMe in the case of Comparative Example 1. FIG.

【図6】水一相系におけるZ-GlyPheOMe の合成初速度と
pHとの関係を表すグラフ。
FIG. 6 is a graph showing the relationship between the initial synthesis rate of Z-GlyPheOMe and pH in a one-phase water system.

【図7】連続酵素合成を行う反応装置を表す模式図。FIG. 7 is a schematic diagram showing a reaction apparatus for performing continuous enzyme synthesis.

【符号の説明】[Explanation of symbols]

1 タンク 2 ポンプ 3 恒温装置 4 pH電極 5 脈動発生装置 7 反応槽 8 取出口 1 tank 2 pumps 3 constant temperature device 4 pH electrode 5 Pulsation generator 7 Reaction tank 8 Exit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酵素と、アミノ基が保護されたGly、
及びカルボキシル基が保護されたPheを、水/有機溶
媒混相系に添加して、GlyPheの前駆体の合成反応
を行う工程と、 該前駆体を前記水/有機溶媒混相系の有機溶媒相から取
り出す工程とを有することを特徴とするGlyPheの
前駆体を合成する方法。
1. An enzyme and an amino group-protected Gly,
And Phe protected with a carboxyl group are added to a water / organic solvent mixed phase system to carry out a synthesis reaction of a GlyPhe precursor, and the precursor is taken out from the organic solvent phase of the water / organic solvent mixed phase system. A method for synthesizing a precursor of GlyPhe, comprising the steps of:
【請求項2】 水相中での酵素反応によりGlyPhe
の前駆体を合成し、 該前駆体を有機溶媒相に移行させることを特徴とするG
lyPheの前駆体を合成する方法。
2. GlyPhe by enzymatic reaction in an aqueous phase
G which is characterized by synthesizing a precursor of G and transferring the precursor to an organic solvent phase.
A method for synthesizing a precursor of lyPhe.
JP10236056A 1998-08-21 1998-08-21 Synthesis of precursor for glyphe Withdrawn JP2000060593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236056A JP2000060593A (en) 1998-08-21 1998-08-21 Synthesis of precursor for glyphe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236056A JP2000060593A (en) 1998-08-21 1998-08-21 Synthesis of precursor for glyphe

Publications (1)

Publication Number Publication Date
JP2000060593A true JP2000060593A (en) 2000-02-29

Family

ID=16995095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236056A Withdrawn JP2000060593A (en) 1998-08-21 1998-08-21 Synthesis of precursor for glyphe

Country Status (1)

Country Link
JP (1) JP2000060593A (en)

Similar Documents

Publication Publication Date Title
Ståhl et al. The synthesis of a D-amino acid ester in an organic media with α-chymotrypsin modified by a bio-imprinting procedure
US4256836A (en) Addition compound of dipeptide derivative and amino acid derivative
EP0028251A1 (en) Process for producing n-acyl-d-phenylalanine ester.
Didžiapetris et al. Penicillin acylase‐catalyzed protection and deprotection of amino groups as a promising approach in enzymatic peptide synthesis
Killian et al. Ribosome-mediated incorporation of hydrazinophenylalanine into modified peptide and protein analogues
Sato et al. Optical resolution of racemic amino acids by aminoacylase
DD282918A5 (en) ENZYMATIC PROCESS FOR THE PREPARATION OF PEPTIDES, ESPECIALLY DIPEPTIDES AND DEVICE THEREFOR
England et al. Incorporation of esters into proteins: Improved synthesis of hydroxyacyl tRNAs
Xu et al. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal
Könnecke et al. Peptidsynthesen mit immobilisierten Enzymen. I. Immobilisiertes α-Chymotrypsin: I. Immobilized α-chymotrypsin
JP2000060593A (en) Synthesis of precursor for glyphe
TW412591B (en) Methods for preparing optically active amino acids and their esters
US20050186654A1 (en) Method for producing dipeptide
CN103243141B (en) One-pot method for preparing gamma-glutamy small peptides compounds
JPS6229996A (en) Production of n-protected l-aspartyl-l-phenylalanine lower alkyl ester
JPH10286098A (en) Production of d-amino acid, and production of amine
Meng et al. Application of enzymes for the synthesis of the Cholecystokinin Pentapeptide (CCK-5)
Chen et al. Chemo‐Enzymatic Synthesis of Optically Active Amino Acids and Peptides
JPS61254545A (en) Racemization of optically active phenylalaninamide
EP0491173B1 (en) Method of producing hydrochloride of alpha-L-aspartyl-L-phenylalanine methyl ester
CN104862363B (en) A kind of synthetic method of enzymatic benzyloxycarbonyl group-alanyl-glutamine
JPS62208297A (en) Production of l-aspartyl-l-phenylalanine and l-aspartyl-l-phenylalanine diketopiperazine
JP3713147B2 (en) High concentration amino acid aqueous solution and peptide synthesis method using high concentration amino acid aqueous solution
Ohkatsu et al. Glycolipid enzyme models. X. Catalysis of glycolipids with amino acid residue
JPS62259597A (en) Enzymic synthesis of n-protected peptide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101