JP2000058244A - Heating method for material contained in metal can and induction coil assembly - Google Patents

Heating method for material contained in metal can and induction coil assembly

Info

Publication number
JP2000058244A
JP2000058244A JP11154435A JP15443599A JP2000058244A JP 2000058244 A JP2000058244 A JP 2000058244A JP 11154435 A JP11154435 A JP 11154435A JP 15443599 A JP15443599 A JP 15443599A JP 2000058244 A JP2000058244 A JP 2000058244A
Authority
JP
Japan
Prior art keywords
metal
temperature
induction coil
heating
thawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11154435A
Other languages
Japanese (ja)
Other versions
JP4097359B2 (en
Inventor
Kotaro Hirayama
鋼太郎 平山
Yoshimasa Hiramatsu
良政 平松
Shinobu Saeki
忍 佐伯
Shinya Matsumoto
信也 松元
Yushi Saeki
雄史 佐伯
Masuo Kimura
益男 紀村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Dai Ichi High Frequency Co Ltd
Original Assignee
Suntory Ltd
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd, Dai Ichi High Frequency Co Ltd filed Critical Suntory Ltd
Priority to JP15443599A priority Critical patent/JP4097359B2/en
Publication of JP2000058244A publication Critical patent/JP2000058244A/en
Application granted granted Critical
Publication of JP4097359B2 publication Critical patent/JP4097359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating method for rapidly thawing a frozen material such as fruit juice contained in a metal can. SOLUTION: An induction cod 3 is arranged in the outer periphery of a metal can 1, current is supplied to the induction coil 3 from a power source device 4, and heat is generated in the metal can itself to thaw a frozen body 2a inside. By controlling power supplied to the induction coil 3, the surface temperature of the metal can 1 is kept at a specified temperature, and temperature rising of liquid is suppressed to prevent the quality deterioration of a contained material. By monitoring the amount of power supplied, a thawing state in the frozen material inside is estimated, thawing finishing time is judged, and unmanned operation is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ドラム缶等の金属
缶内に、保管、搬送等のために収容されている物を、例
えば取り扱い性を良くするために、加熱するための方法
並びにその方法に用いる誘導コイル組立体に関し、特
に、氷結状態で収容されている果汁、スープ、コーヒー
エキス等の固形状の収容物を、融解して液状とすると
か、ラード、ゼラチン、ゼリーなどの固形状の流動体
(厳密には高粘性の液体ではあるが、固体に似た挙動を
示すもの)を加熱して流動性を増すために用いるのに好
適な加熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating an object contained in a metal can such as a drum for storage, transportation, etc., for example, in order to improve the handleability, and a method therefor. For the induction coil assembly used for, in particular, solid containers such as fruit juice, soup, coffee extract, etc. stored in a frozen state are melted into a liquid state, lard, gelatin, jelly, etc. The present invention relates to a heating method suitable for use in heating a fluid (strictly speaking, a highly viscous liquid, which behaves like a solid) to increase fluidity.

【0002】[0002]

【従来の技術】果汁やスープ等の飲料をドラム缶に氷結
状態で収容し、保管や運搬を行うことが広く行われてい
る。かかる氷結体は、商品化のための小分けの際或いは
成分調整の際に、そのままでは取り扱えないので、取り
扱い性を良くするために融解即ち解凍されるが、その解
凍の際、品質劣化を回避するために、解凍後の液温が所
定の上限(例えば、果汁の場合には15〜20°C程
度)を越えないように加熱する必要がある。そこで、従
来は、室温放置、或いは、湯煎法(温湯中に浸して加熱
する方法)による加熱、解凍が行われてきた。
2. Description of the Related Art It has been widely practiced to store beverages such as fruit juices and soups in drums in a frozen state for storage and transportation. Such frozen matter cannot be handled as it is during subdivision for commercialization or component adjustment, so it is thawed or thawed for better handling, but avoids quality deterioration at the time of thawing. Therefore, it is necessary to heat so that the liquid temperature after thawing does not exceed a predetermined upper limit (for example, about 15 to 20 ° C. in the case of fruit juice). Therefore, conventionally, heating and thawing have been performed at room temperature or in a hot water bath (a method of immersing in hot water and heating).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、室温放
置による解凍を行う場合、ドラム缶一本分の解凍に10
0時間前後の時間を要し、このため、スペースの占拠、
工程待ちといった生産上好ましくない問題を孕んでい
た。一方、湯煎法では、ドラム缶を浸すための大きい温
湯浴を必要とし、このため設備費が大きくなり、且つラ
ンニングコストも高くなるという問題があった。また、
湯煎法でも、解凍後の液温が所定の上限を越えないよう
にするには、湯温をその上限温度に近い温度に設定する
必要があり、この場合には解凍速度をあまり早くできな
い。解凍速度を早くするには湯温を高くすればよい。し
かしながら、その場合には、缶壁温度が上がりすぎた時
に急いで湯温を下げる必要があるが、温湯浴は大量の温
湯を有しているため、冷水を注入しても直ぐには温度が
下がらず、温度コントロールが難しく、このため缶壁温
度が上がりすぎて内容物を劣化させることがないよう多
大な注力が必要になり、又、この事態を改善するような
設備にするには更に多大なコストを要するといった問題
もあった。更に、果汁等の解凍の際には、氷結体が5%
程度残った状態で解凍を終了するが、従来の室温放置、
湯煎法ともに、解凍終了の判断は作業者がドラム缶の中
を覗いて行っており、自動化が難しいといった問題もあ
った。これらの問題点は解凍の場合に限らず、ドラム缶
に収容したラード、ゼラチン、ゼリーなどの固形状の流
動体を、流動性を増して取り扱い性を良くるために加熱
する際にもあった。
However, when thawing at room temperature is performed, it takes 10 minutes to thaw one drum.
It takes around 0 hours, so space occupation,
There was an unfavorable problem in production, such as waiting for the process. On the other hand, the hot water bath method requires a large hot water bath for immersing the drum can, and thus has a problem that the equipment cost is increased and the running cost is also increased. Also,
Even with the hot water method, it is necessary to set the water temperature close to the upper limit temperature so that the liquid temperature after thawing does not exceed a predetermined upper limit. In this case, the thawing speed cannot be too high. The thawing speed can be increased by increasing the temperature of the hot water. However, in that case, it is necessary to quickly lower the hot water temperature when the can wall temperature is too high, but since the hot water bath has a large amount of hot water, the temperature does not immediately decrease even if cold water is injected. However, it is difficult to control the temperature, so that a great deal of attention is required so that the temperature of the can wall does not rise excessively and the contents are degraded. There was also a problem that required. Furthermore, when thawing fruit juice etc., the frozen matter is 5%
Finish thawing with the remaining amount, but leave it at room temperature,
In both hot water decoction methods, there is a problem that it is difficult to automate the thawing process because the operator judges the end of the thawing by looking inside the drum. These problems are not limited to the case of thawing, but also occur when heating a solid fluid such as lard, gelatin, jelly or the like contained in a drum can in order to increase the fluidity and improve the handleability.

【0004】本発明はかかる問題点に鑑みてなされたも
ので、ドラム缶等の金属缶に収容した収容物の取り扱い
性をよくするための加熱、例えば解凍或いは流動化等の
ための加熱を、室温放置による加熱に比べて短時間で実
施可能な、また、湯煎法に比べて低いイニシャルコス
ト、ランニングコストで、敏速に且つ品質劣化をもたら
すことなく実施可能な加熱方法を提供することを目的と
する。また、本発明はその加熱に使用する誘導コイル組
立体を提供することも目的とする。
[0004] The present invention has been made in view of such problems, and heating for improving the handleability of the contents contained in a metal can such as a drum can, for example, heating for thawing or fluidizing, is performed at room temperature. It is an object of the present invention to provide a heating method which can be performed in a shorter time than heating by standing, and which can be performed promptly and without deterioration in quality with lower initial cost and running cost as compared with the hot water decoction method. . It is another object of the present invention to provide an induction coil assembly used for the heating.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記問題
を解決すべく検討の結果、金属缶を誘導加熱することに
より、金属缶自体を発熱させ、広い面積から内部の収容
物を効率よく加熱することができ、しかも金属缶の温度
は誘導加熱のための投入電力の制御によって容易に制御
可能であるので、その温度制御によって金属缶内の液温
を品質低下を生じない温度以下に保持することができ、
良好な解凍、或いは流動化を行うことができるというこ
とを知得し、本発明を完成した。
Means for Solving the Problems The present inventors have studied to solve the above problems, and as a result, induction heating of the metal can causes the metal can itself to generate heat, thereby efficiently removing the internal contents from a large area. The metal can can be heated well and the temperature of the metal can can be easily controlled by controlling the input power for induction heating. Can be held,
The present inventors have learned that good thawing or fluidization can be performed, and have completed the present invention.

【0006】すなわち、本発明の金属缶内収容物の加熱
方法は、物を、保管、運搬等のために収容した金属缶を
取り囲むように誘導コイルを配置し、該誘導コイルに通
電して金属缶を発熱させ、該金属缶内の収容物を加熱す
ることを特徴とするものである。本発明のこの構成によ
れば、金属缶自体が誘導加熱により発熱し、その熱で内
部の収容物を加熱するものであるので、広い面積から熱
が収容物に伝えられ、金属缶の温度を低く保持しても伝
熱量を大きくでき、従って敏速な加熱が可能となる。し
かも、温度制御が容易であるので缶壁温度を所望温度と
でき、収容物の品質低下を招くことがない。このため、
氷結体の解凍或いは固形状流動体の流動性向上に好適に
利用できる。また、誘導加熱に使用する誘導コイル及び
その電源装置は、湯煎法を実施するための装置に比べて
イニシャルコストが低く、またランニングコストも低
く、従って本発明方法は湯煎法に比べて経済的である。
更に、誘導コイルへの投入電力の監視により、或いは通
電を一時的に停止して温度降下を測定することにより、
金属缶内の加熱状態を監視することができ、加熱終了を
自動的に判断することも可能となる。
That is, according to the method for heating an object contained in a metal can of the present invention, an induction coil is arranged so as to surround a metal can that stores an object for storage, transportation, etc. It is characterized in that the can is heated and the contents in the metal can are heated. According to this configuration of the present invention, since the metal can itself generates heat by induction heating and heats the internal container with the heat, heat is transmitted to the container from a large area, and the temperature of the metal can is reduced. Even if the temperature is kept low, the amount of heat transfer can be increased, so that quick heating is possible. In addition, since the temperature control is easy, the can wall temperature can be set to a desired temperature, and the quality of the stored items does not deteriorate. For this reason,
It can be suitably used for thawing frozen matter or improving the fluidity of a solid fluid. In addition, the induction coil used for induction heating and its power supply device have lower initial cost and lower running cost than the device for performing the hot water decocting method. Therefore, the method of the present invention is more economical than the hot water decoction method. is there.
Furthermore, by monitoring the input power to the induction coil, or by temporarily stopping energization and measuring the temperature drop,
The heating state in the metal can can be monitored, and the end of heating can be automatically determined.

【0007】また、本発明は、金属缶を誘導加熱するた
めに、該金属缶に簡単に取り付けることの可能な誘導コ
イル組立体をも提供する。すなわち、本発明の誘導コイ
ル組立体は、氷結体等を収容した金属缶を取り囲むサイ
ズのらせん状に形成された可撓性の誘導コイルと、該ら
せん状の誘導コイルが伸縮することは許容するが、最も
伸ばした時に前記らせんのピッチが前記金属缶を加熱す
るのに適した値となるように拘束するコイル保持手段
と、該コイル保持手段を金属缶に取り付けるための取付
具を有する構成としたものである。この構成によれば、
誘導コイル組立体の保管時には全体を短く縮ませておく
ことで保管スペースを小さくでき、又、使用時には、適
当な位置に置かれている金属缶に誘導コイル組立体をか
ぶせ、誘導コイルのらせんのピッチが加熱に適した長さ
となるように全体を引き伸ばし、取付具によって金属缶
に保持させることにより、金属缶の外周に誘導コイルを
簡単に適正配置して誘導加熱することができる。
[0007] The present invention also provides an induction coil assembly that can be easily attached to a metal can for induction heating the metal can. That is, the induction coil assembly of the present invention allows a flexible induction coil formed in a spiral shape having a size surrounding a metal can containing a frozen body or the like, and allows the spiral induction coil to expand and contract. However, a configuration having a coil holding means for restricting the pitch of the helix when stretched most to a value suitable for heating the metal can, and a fixture for attaching the coil holding means to the metal can It was done. According to this configuration,
When storing the induction coil assembly, the storage space can be reduced by shortening the whole, and at the time of use, the induction coil assembly can be covered with a metal can placed at an appropriate position, and the spiral of the induction coil can be reduced. By stretching the whole so that the pitch becomes a length suitable for heating and holding the metal can with a fixture, the induction coil can be easily and appropriately arranged on the outer periphery of the metal can to perform induction heating.

【0008】[0008]

【発明の実施の形態】本発明の金属缶内収容物の加熱方
法は、金属缶を取り囲むように誘導コイルを配置し、該
誘導コイルに通電して金属缶を発熱させ、該金属缶内の
収容物を加熱することを特徴とする。この加熱方法の対
象とする金属缶は、加熱専用に用いるものではなく、収
容物の保管、運搬等に用いられるものであり、当然誘導
加熱可能な材料で作られている。その代表例としては、
汎用されているドラム缶を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method of heating contents contained in a metal can according to the present invention, an induction coil is arranged so as to surround the metal can, and electricity is supplied to the induction coil to cause the metal can to generate heat. It is characterized by heating the contents. The metal can to be subjected to this heating method is not used exclusively for heating, but is used for storing and transporting the contents, and is naturally made of a material which can be induction heated. As a typical example,
Commonly used drums can be mentioned.

【0009】金属缶内の加熱対象となる収容物及びその
加熱目的は、特に限定されるものではないが、金属缶内
収容物を小出しするとか、成分調整を行うといった操作
を容易に行うことができるよう、金属缶内収容物の取り
扱い性を良くするための加熱に本発明を適用することが
好ましい。更に具体的には、融解可能な又は加熱により
流動化が向上する固形状の物を収容物とし、それを融解
或いは流動化させるために本発明の加熱方法を適用する
ことが好ましい。このような固形状の物は熱伝導が悪
く、加熱しにくいため、本発明適用の効果が大きい。ま
た、本発明の加熱方法は金属缶壁面の温度制御を精密に
実施できることから、収容物の加熱温度の上限を容易に
制御でき、従って、加熱温度の上限を規制されるような
収容物に対して本発明を適用することが好ましい。更に
具体的には、氷結状態で収容されている果汁、スープ、
コーヒーエキス等の固形状の収容物の融解(解凍)、或
いは、ラード、ゼラチン、ゼリーなどの固形状の流動体
の流動化のための加熱に、本発明の加熱方法は好適であ
る。
The object to be heated in the metal can and the purpose of heating the metal can are not particularly limited, and operations such as dispensing the object in the metal can and adjusting the components can be easily performed. As much as possible, it is preferable to apply the present invention to heating for improving the handleability of the contents in the metal can. More specifically, it is preferable to apply the heating method of the present invention in order to make a container a solid material that can be melted or whose fluidization is improved by heating, and to melt or fluidize it. Such a solid material has poor heat conduction and is difficult to heat, so that the effect of the application of the present invention is great. In addition, since the heating method of the present invention can precisely control the temperature of the metal can wall, the upper limit of the heating temperature of the container can be easily controlled, and therefore, for the container in which the upper limit of the heating temperature is regulated. It is preferable to apply the present invention. More specifically, fruit juice, soup,
The heating method of the present invention is suitable for melting (thawing) solid contents such as coffee extract or heating for fluidizing solid fluids such as lard, gelatin and jelly.

【0010】以下、果汁等の氷結体の解凍を例にとっ
て、且つ、図面を参照して本発明を更に詳細に説明す
る。図1は本発明の一実施形態を示したものであって、
1はドラム缶等の金属缶、2はその内部に収容された果
汁等の収容物、2aはその収容物の氷結状態の部分即ち
氷結体、2bは氷結体が溶けて生じる液体である。本発
明はこの氷結体2aの解凍のために誘導加熱を利用する
ことを特徴とするものであり、解凍時には、金属缶1を
取り囲むように誘導コイル3を配置し、電源装置4に接
続する。また、誘導コイル3への投入電力を制御するた
め、金属缶1の壁面に温度検出端5を取り付け、その信
号を電源装置4の制御装置6に入力させる。ここで、誘
導コイル3は、金属缶1の缶壁を誘導加熱することがで
きるものであればその構成は任意であり、例えば、金属
缶1を取り囲むらせん状のもの、金属缶1を取り囲むリ
ング状のもの(この場合には複数のリング状のコイルを
直列或いは並列に接続して使用する)、金属缶1の周方
向の一部領域のみを加熱する構成のコイルを複数個、金
属缶1を取り囲むように配置したもの等を適宜使用で
き、図1では1本のらせん状の誘導コイルを用いた場合
を示している。また、誘導コイル3は、適当な位置に置
かれている金属缶1自体に適当な取付手段を介して保持
させることにより、図示したように金属缶1を取り囲む
状態に取り付ける構成のものでもよいし、金属缶1とは
関係のない保持機構に保持させて図示したように金属缶
1を取り囲む状態に配置する構成のものでもよい。
Hereinafter, the present invention will be described in more detail with reference to the drawings by taking the thawing of frozen matter such as fruit juice as an example. FIG. 1 shows an embodiment of the present invention,
1 is a metal can such as a drum can or the like, 2 is a container such as fruit juice stored therein, 2a is a frozen portion of the container, that is, a frozen body, and 2b is a liquid generated by melting the frozen body. The present invention is characterized by utilizing induction heating for thawing the frozen body 2a. At the time of thawing, the induction coil 3 is arranged so as to surround the metal can 1 and is connected to the power supply device 4. Further, in order to control the power supplied to the induction coil 3, a temperature detecting end 5 is attached to the wall surface of the metal can 1, and the signal is input to the control device 6 of the power supply device 4. Here, the configuration of the induction coil 3 is arbitrary as long as it can induction heat the can wall of the metal can 1, for example, a spiral shape surrounding the metal can 1, a ring surrounding the metal can 1 (In this case, a plurality of ring-shaped coils are connected in series or in parallel and used), a plurality of coils configured to heat only a part of the circumferential direction of the metal can 1, 1 can be used as appropriate, and FIG. 1 shows a case where one spiral induction coil is used. Further, the induction coil 3 may be configured to be attached to the metal can 1 placed at an appropriate position by surrounding the metal can 1 as shown by holding the metal can 1 itself through an appropriate attaching means. Alternatively, a configuration in which the metal can 1 is held by a holding mechanism unrelated to the metal can 1 and arranged so as to surround the metal can 1 as shown in the drawing may be used.

【0011】次に、上記構成の装置を用いた解凍方法を
説明する。図1(a)に示すように、金属缶1の周囲に
誘導コイル3を配置し且つ金属缶1の外面に温度検出端
5を取り付けた後、電源装置4で誘導コイル3に通電
し、金属缶1の外周壁を誘導加熱し、金属缶1自体を発
熱させる。これにより缶壁が昇温し、缶壁の熱が内部の
氷結体2aに伝達され、氷結体2aが徐々に解凍され
る。そして、大部分の氷結体2aが解凍され、図1
(b)に示すように、わずかな氷結体2a(例えば、全
体の約5%程度の氷結体)が残った時点で(この時点の
判断方法は後述する)、誘導コイル3の通電を停止し、
解凍作業を終了する。なお、わずかな氷結体2aが残っ
た時点で解凍を終了するのは、その後の工程において液
体2bの温度が上昇するのを氷結体2aで防止するため
である。
Next, a decompression method using the above-described apparatus will be described. As shown in FIG. 1A, after the induction coil 3 is arranged around the metal can 1 and the temperature detecting end 5 is attached to the outer surface of the metal can 1, the power is supplied to the induction coil 3 by the power supply 4 and the metal is turned on. The outer peripheral wall of the can 1 is induction heated to cause the metal can 1 itself to generate heat. As a result, the temperature of the can wall rises, the heat of the can wall is transmitted to the frozen body 2a inside, and the frozen body 2a is gradually thawed. Then, most of the frozen matter 2a is thawed, and FIG.
As shown in (b), when a small amount of frozen matter 2a (for example, about 5% of the whole frozen matter) remains (the determination method at this time will be described later), the power supply to the induction coil 3 is stopped. ,
Finish the decompression work. The reason why the thawing is terminated when a small amount of the frozen matter 2a remains is to prevent the temperature of the liquid 2b from rising in the subsequent process with the frozen matter 2a.

【0012】以上の解凍動作において、液体2bの温度
があまり高くなると、加熱臭又は変色が生じることがあ
る(例えば、柑橘果汁の場合は15°〜20°C超に長
時間さらすと問題が生じる)。そこで、液温の上昇を抑
えるため、缶壁外面の温度を温度検出端5で検出し、そ
の温度を、液体の許容最高温度を考慮してあらかじめ設
定した設定温度となるように、誘導コイル3への投入電
力Pを制御する。これにより、液温を一定値以下に抑制
しながら解凍を行うことができ、収容物2に加熱臭が生
じるといった問題を回避できる。
In the above-described thawing operation, if the temperature of the liquid 2b is too high, a heating odor or discoloration may occur (for example, in the case of citrus juice, a problem occurs if the liquid 2b is exposed to more than 15 ° to 20 ° C. for a long time). ). Therefore, in order to suppress the rise of the liquid temperature, the temperature of the outer surface of the can wall is detected by the temperature detecting end 5, and the temperature is set to a preset temperature in consideration of the allowable maximum temperature of the liquid. To control the input power P to the power supply. Thereby, thawing can be performed while the liquid temperature is suppressed to a certain value or less, and the problem that a heated odor is generated in the container 2 can be avoided.

【0013】ここで、缶壁外面の設定温度は、液温が許
容最高温度を越えないように定めるものであり、解凍期
間を通して一定値に設定してもよいし、時間経過と共に
段階的或いは連続的に変化するように設定してもよい。
一般に、液温は缶壁外面温度よりも低く且つその差は解
凍が進むにつれて小さくなる傾向があり、氷結体の約9
5%が溶けた時点(通常、解凍を終了する時点)におい
ても、3〜5°C程度の温度差は生じている。従って、
缶壁外面の設定温度の1例としては、解凍の全期間を通
じて液体の許容最高温度よりも3〜5°C程度高い一定
値、例えば柑橘果汁に対しては18〜25°C程度の一
定値とすることができ、解凍期間中缶壁外面をその一定
の設定温度に保つように制御することで、内部の液体が
許容最高温度を越えることが避けられる。なお、このよ
うな缶壁の温度設定では温度勾配が小さいため単位面積
当たりの伝熱量をあまり大きくできないが、金属缶1の
外周面のほとんどが伝熱に寄与し、伝熱面積が広いた
め、全体としての伝熱量をかなり大きくとることがで
き、例えば200リットルのドラム缶を15時間程度で
解凍することができる。しかし、いわば常温迄緩速で到
達させればよいので誘導コイル3に投入する電力は一般
的な誘導加熱に比べてかなり小さく、例えば、1〜2k
W程度でよいため、誘導コイル3を流れる電流値も小さ
く、このため、誘導コイル3の水冷は必要ない。即ち、
電力損失の極めて小さい、効率の極めて高い加熱が行な
える。因に、金属缶1の壁面加熱を電熱ヒーターを用い
て行った場合には、ヒーターが最高温部となり、しかも
その温度が上記誘導コイルに比べてはるかに高いため、
桁違いに大きい放熱損失が、ひいては電力損失が生じる
ことになり、上記本発明方法のような効率の高い加熱は
到底望めない。缶壁外面の設定温度の他の例としては、
解凍開始時には、液温が許容最高温度を越えない範囲で
高くしておき、時間経過と共に、液温が許容最高温度を
越えないように、段階的に或いは連続的に低下させ、解
凍終了時の前には液体の許容最高温度よりも3〜5°C
程度高い温度以下とするというように、設定温度を変化
させるものを挙げることができる。このような設定温度
を採用すると、上記した一定値を採用した場合に比べて
加熱熱量を多くでき、敏速な解凍が可能となる。
Here, the set temperature of the outer surface of the can wall is determined so that the liquid temperature does not exceed the allowable maximum temperature, and may be set to a constant value throughout the thawing period, or may be stepwise or continuous over time. It may be set so as to change in a dynamic manner.
In general, the liquid temperature is lower than the outer surface temperature of the can wall, and the difference tends to become smaller as the thawing progresses.
Even when 5% is melted (usually when thawing is completed), a temperature difference of about 3 to 5 ° C. is generated. Therefore,
As an example of the set temperature of the outer surface of the can wall, a constant value that is higher than the allowable maximum temperature of the liquid by about 3 to 5 ° C. throughout the thawing period, for example, a constant value of about 18 to 25 ° C. for citrus juice. By controlling the outer surface of the can wall at the constant set temperature during the thawing period, the liquid inside can be prevented from exceeding the maximum allowable temperature. In such a temperature setting of the can wall, the amount of heat transfer per unit area cannot be increased so much because the temperature gradient is small. However, since most of the outer peripheral surface of the metal can 1 contributes to heat transfer and the heat transfer area is large, The amount of heat transfer as a whole can be considerably large, and for example, a 200-liter drum can be thawed in about 15 hours. However, the power supplied to the induction coil 3 is considerably smaller than that of general induction heating, for example, since it is only necessary to reach the room temperature at a slow speed.
Since the current may be about W, the value of the current flowing through the induction coil 3 is also small, and therefore, the water cooling of the induction coil 3 is unnecessary. That is,
Heating with very small power loss and very high efficiency can be performed. However, when the wall surface of the metal can 1 is heated using an electric heater, the heater has the highest temperature and its temperature is much higher than that of the induction coil.
An extremely large heat dissipation loss and, consequently, a power loss occur, so that highly efficient heating as in the method of the present invention cannot be expected at all. As another example of the set temperature of the outer surface of the can wall,
At the start of thawing, keep the solution temperature within the range not exceeding the maximum allowable temperature, and gradually or continuously lower the solution temperature over time so that the temperature does not exceed the maximum allowable temperature. 3-5 ° C above maximum allowable liquid temperature before
An example in which the set temperature is changed so that the temperature is not higher than the high temperature can be given. When such a set temperature is employed, the amount of heat to be heated can be increased as compared with the case where the above-mentioned constant value is employed, and prompt thawing becomes possible.

【0014】次に、解凍終了時の判断方法を説明する。
解凍終了時の判断方法には、投入電力値を利用するもの
と、誘導コイルへの通電を一時的に停止し、その時の缶
壁外面の温度降下を利用するものの2方法がある。ま
ず、投入電力値を利用する方法を説明する。
Next, a method of judging the end of decompression will be described.
There are two methods for judging the end of the thawing: a method using the input power value and a method using the temperature drop on the outer surface of the can wall at the time of temporarily stopping the current supply to the induction coil. First, a method using the input power value will be described.

【0015】図1において、電源装置4によって誘導コ
イル3に通電し、金属缶1の缶壁を発熱させて金属缶1
内の氷結体2aの解凍を行う。この時、缶壁の外面温度
があらかじめ設定した一定の設定温度になるように誘導
コイル3への投入電力Pを制御する。この解凍中におけ
る金属缶1の缶壁及びそれに隣接する部分の温度分布は
概略的には図2に示すようになっている。すなわち、缶
壁1aの外面が所定の設定温度Tに昇温した直後には、
内部にかなりの量の低温の氷結体2aが存在しているた
め液体2bの量が少なく且つその温度も低く、このた
め、図2の曲線11で示す温度分布を有しているが、時
間経過と共に解凍が進み氷結体2aがきわめて小さくな
り、液体2bが多くなると、温度分布は曲線12で示す
ようになる。従って、缶壁1a内における温度勾配は、
缶壁外面が設定温度に達した直後は大きいが、その後の
解凍の進行に伴って小さくなる。缶壁1a内における温
度勾配は缶壁1aを通って内部に伝達される伝熱量に比
例しており、その伝熱量は誘導コイル3による缶壁への
入熱量にほぼ等しく(金属缶1の壁温が常温に近いの
で、外部への放熱量が小さく、無視しうるため)、この
入熱量は誘導コイル3への投入電力Pに比例しているの
で、結局誘導コイル3への投入熱量Pは解凍の進行に伴
って減少する。
In FIG. 1, an electric power is supplied to an induction coil 3 by a power supply device 4 to cause the can wall of the metal can 1 to generate heat.
The frozen body 2a in the inside is thawed. At this time, the electric power P supplied to the induction coil 3 is controlled so that the outer surface temperature of the can wall becomes a preset constant temperature. During the thawing, the temperature distribution of the can wall of the metal can 1 and the portion adjacent thereto is schematically shown in FIG. That is, immediately after the outer surface of the can wall 1a is heated to the predetermined set temperature T,
Due to the presence of a considerable amount of low-temperature frozen matter 2a inside, the amount of liquid 2b is small and its temperature is also low. Therefore, it has the temperature distribution shown by curve 11 in FIG. At the same time, the thawing proceeds and the frozen body 2a becomes extremely small and the amount of the liquid 2b increases, and the temperature distribution becomes as shown by a curve 12. Therefore, the temperature gradient in the can wall 1a is
It is large immediately after the outer surface of the can wall reaches the set temperature, but becomes smaller with the progress of thawing thereafter. The temperature gradient in the can wall 1a is proportional to the amount of heat transferred to the inside through the can wall 1a, and the amount of heat transfer is substantially equal to the amount of heat input to the can wall by the induction coil 3 (the wall of the metal can 1). Since the temperature is close to the normal temperature, the amount of heat released to the outside is small and can be ignored.) Since this heat input is proportional to the input power P to the induction coil 3, the heat input P to the induction coil 3 is eventually Decreases as thawing progresses.

【0016】従って、解凍開始から解凍終了までの時間
経過に対する缶壁1aの外面温度及び誘導コイル3への
投入電力Pは図3のグラフに示す曲線15、16のよう
になる。すなわち、曲線15で示す外面温度は解凍開始
から上昇し、所定温度Tに達するとその温度に維持され
る。一方、投入電力Pは解凍開始時には一定に保持され
るが、解凍が或る程度進んでゆくと徐々に低下してゆ
く。そして、その時の投入電力Pの大きさは、図2で説
明したように缶壁の温度勾配、即ち、入熱量に比例して
おり、その入熱量は金属缶1内の氷結体2aの残量割合
に応じたものとなっている。従って、あらかじめ実験に
よって投入電力Pと氷結体2aの残量割合との関係を測
定しておけば、投入電力Pの値から氷結体2aの解凍状
態(残量割合)を推定でき、また、解凍を終了すべき時
の氷結体残量割合(例えば、5%)に対する投入電力値
1 を求めることができる。
Accordingly, the outer surface temperature of the can wall 1a and the electric power P applied to the induction coil 3 with respect to the lapse of time from the start of thawing to the end of thawing are as shown by curves 15 and 16 in the graph of FIG. That is, the outer surface temperature indicated by the curve 15 rises from the start of thawing, and is maintained at the predetermined temperature T when it reaches the predetermined temperature T. On the other hand, the input power P is kept constant at the start of thawing, but gradually decreases as thawing progresses to some extent. The magnitude of the input power P at that time is proportional to the temperature gradient of the can wall, that is, the amount of heat input, as described with reference to FIG. 2, and the amount of heat input is the remaining amount of the frozen body 2a in the metal can 1. It is according to the ratio. Therefore, if the relationship between the applied power P and the remaining amount ratio of the frozen body 2a is measured by an experiment in advance, the thawing state (remaining ratio) of the frozen body 2a can be estimated from the value of the applied power P, the frost remaining percentage of time to be completed (e.g., 5%) can be obtained input power value P 1 against.

【0017】図1において、制御装置6には、あらかじ
め実験によって求めた投入電力Pと氷結体2aの残量割
合との関係から求めた、解凍終了とする時の氷結体残量
割合(例えば、5%)に対応した投入電力値P1 が入力
されている。そして、制御装置6は、解凍動作中、缶壁
温度があらかじめ定めた設定温度Tとなるように誘導コ
イル3への投入電力Pを制御すると共に、その投入電力
値を監視しており、投入電力値が、設定した投入電力値
1 にまで低下した時点で、所望の解凍状態に達したと
判断して誘導コイル3への通電を止め、解凍動作を終了
する。以上のようにして、金属缶1内を目視等によって
監視することなく、内部の解凍状態を投入電力値から監
視でき、所定の解凍状態に達した時に自動的に解凍動作
を終了できる。
In FIG. 1, the controller 6 stores a frozen ice remaining amount ratio at the end of thawing (for example, based on the relationship between the input power P and the remaining amount ratio of the iced water 2a) obtained by an experiment in advance. input power value P 1 corresponding to 5%) is input. During the thawing operation, the control device 6 controls the input power P to the induction coil 3 so that the can wall temperature becomes the predetermined set temperature T, and monitors the input power value. value, at the time when decreased to input power value P 1 set, stopping the energization of the induction coil 3 is judged to have reached the desired thawing state, ends the thawing operation. As described above, the thawing state inside can be monitored from the input power value without monitoring the inside of the metal can 1 visually or the like, and the thawing operation can be automatically terminated when the predetermined thawing state is reached.

【0018】なお、上記した実施形態では、解凍中にお
ける缶壁外面温度をあらかじめ設定した一定の設定温度
Tになるように制御した場合のものであるが、本発明は
この場合に限らず、缶壁外面の設定温度を時間経過と共
に変えてもよい。例えば、解凍初期には液温はあまり上
がらないので缶壁温度を高く設定し、投入熱量を大きく
し、解凍がある程度進んだ後は、缶壁温度を低く設定し
て液温の上昇を抑えるようにするとか、缶壁温度を解凍
の進行と共に徐々に低下させるように設定するといった
変更を加えてもよい。請求項で述べている所定の設定温
度とは、単に一定値を意味するのみならず、このように
数値(温度設定値)を可変とする場合も含むものであ
る。設定温度を経時的に変化させた場合においても、解
凍終了時点では缶壁外面の設定温度は図3に示す一定の
設定温度Tとなっているので、その時の投入電力値から
氷結体2aの残量割合を監視でき、解凍終了を判断でき
る。
In the above-described embodiment, the temperature of the outer surface of the can wall during thawing is controlled so as to be a predetermined set temperature T. However, the present invention is not limited to this case. The set temperature of the outer wall surface may be changed over time. For example, in the early stage of thawing, the liquid temperature does not rise so much, so set the can wall temperature high, increase the amount of heat input, and after thawing has progressed to a certain extent, set the can wall temperature low to suppress the rise in liquid temperature. Alternatively, a change may be made such that the can wall temperature is set so as to gradually decrease as the thawing progresses. The predetermined temperature set forth in the claims does not only mean a constant value, but also includes a case where the numerical value (temperature setting value) is variable. Even when the set temperature is changed over time, at the end of thawing, the set temperature of the outer surface of the can wall is the fixed set temperature T shown in FIG. The amount ratio can be monitored and the end of thawing can be determined.

【0019】次に、誘導コイルへの通電を一時的に停止
し、その時の缶壁温度の降下速度を把握し、これに基づ
いて解凍終了時を判断する方法を説明する。この方法の
実施に当たっても、図1において、電源装置4によって
誘導コイル3に通電し且つ缶壁の外面温度があらかじめ
設定した一定の設定温度になるように誘導コイル3への
投入電力Pを制御しながら金属缶1の缶壁を発熱させて
金属缶1内の氷結体2aの解凍を行う。この場合にも、
解凍開始から解凍終了までの時間経過に対する缶壁1a
の外面温度は、図4の曲線15Aに示すように、解凍開
始から上昇し、所定の設定温度Tに達するとその温度に
維持される。
Next, a description will be given of a method of temporarily stopping the current supply to the induction coil, grasping the falling speed of the can wall temperature at that time, and judging the end of the thawing based on this. Even in the implementation of this method, in FIG. 1, the electric power supplied to the induction coil 3 is controlled by the power supply device 4 and the power P applied to the induction coil 3 is controlled so that the outer surface temperature of the can wall becomes a predetermined constant temperature. While the can wall of the metal can 1 is being heated, the frozen body 2a in the metal can 1 is thawed. Again, in this case,
Can wall 1a for elapse of time from the start of thawing to the end of thawing
The outer surface temperature rises from the start of thawing as shown by a curve 15A in FIG. 4, and is maintained at that temperature when a predetermined set temperature T is reached.

【0020】この解凍途中で且つ設定温度Tに達した後
の適当な時刻t1 において、誘導コイル3への通電を一
時的に停止すると、缶壁1aが缶内収容物2で冷却され
ることにより外面温度は曲線15aで示すように降下す
る。この時の温度降下速度と金属缶1内の氷結体2aの
残量には相関関係があり、氷結体2aの残量が少なくな
る程、温度降下が遅くなることが判明した。すなわち、
誘導コイルへの通電を一時的に停止する時刻を、t1
2 、t3 、t4 、t5 等のように異ならせて複数回実
施すると、それぞれに曲線15a、15b、15c、1
5d、15e等で示す温度降下が生じており、時刻が遅
くなるにつれて、すなわち氷結体2aの残量が少なくな
るにつれて、温度降下が緩慢になる。ここで、各通電停
止時における温度降下を定量的に比較するために使用す
るファクターとしては、通電停止直後の温度降下速度、
通電停止から適当な時間が経過した時点における温度降
下速度、通電停止から一定時間経過する間の平均温度降
下速度、通電停止から一定時間経過する間の温度降下量
等を挙げることができ、いずれを採用してもよいが、な
かでも、通電停止から一定時間(図4のΔt)経過する
間の温度降下量(図4のΔT)を採用することが、検出
が容易で且つ精度が高いので好ましい。その場合、通電
停止から温度降下量を測定するまでの一定時間Δtとし
ては、2〜5分程度に設定しておけば、大抵の場合、必
要な温度検出精度、再現性、安定性等を得ることができ
る。
When the current to the induction coil 3 is temporarily stopped during the thawing and at an appropriate time t 1 after the temperature reaches the set temperature T, the can wall 1 a is cooled by the contents 2 in the can. As a result, the outer surface temperature decreases as shown by the curve 15a. At this time, there is a correlation between the temperature drop rate and the remaining amount of the frozen body 2a in the metal can 1, and it has been found that the lower the remaining amount of the frozen body 2a, the slower the temperature drop. That is,
The time at which the current to the induction coil is temporarily stopped is denoted by t 1 ,
When the measurement is performed a plurality of times with different values such as t 2 , t 3 , t 4 , t 5, etc., the curves 15a, 15b, 15c, 1
The temperature drops indicated by 5d, 15e, etc. occur, and the temperature drop becomes slower as the time becomes later, that is, as the remaining amount of the frozen matter 2a decreases. Here, factors used to quantitatively compare the temperature drop at the time of stopping the energization include a temperature drop rate immediately after the stop of the energization,
The temperature drop rate at the time when an appropriate time has elapsed since the stop of the power supply, the average temperature drop rate during a certain time after the stop of the power supply, the amount of temperature drop during the fixed time after the stop of the power supply, and the like. Although it may be adopted, it is particularly preferable to employ the temperature drop amount (ΔT in FIG. 4) during a certain period of time (Δt in FIG. 4) from the stop of energization because the detection is easy and the accuracy is high. . In this case, if the predetermined time Δt from the stop of energization to the measurement of the temperature drop amount is set to about 2 to 5 minutes, in most cases, necessary temperature detection accuracy, reproducibility, stability, and the like are obtained. be able to.

【0021】上記したように通電開始から計測した時刻
1 、t2 、t3 、t4 、t5 等において誘導コイルへ
の通電を一時的に停止し、その時の温度降下量ΔTを測
定してグラフ化すると、図5に示す曲線17が得られ
る。そして同種の解凍対象に対して同様な測定を行う
と、曲線17′、17″のように曲線17と同様な曲線
が得られる。この曲線17′、17″は曲線17に比べ
て時間軸方向にずれているが、これを時間軸方向にずら
せ、例えば、曲線17′、17″において温度降下量
が、曲線17の測定時刻t1 における温度降下量ΔT1
になる時刻を、曲線17の測定時刻t1 に合わせると、
曲線17′、17″は曲線17にほぼ重なる特性を持っ
ていた。このことは、一定の温度降下量(例えば、ΔT
1 )に達した時点からカウントした解凍時間と温度降下
量ΔTの間には常に一定の関係が成り立っていることを
意味している。なお、図5において、曲線17、1
7′、17″が時間軸方向にずれているのは、測定対象
とする収容物2の初期状態(氷結体割合や温度等)が異
なるため、一定の氷結体残量に達するまでに要する時間
が異なったためである。
At times t 1 , t 2 , t 3 , t 4 , t 5, etc. measured from the start of energization as described above, energization of the induction coil is temporarily stopped, and the temperature drop ΔT at that time is measured. By graphing, a curve 17 shown in FIG. 5 is obtained. When the same measurement is performed on the same type of decompression target, a curve similar to the curve 17 is obtained as shown by the curves 17 'and 17 ". The curves 17' and 17" are different from the curve 17 in the time axis direction. Is shifted in the direction of the time axis. For example, the temperature drop amount at the measurement time t 1 of the curve 17 is reduced by the temperature drop amount ΔT 1 at the curves 17 ′ and 17 ″.
Is adjusted to the measurement time t 1 of the curve 17,
The curves 17 ′ and 17 ″ had characteristics that substantially overlapped the curve 17. This indicates that a certain amount of temperature drop (for example, ΔT
This means that a constant relationship is always established between the thawing time counted from the time point 1 ) and the temperature drop amount ΔT. Note that in FIG.
The reason why 7 'and 17 "are shifted in the time axis direction is that the initial state of the container 2 to be measured (the frozen content ratio, the temperature, and the like) is different, and thus the time required for reaching the fixed frozen content remaining amount. Is different.

【0022】次に、曲線17に対する各測定時刻(t1
〜t5 )における氷結体残量割合を測定して求めた値を
1 、C2 、C3 、C4 、C5 とし、その氷結体残量割
合と温度降下量ΔTとの関係をグラフ化すると、図6に
示す曲線18が得られる。この曲線18は、同一ロット
の氷結体で同様の実験を繰り返しても氷結体残量10%
以上の領域においては、ほぼ同じ形で得られ、十分な再
現性を持った特性曲線と見なせる。なお、氷結体残量が
5%程度に少なくなると、測定値のばらつきが大きくな
り特性曲線18の再現性が低くなるが、その理由は、氷
結体が割れて分散し、温度検出位置の近くに漂ってきた
り、遠ざかったりするためであり、温度測定個所を増加
させて、測定温度の平均値を採用することで、再現性を
高めることができる。
Next, each measurement time (t 1) for the curve 17
To t 5 ), the values obtained by measuring the ratio of the amount of frozen solids are C 1 , C 2 , C 3 , C 4 , and C 5 , and the relationship between the ratio of the amount of frozen solids and the temperature drop ΔT is graphed Then, a curve 18 shown in FIG. 6 is obtained. This curve 18 shows that even if the same experiment is repeated with the same lot of frozen matter, the remaining amount of frozen matter is 10%.
In the above region, it can be regarded as a characteristic curve obtained in substantially the same shape and having sufficient reproducibility. In addition, when the remaining amount of frozen matter is reduced to about 5%, the dispersion of the measured values becomes large and the reproducibility of the characteristic curve 18 is lowered. This is because the frozen matter is broken and dispersed and becomes close to the temperature detection position. This is for drifting or moving away. The reproducibility can be improved by increasing the temperature measurement points and employing the average value of the measured temperatures.

【0023】図5、図6に示す特性曲線17、18から
明らかなように、金属缶1の外面温度が一定の設定温度
Tに保持されるように制御しながら金属缶1を誘導加熱
して内部の氷結体2aの解凍を行う時には、一時的に一
定時間Δtだけ通電を停止した時の温度降下量ΔTと氷
結体残量割合とは、一定の関係を持っており(曲線1
8)、また、その温度降下量ΔTと解凍時間とも一定の
関係を持っている(曲線17)。従って、あらかじめ、
解凍対象について解凍実験を行って、曲線17、18で
示す特性を求めておけば、解凍中の適当な時期に誘導コ
イルへの通電を一時的に止めて、一定時間Δt経過後の
缶壁外面温度の温度降下量ΔTを測定し、その測定値を
あらかじめ求めておいた曲線18と対比することで、氷
結体2aの解凍状態(残量割合)を推定でき、それを基
に解凍終了時を求めることができる。
As is apparent from the characteristic curves 17 and 18 shown in FIGS. 5 and 6, the metal can 1 is induction-heated while controlling so that the outer surface temperature of the metal can 1 is maintained at a constant set temperature T. When thawing the frozen solid 2a inside, the temperature drop ΔT when the energization is temporarily stopped for a certain time Δt temporarily and the ratio of the remaining frozen solid have a fixed relationship (curve 1).
8) Also, there is a certain relationship between the temperature drop ΔT and the thawing time (curve 17). Therefore,
If the characteristics shown by curves 17 and 18 are obtained by performing a thawing experiment on the thawing object, the energization to the induction coil is temporarily stopped at an appropriate time during thawing, and the outer surface of the can wall after a lapse of a certain time Δt By measuring the temperature drop ΔT of the temperature and comparing the measured value with the curve 18 obtained in advance, the thawing state (remaining ratio) of the frozen body 2a can be estimated. You can ask.

【0024】次に、上記した温度降下量ΔTを測定し、
その測定値から解凍終了時を検出する具体的な方法を説
明する。なお、解凍終了は、氷結体残量が5%になった
時点とする。あらかじめ、解凍実験を行って図5、図6
に示す曲線17、18を求めておき、氷結体残量が10
%に対応する温度降下量ΔT10に適当な許容範囲(±
α)を加えた値を、判定基準値として、図1に示す制御
装置6に入力しておく。また、氷結体残量が10%から
5%にまで減少するのに要する時間t(例えば、グレー
プフルーツジュースでは1時間程度)も図5の曲線17
から求め、継続設定時間として入力しておく。そして、
制御装置6は、解凍動作中、缶壁外面が設定温度Tとな
るように誘導コイル3への投入電力Pを制御すると共
に、解凍中に一定の時間経過毎に、誘導コイル3への通
電を一定時間Δtだけ一時的に停止し、一定時間Δt経
過する間の温度降下量ΔTを検出し、それを予め入力し
ている判定基準値と対比する。そして、検出値が判定基
準値に達した場合(この時、残量が10%程度となって
いる)には、通電を再開した後、予め設定している継続
設定時間だけ通電を続け、その後、通電を終了する。こ
れにより、残量がほぼ5%の状態で通電を停止し、解凍
を終了でき、金属缶1内を目視等によって監視すること
なく、所定の解凍状態に達した時に自動的に解凍動作を
終了できる。ここで、判定基準値の設定に使用する許容
範囲並びに温度降下量を測定する時間間隔は、それぞれ
小さくする程、解凍終了時の氷結体残量を目的の5%に
近づけることができるので、所望の精度に応じて適宜設
定すればよい。また、温度降下量を測定する時間間隔
は、解凍期間中、常に一定とする必要はなく、例えば、
解凍初期には間隔を大きく設定し、温度降下量が判定基
準値に接近した時点で間隔を小さく変更してもよい。
Next, the above-mentioned temperature drop ΔT is measured,
A specific method for detecting the end of thawing from the measured value will be described. The thawing is completed when the remaining amount of frozen solids reaches 5%. A thawing experiment was performed in advance, and FIGS.
The curves 17 and 18 shown in FIG.
% Suitable tolerance in the amount of temperature drop [Delta] T 10 corresponding to (±
The value obtained by adding α) is input to the control device 6 shown in FIG. 1 as a determination reference value. The time t (for example, about one hour in the case of grapefruit juice) required for the remaining amount of frozen matter to decrease from 10% to 5% is also represented by curve 17 in FIG.
And input it as the continuation set time. And
The controller 6 controls the input power P to the induction coil 3 so that the outer surface of the can wall becomes the set temperature T during the thawing operation, and energizes the induction coil 3 every time a predetermined time elapses during the thawing. The temperature is temporarily stopped for a predetermined time Δt, and the temperature drop ΔT during the elapse of the predetermined time Δt is detected, and is compared with a previously input determination reference value. When the detected value reaches the determination reference value (at this time, the remaining amount is about 10%), after the energization is resumed, the energization is continued for a preset continuation set time, and thereafter, , End the energization. Thereby, the energization is stopped when the remaining amount is almost 5%, the thawing can be completed, and the thawing operation is automatically terminated when the predetermined thawing state is reached without monitoring the inside of the metal can 1 visually or the like. it can. Here, the smaller the allowable range used for setting the determination reference value and the time interval for measuring the amount of temperature drop, the closer the remaining amount of frozen matter at the end of thawing can be to 5% of the target. May be set as appropriate according to the accuracy of. Also, the time interval for measuring the temperature drop amount does not need to be always constant during the thawing period, for example,
The interval may be set large at the beginning of thawing, and may be changed to a small interval when the temperature drop approaches the determination reference value.

【0025】なお、以上の操作において判定基準値とし
て、残量10%の温度降下量を採用したのは、解凍終了
の残量5%に近づいており且つ温度降下量の再現性が未
だ高いため(検出した温度降下量のばらつきが小さいた
め)であり、判定基準値の対象とする残量は必要に応じ
適宜変更可能である。また、温度検出位置を多くするこ
とで、残量5%での温度降下量のばらつきを小さくした
場合には、判定基準値として、残量5%に対する温度降
下量を採用し、検出した温度降下量がその判定基準値に
達した時点で直ちに、解凍を終了するようにしてもよ
い。
In the above operation, the reason why the temperature drop of 10% is adopted as the judgment reference value is that the remaining temperature after defrosting is close to 5% and the reproducibility of the temperature drop is still high. (Because the variation in the detected temperature drop is small), and the target remaining amount of the determination reference value can be appropriately changed as necessary. In addition, when the variation of the temperature drop amount at the remaining amount of 5% is reduced by increasing the temperature detection position, the temperature drop amount for the remaining amount of 5% is adopted as the determination reference value, and the detected temperature drop amount is used. Thawing may be terminated as soon as the amount reaches the criterion value.

【0026】上記した実施形態では、測定した温度降下
量が判定基準値(ΔT10±α)に達した時点を基にして
解凍終了時を判断しているが、解凍終了の判断方法はこ
れに限らず、適宜変更可能である。例えば、あらかじ
め、缶壁外面をあらかじめ定めた設定温度Tに制御しな
がら解凍する実験を行って、図5、図6に示すように、
温度降下量ΔTと解凍時間との関係(曲線17)、温度
降下量ΔTと氷結体2aの残量割合との関係(曲線1
8)を求め、更に、氷結体の残量割合と、その時の残量
割合が5%にまで低下するまでに要する必要通電時間と
の関係(図7の曲線19)も求め、得た特性曲線18、
19(図7)を図1に示す制御装置6に入力しておく。
そして、制御装置6は、解凍動作中、缶壁外面が設定温
度Tとなるように誘導コイル3への投入電力Pを制御す
ると共に、解凍中に一定の時間経過毎に、誘導コイル3
への通電を一定時間Δtだけ一時的に停止し、一定時間
Δt経過時点での温度降下量ΔTを検出し、それを予め
入力している特性曲線18と対比してゆく。そして、図
7に示すように、測定した温度降下量ΔTN が、残量1
0%に対する温度降下量ΔT10に接近した値(点P参
照)となり、次回の測定時にはその温度降下量ΔT10
りも低くなると推定された時に、その時の氷結体残量割
合CN を求め且つその氷結体残量割合CN に対する必要
通電時間を特性曲線19から求め(点Q参照)、その
後、求めた必要通電時間tN だけ通電を続け、通電を終
了する。これにより、残量がほぼ5%の状態で通電を停
止し、解凍を終了でき、金属缶1内を目視等によって監
視することなく、所定の解凍状態に達した時に自動的に
解凍動作を終了できる。
In the above embodiment, the end of thawing is determined based on the time when the measured temperature drop reaches the determination reference value (ΔT 10 ± α). The present invention is not limited thereto, and can be changed as appropriate. For example, an experiment was conducted in which thawing was performed while controlling the outer surface of the can wall to a predetermined set temperature T in advance, and as shown in FIGS. 5 and 6,
Relationship between the temperature drop ΔT and the thawing time (curve 17), and the relationship between the temperature drop ΔT and the remaining ratio of the frozen matter 2a (curve 1)
8), and the relationship between the remaining amount ratio of the frozen matter and the required energization time required until the remaining amount ratio at that time decreases to 5% (curve 19 in FIG. 7) is also obtained, and the obtained characteristic curve is obtained. 18,
19 (FIG. 7) is input to the control device 6 shown in FIG.
During the thawing operation, the control device 6 controls the input power P to the induction coil 3 so that the outer surface of the can wall is at the set temperature T.
Is temporarily stopped for a predetermined time Δt, and the temperature drop amount ΔT at the time when the predetermined time Δt has elapsed is detected and compared with the previously input characteristic curve 18. Then, as shown in FIG. 7, the measured temperature drop ΔT N
When the temperature drops to a value approaching the temperature drop amount ΔT 10 with respect to 0% (see point P) and is estimated to be lower than the temperature drop amount ΔT 10 at the next measurement, the frozen object remaining amount ratio C N at that time is obtained and The required energization time for the frozen solid remaining amount ratio C N is obtained from the characteristic curve 19 (see point Q), and thereafter the energization is continued for the determined required energization time t N and the energization is terminated. Thereby, the energization is stopped when the remaining amount is almost 5%, the thawing can be completed, and the thawing operation is automatically terminated when the predetermined thawing state is reached without monitoring the inside of the metal can 1 visually or the like. it can.

【0027】以上に温度降下量ΔTを用いて解凍終了時
を求める方法を説明したが、この温度降下量ΔTの測定
は解凍終了時の判断のために使用するのみならず、金属
缶1内の収容物2の異常判断にも使用可能である。すな
わち、金属缶1の外壁温度を所定の設定温度Tに保つよ
うに制御しながら誘導加熱して解凍した場合、図5で説
明したように、温度降下量ΔTは、一定の温度降下量に
達した時点からカウントした解凍時間に対して一定の関
係がある。従って、あらかじめ解凍実験を行って、図8
に示す温度降下量ΔTと経過時間との関係を示す特性曲
線17Aを求めておくと、もし、解凍時の特性がこの特
性曲線17Aを外れていると、缶内の収容物に異常があ
る(例えば、濃度が異なる)と判断できる。本発明はこ
の原理を用いた異常の判断方法も提供する。すなわち、
本発明の異常の判断方法は、適当な時間間隔で温度降下
量ΔTを検出し、その検出値を、予め実験等で求めてお
いた特性曲線17Aに対比し、その特性からのずれが異
常に大きい場合に内容物異常と判断するものである。
The method of determining the end of thawing using the temperature drop ΔT has been described above. The measurement of the temperature drop ΔT is used not only for determining the end of thawing, but also in the metal can 1. It can also be used to determine the abnormality of the contents 2. That is, when induction heating and thawing are performed while controlling the outer wall temperature of the metal can 1 at a predetermined set temperature T, the temperature drop ΔT reaches a certain temperature drop as described with reference to FIG. There is a certain relationship with the thawing time counted from the point of time. Therefore, a thawing experiment was performed in advance, and FIG.
If a characteristic curve 17A indicating the relationship between the temperature drop amount ΔT and the elapsed time is obtained, if the characteristic at the time of thawing deviates from the characteristic curve 17A, there is an abnormality in the contents in the can ( For example, the density is different). The present invention also provides a method for determining an abnormality using this principle. That is,
In the method of determining an abnormality according to the present invention, the temperature drop amount ΔT is detected at an appropriate time interval, and the detected value is compared with a characteristic curve 17A obtained in advance by an experiment or the like. If it is larger, it is determined that the content is abnormal.

【0028】更に具体的には、解凍中の適当な時点で、
通電を一時的に止めて温度降下量ΔTを測定し、その測
定値を図8の特性曲線17A上にプロットし(例えば、
図8のA点)、次に、一定時間tM 経過後に通電を再び
一時的に止めて温度降下量ΔTを測定し、その測定値
(例えば、図8のB点)と特性曲線17Aとの偏位を検
出する。そして、この変位が異常に大きい場合に、内容
物異常と判断する。解凍中にこのような異常検出操作を
1回或いは複数回行うことで、金属缶1を開くことな
く、収容物異常を検出できる。
More specifically, at an appropriate point during thawing,
The energization is temporarily stopped, the temperature drop ΔT is measured, and the measured value is plotted on the characteristic curve 17A of FIG. 8 (for example,
(Point A in FIG. 8) Then, after a lapse of a certain time t M , the energization is temporarily stopped again to measure the temperature drop ΔT, and the measured value (for example, point B in FIG. 8) and the characteristic curve 17A are compared. Detect deviation. If the displacement is abnormally large, it is determined that the content is abnormal. By performing such an abnormality detection operation once or a plurality of times during thawing, it is possible to detect a contained abnormality without opening the metal can 1.

【0029】以上の実施形態では、金属缶1の缶壁外面
温度を一定の設定温度Tに保って解凍を行う場合につい
て求めた図4〜図8に示す特性曲線を用いて解凍終了時
期判断並びに異常検出を行っている。ところで、これら
の特性は収容物によって異なるものであるが、本発明者
等が確認したところ、収容物の種類に関係なく収容物の
Brix値(糖度=可溶性固形分)に大きく依存してい
ることが判明した。従って、これらの特性を、複数のB
rix値についてあらかじめ求めておけば、種々な収容
物に対応できる。一般に、金属缶1の収容物について
は、内容物の名称のみならず、Brix値が表示されて
いるので、解凍に際しては、そのBrix値に対応する
特性を利用することで、上記した方法を直ちに実施でき
る。
In the above-described embodiment, the thawing completion timing is determined using the characteristic curves shown in FIGS. 4 to 8 obtained when thawing is performed while maintaining the outer wall surface temperature of the metal can 1 at a fixed set temperature T, and Error detection is being performed. By the way, these characteristics vary depending on the contents, but the present inventors have confirmed that the properties greatly depend on the Brix value (sugar content = soluble solids) of the contents regardless of the type of the contents. There was found. Therefore, these characteristics can be
If the rix value is determined in advance, it is possible to deal with various items. Generally, not only the name of the contents but also the Brix value are displayed for the contents of the metal can 1, so that upon thawing, the above-described method can be performed immediately by utilizing the characteristics corresponding to the Brix value. Can be implemented.

【0030】以上に説明した諸実施形態では、金属缶1
の外周のほぼ全体に一本のらせん状の誘導コイル3を配
置して解凍を行っているが、必要に応じ複数の誘導コイ
ルを用いることも可能であり、図9はその場合の実施の
形態を示している。この実施の形態では、二本のらせん
状の誘導コイル3A、3Bが金属缶1の外周に、上下に
分けて配置されており、それぞれに電源装置4A、4B
が接続されている。この実施の形態では、解凍初期には
両誘導コイル3A、3Bに通電して解凍を行い、氷結体
2aが小さくなり、金属缶1の上方部分に浮かんだ状態
となった時には、下部の誘導コイル3Bの通電を停止
し、上部の誘導コイル3Aのみで解凍を行う。これによ
り、液体2bの余計な加熱を回避し、液温上昇を抑える
と共にエネルギーロスを削減できる。更に、解凍に使用
する誘導コイルは、図1或いは図9に示すような、金属
缶1の周囲を取り囲む形態のらせん状或いはリング状の
ものに限らず、図10(a)に示すように、金属缶1の
軸線方向に延びる複数のコイル3Cを金属缶1を取り囲
むように配置した形態とするとか、図10(b)に示す
ように、円弧状のコイル3Dを金属缶1を取り囲むよう
に、且つ軸線方向に多段に配置した形態とするとか、種
々変更可能である。
In the embodiments described above, the metal can 1
One helical induction coil 3 is arranged and thawing is performed on almost the entire outer periphery of, but a plurality of induction coils can be used if necessary. FIG. 9 shows an embodiment in that case. Is shown. In this embodiment, two helical induction coils 3A and 3B are arranged vertically on the outer periphery of the metal can 1, and are respectively provided with power supply devices 4A and 4B.
Is connected. In this embodiment, in the initial stage of thawing, both the induction coils 3A and 3B are energized to perform thawing, and when the frozen body 2a becomes small and floats above the metal can 1, the lower induction coil The energization of 3B is stopped, and thawing is performed only with the upper induction coil 3A. Thereby, unnecessary heating of the liquid 2b can be avoided, the rise in liquid temperature can be suppressed, and energy loss can be reduced. Further, the induction coil used for thawing is not limited to a spiral or ring-shaped one surrounding the periphery of the metal can 1 as shown in FIG. 1 or FIG. 9, but as shown in FIG. A plurality of coils 3C extending in the axial direction of the metal can 1 may be arranged so as to surround the metal can 1, or an arc-shaped coil 3D may be formed so as to surround the metal can 1 as shown in FIG. In addition, various arrangements are possible, such as a configuration in which the members are arranged in multiple stages in the axial direction.

【0031】次に、本発明方法の実施に使用するのに好
適な誘導コイル組立体を説明する。図11は誘導コイル
組立体の1実施形態を示すものである。誘導コイル組立
体20は、金属缶1を取り囲むサイズのらせん状に形成
された可撓性の誘導コイル21と、該らせん状の誘導コ
イル21が伸縮することは許容するが、最も伸ばした時
に前記らせんのピッチが前記金属缶1を加熱するのに適
した値となるように拘束するコイル保持手段22と、該
コイル保持手段22の一端に設けられ、金属缶1に取り
付けるためのフック等の取付具23と、反対端に設けら
れたマグネット24等を有している。
Next, an induction coil assembly suitable for use in carrying out the method of the present invention will be described. FIG. 11 shows one embodiment of the induction coil assembly. The induction coil assembly 20 includes a flexible induction coil 21 formed in a helical shape having a size surrounding the metal can 1, and the helical induction coil 21 is allowed to expand and contract. A coil holding means 22 for restraining the spiral pitch to a value suitable for heating the metal can 1, and a hook or the like provided at one end of the coil holding means 22 for attaching to the metal can 1 Tool 23 and a magnet 24 and the like provided at the opposite end.

【0032】可撓性の誘導コイル21としては、可撓性
を有する任意の導体、例えば、銅線を使用できるが、特
に、多数の絶縁材コーティング銅線(例えばエナメル銅
線)を撚り合わせ、全体を絶縁性チューブで覆った構成
のリッツ線を用いることが好ましい。このリッツ線は多
数の銅線を撚り合わせた構成であるので可撓性が大き
く、また各銅線が互いに絶縁されているので、電流は各
銅線に均等に流れ、表皮側に集中することもない。この
ため、高周波通電時にも大電流を流すことができ、更に
全体が絶縁性チューブで覆われているので金属缶1に接
触してもショートすることがなく安全である等の利点を
有している。上記可撓性の誘導コイル21として、この
他、銅製などの導電性の薄手のストリップ(帯板)も、
放熱が良いため自身が過熱されることがなく、また、広
い面積を有するため均一加熱が可能である等の利点を有
しているので好適である。このストリップにも絶縁コー
ティングを施しておくことが好ましい。コイル保持手段
22としては、筒状に形成した布状物、網状物等を挙げ
ることができ、その布状物、網状物等に対して誘導コイ
ル21を縫い付けるとか縛りつける等の方法によって取
り付けておけばよい。また、この代わりに、誘導コイル
21を円周方向の複数箇所で、例えば、らせんの中心軸
線に平行方向にひも、糸、テープ等で一定ピッチとなる
ように連結した構成としてもよい。これらの構成のコイ
ル保持手段22を用いると、軽量で且つ柔らかいので、
取り扱い易いという利点が得られる。筒状の布状物の上
端を封じれば、冬期などにも放熱損失を僅少に維持でき
る。
As the flexible induction coil 21, any conductor having flexibility, for example, a copper wire can be used. In particular, a large number of insulating-coated copper wires (for example, enameled copper wires) are twisted, It is preferable to use a litz wire whose entire structure is covered with an insulating tube. This litz wire is constructed by twisting a large number of copper wires, so it has high flexibility.In addition, since each copper wire is insulated from each other, the current flows evenly to each copper wire and concentrates on the skin side. Nor. For this reason, a large current can flow even when high-frequency power is supplied, and furthermore, since the whole is covered with the insulating tube, even if it comes into contact with the metal can 1, there is an advantage that there is no short circuit and it is safe. I have. In addition, as the flexible induction coil 21, a conductive thin strip (strip) made of copper or the like is also used.
This is preferable because it has advantages such as good heat dissipation, so that it does not overheat itself, and has such a large area that uniform heating is possible. Preferably, the strip is also provided with an insulating coating. Examples of the coil holding means 22 include a cloth, a net, and the like formed in a cylindrical shape. The induction coil 21 is attached to the cloth, the net, or the like by a method such as sewing or binding. It is good. Alternatively, the induction coil 21 may be connected at a plurality of positions in the circumferential direction, for example, in a direction parallel to the central axis of the helix with a string, a thread, a tape, or the like so as to have a constant pitch. When the coil holding means 22 having such a configuration is used, it is lightweight and soft.
The advantage of easy handling is obtained. If the upper end of the tubular cloth is sealed, the heat radiation loss can be kept small even in winter or the like.

【0033】上記構成の誘導コイル組立体20は、保管
時には図11(c)に示すように、全体を短く縮ませて
おくことで保管スペースを小さくでき、且つ容易に持ち
運ぶことができる。そして、使用時には、適当な位置に
置かれている金属缶1の上に誘導コイル組立体20を運
んでゆき、その上からかぶせ、図11(a)、(b)に
示すように、上端の取付具23を金属缶1の上端外周に
取り付け、下端を引っ張って、誘導コイル21のらせん
のピッチが加熱に適した長さとなるようにし、下端のマ
グネット24を金属缶1の外周面に吸着させる。これに
より、簡単に金属缶1の外周にらせん状の誘導コイル2
1を所定ピッチで配置することができ、上記した解凍動
作に使用できる。なお、マグネット24の代わりに適当
な重りを付けることで誘導コイル21を所定のピッチに
引き伸ばす構成としてもよい。また、誘導コイル21を
自重のみで所定のピッチに引き伸ばすことができる場合
には、マグネット24や重りは省略してもよい。
As shown in FIG. 11 (c), the induction coil assembly 20 having the above-described structure can be reduced in storage space by shortening the entire length as shown in FIG. 11 (c), and can be easily carried. Then, in use, the induction coil assembly 20 is carried over the metal can 1 placed at an appropriate position, and is placed over the metal can 1, and as shown in FIGS. The attachment 23 is attached to the outer periphery of the upper end of the metal can 1 and the lower end is pulled so that the spiral pitch of the induction coil 21 becomes a length suitable for heating, and the lower end magnet 24 is attracted to the outer peripheral surface of the metal can 1. . Thus, the spiral induction coil 2 can be easily formed on the outer periphery of the metal can 1.
1 can be arranged at a predetermined pitch, and can be used for the above-described thawing operation. The induction coil 21 may be stretched to a predetermined pitch by attaching an appropriate weight instead of the magnet 24. When the induction coil 21 can be stretched to a predetermined pitch only by its own weight, the magnet 24 and the weight may be omitted.

【0034】[0034]

【実施例】次に、200リットルドラム缶に収容した柑
橘果汁の解凍を実際に行い、且つその時のドラム缶の各
部の温度を測定したので、その結果を示す。図12は使
用したドラム缶31及びそのドラム缶31に対して取り
付けた誘導コイル33及び温度検出端(熱電対)35a
〜35fの配置状況等を示す概略断面図である。誘導コ
イル33は一本のらせん状のものである。温度検出端3
5a〜35dはドラム缶31の外面に取り付け、上から
二番目の温度検出端35cを誘導コイル投入電力制御用
に使用した。また、温度検出端35e、35fはドラム
缶31内の果汁を収容したプラスチック袋の内面に取り
付け、果汁温度を測定するようにした。
EXAMPLE Next, citrus juice contained in a 200-liter drum can was actually thawed, and the temperature of each part of the drum at that time was measured. The results are shown below. FIG. 12 shows a drum 31 used, an induction coil 33 attached to the drum 31 and a temperature detecting end (thermocouple) 35a.
It is a schematic sectional drawing which shows the arrangement | positioning state etc. of 35f. The induction coil 33 has a single spiral shape. Temperature detection end 3
5a to 35d were attached to the outer surface of the drum 31 and the second temperature detection terminal 35c from the top was used for controlling the power supplied to the induction coil. The temperature detecting ends 35e and 35f were attached to the inner surface of a plastic bag containing the juice in the drum 31 to measure the temperature of the juice.

【0035】この条件で、温度検出端35cでの検出位
置の温度が25°Cになるように制御を行って解凍を行
ったところ、解凍開始より15時間経過後に氷結体残量
が5%に達したので、解凍を終了した。この解凍動作時
における各部の温度変化を図13のグラフに示す。な
お、図13の曲線に付した符号は、対応する温度検出端
を示している。図13より分かるように、解凍開始より
1時間程度経過後に、温度検出端35cの取付位置の缶
壁温度が25°C程度に上昇し、その後はその温度に保
持されて内部の果汁に対する加熱が行われており、これ
によって比較的短期間で解凍が進んでいた。また、加熱
時の缶壁温度は位置によって異なっているが、温度検出
端35cの取り付け位置が最も温度が高くなっているの
で、この位置の温度を制御することで、内部の液温の上
限を抑制できることが確認できた。更に、温度検出端3
5e、35fによって測定した果汁温度は、最高が15
°C程度であり、果汁の品質低下をもたらすものではな
かった。
Under these conditions, thawing was performed by controlling the temperature at the detection position at the temperature detecting end 35c to 25 ° C., and after 15 hours from the start of thawing, the amount of frozen solids was reduced to 5%. Decompression was completed because it reached. FIG. 13 is a graph showing the temperature change of each part during the thawing operation. In addition, the code | symbol attached to the curve of FIG. 13 has shown the corresponding temperature detection end. As can be seen from FIG. 13, about one hour after the start of thawing, the temperature of the can wall at the mounting position of the temperature detecting end 35c rises to about 25 ° C., and thereafter, the temperature is maintained and the heating of the juice inside is started. Thawing, which resulted in thawing progressing in a relatively short period of time. The temperature of the can wall at the time of heating varies depending on the position. However, since the temperature is highest at the position where the temperature detecting end 35c is attached, the upper limit of the internal liquid temperature is controlled by controlling the temperature at this position. It was confirmed that it could be suppressed. Further, the temperature detecting end 3
The juice temperature measured by 5e and 35f was 15
° C, which did not cause a decrease in fruit juice quality.

【0036】〔比較例〕実施例で解凍したものと同じド
ラム缶を約25°Cに保持された室内に放置し、自然解
凍を行った。この時も、図12に示すものと同じ場所の
温度を測定した。その結果を図14のグラフに示す。な
お、缶壁温度は測定場所による差はあまり見られなかっ
たので、温度検出端35b、35cの測定値のみをグラ
フに示した。図14に示すように、室温放置の場合には
缶壁温度は極めてゆっくりと上昇しており、且つ果汁温
度との差もあまり見られない。このため、加熱速度がき
わめて遅い。その結果、氷結体残量が5%に達する解凍
終了までに、約100時間を費やしていた。
[Comparative Example] The same drum can thawed in the example was left in a room maintained at about 25 ° C, and spontaneously thawed. At this time, the temperature at the same place as that shown in FIG. 12 was measured. The results are shown in the graph of FIG. In addition, since the can wall temperature did not significantly differ depending on the measurement location, only the measured values at the temperature detection ends 35b and 35c are shown in the graph. As shown in FIG. 14, when left at room temperature, the can wall temperature rises very slowly, and the difference from the juice temperature is hardly observed. For this reason, the heating rate is extremely slow. As a result, it took about 100 hours to finish thawing when the amount of frozen solids reached 5%.

【0037】[0037]

【発明の効果】以上のように本発明の加熱方法は、誘導
コイルで金属缶を発熱させ、収容物を加熱する構成であ
るので、室温放置する場合や、低い湯温を用いた湯煎法
に比べて短時間で加熱でき、加熱のための広い専用スぺ
ースを必要とせず且つ工程管理が容易となる。また、金
属缶の温度を制御して所定温度以下に保持することで、
収容物の加熱温度を所定値以下に保持でき、収容物の品
質低下を招くことがない。更に、誘導加熱に使用する誘
導コイル及びその電源装置は、湯煎法を実施するための
装置に比べてイニシャルコストが低く、またランニング
コストも低く、従って本発明方法は湯煎法に比べて経済
的である。かくして、本発明の加熱方法は、金属缶内収
容物の取り扱い性を良くするための加熱、例えば、氷結
状態で収容されている果汁、スープ、コーヒーエキス等
の固形状の収容物の解凍や、ラード、ゼラチン、ゼリー
などの固形状の流動体の加熱、流動化等に用いるのにき
わめて好適である。
As described above, the heating method of the present invention has a configuration in which the metal can is heated by the induction coil and the contents are heated. Heating can be performed in a shorter time than in the above case, and a wide dedicated space for heating is not required, and process control is facilitated. Also, by controlling the temperature of the metal can and keeping it below a predetermined temperature,
The heating temperature of the stored item can be kept below a predetermined value, and the quality of the stored item does not deteriorate. Furthermore, the induction coil used for induction heating and its power supply device have lower initial costs and lower running costs than the device for performing the hot water decoction method, and therefore the method of the present invention is more economical than the hot water decoction method. is there. Thus, the heating method of the present invention is heating to improve the handleability of the contents in the metal can, for example, thawing of solid contents such as fruit juice, soup, and coffee extract stored in a frozen state, It is very suitable for use in heating and fluidizing solid fluids such as lard, gelatin and jelly.

【0038】また、前記金属缶の外面温度をあらかじめ
定めた設定温度に維持するように前記誘導コイルに投入
する電力を制御し、その電力値によって内部の収容物の
加熱状態、例えば解凍状態を推定し、加熱終了時点を判
断する構成とすることで、作業者による目視による監視
を行うことなく、金属缶内の状態、例えば、解凍時に所
定割合の氷結体が残った状態を識別して解凍終了を行う
ことができ、無人運転が可能となる。
Further, the power supplied to the induction coil is controlled so as to maintain the outer surface temperature of the metal can at a predetermined set temperature, and the heating state of the internal container, for example, the thawing state, is estimated based on the power value. By judging the end time of heating, the state in the metal can, for example, the state in which a predetermined percentage of frozen matter remains at the time of thawing, and the thawing is ended without visual monitoring by the operator. And unmanned driving becomes possible.

【0039】また、前記金属缶の外面温度をあらかじめ
定めた設定温度に維持するように前記誘導コイルに投入
する電力を制御して通電を行い、その途中に一時的に通
電を止めて缶壁外面の温度降下に関連したファクターを
測定し、その測定値によって内部の加熱状態を推定し、
加熱終了時点を判断する構成とすることでも、作業者に
よる目視による監視を行うことなく、金属缶内の状態、
例えば、解凍時に所定割合の氷結体が残った状態を識別
して解凍終了を行うことができ、無人運転が可能とな
る。
Further, the power supplied to the induction coil is controlled so as to maintain the outer surface temperature of the metal can at a predetermined set temperature, and energization is performed. Measure the factors related to the temperature drop of the temperature, estimate the internal heating state by the measured value,
Even when the heating end point is determined, the state inside the metal can, without visual monitoring by the operator,
For example, it is possible to identify a state in which a predetermined percentage of frozen matter remains at the time of thawing and to end thawing, thereby enabling unmanned operation.

【0040】また、前記金属缶の外面温度をあらかじめ
定めた設定温度に維持するように前記誘導コイルに投入
する電力を制御して通電を行い、その途中に一時的に通
電を止めて缶壁外面の温度降下に関連したファクターを
測定する動作を、間隔をあけて複数回繰り返し、得られ
た複数の測定値から収容物の異常を検出する構成とする
ことで、金属缶内の収容物を直接検査することなく濃度
異常等の異常を検出することができる。
Further, the power supplied to the induction coil is controlled so as to maintain the outer surface temperature of the metal can at a predetermined set temperature, and energization is performed. The operation of measuring the factor related to the temperature drop of the metal can is repeated several times at intervals, and the abnormality of the container is detected from the obtained multiple measured values, so that the container in the metal can can be directly Abnormalities such as concentration abnormalities can be detected without inspection.

【0041】本発明の誘導コイル組立体は、可撓性の誘
導コイルを伸縮可能となるようにコイル保持手段に保持
させ、且つそのコイル保持手段に金属缶に取り付けるた
めの取付具を設けた構成であるので、保管時には全体を
短く縮ませておくことで保管スペースを小さくでき、使
用時には、適当な位置に置かれている金属缶に誘導コイ
ル組立体をかぶせ、取付具を利用してその金属缶に保持
させることで簡単に金属缶の外周に誘導コイルを取り付
けることができ、簡単な作業で且つ場所を選ばず金属缶
に収容された内容物の加熱、例えば氷結体の解凍などを
行うことができる。
The induction coil assembly of the present invention has a structure in which a flexible induction coil is held by a coil holding means so as to be extendable and contractable, and the coil holding means is provided with a fixture for attaching to a metal can. Therefore, the storage space can be reduced by shortening and shortening the whole at the time of storage, and at the time of use, cover the induction coil assembly on a metal can placed at an appropriate position and use the mounting fixture to The induction coil can be easily attached to the outer circumference of the metal can by holding it in the can, and the heating of the contents contained in the metal can, such as thawing of frozen solids, can be performed easily and at any location. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すもので、(a)は金
属缶に誘導コイルを取り付け、解凍を開始する前の状態
を示す概略断面図、(b)は解凍終了時の状態を示す概
略断面図
1A and 1B show an embodiment of the present invention, in which FIG. 1A is a schematic sectional view showing a state before starting thawing with an induction coil attached to a metal can, and FIG. Schematic sectional view shown

【図2】解凍中における缶壁及びその近傍内部の温度分
布を説明するグラフ
FIG. 2 is a graph for explaining a temperature distribution inside a can wall and its vicinity during thawing.

【図3】解凍中における缶壁温度と投入電力の経時変化
を示すグラフ
FIG. 3 is a graph showing temporal changes in can wall temperature and input power during thawing.

【図4】一時的な通電停止を適当な間隔で繰り返しなが
ら解凍を行う時の、缶壁外面温度の経時変化を示すグラ
FIG. 4 is a graph showing a change with time of the outer surface temperature of a can wall when thawing is performed while repeatedly stopping power supply temporarily at appropriate intervals.

【図5】一時的な通電停止を適当な間隔で繰り返しなが
ら解凍を行う時の、温度降下量と解凍時間との関係を示
すグラフ
FIG. 5 is a graph showing the relationship between the amount of temperature drop and the thawing time when thawing is performed while temporarily stopping power supply at appropriate intervals.

【図6】一時的な通電停止を適当な間隔で繰り返しなが
ら解凍を行う時の、温度降下量と氷結体残量割合との関
係を示すグラフ
FIG. 6 is a graph showing the relationship between the amount of temperature drop and the ratio of the amount of frozen solid when thawing is performed while temporarily stopping power supply at appropriate intervals.

【図7】一時的な通電停止を適当な間隔で繰り返しなが
ら解凍を行う時の、温度降下量と氷結体残量割合との関
係、及び氷結体残量割合の必要通電時間との関係を示す
グラフ
FIG. 7 shows the relationship between the amount of temperature drop and the remaining amount of frozen matter and the relationship between the remaining amount of frozen matter and the required energization time when thawing is performed while temporarily stopping power supply at appropriate intervals. Graph

【図8】一時的な通電停止を適当な間隔で繰り返しなが
ら解凍を行う時の、温度降下量と解凍時間との関係を示
すグラフ
FIG. 8 is a graph showing the relationship between the amount of temperature drop and the thawing time when thawing is performed while temporarily stopping power supply at appropriate intervals.

【図9】本発明の他の実施形態を示す概略断面図FIG. 9 is a schematic sectional view showing another embodiment of the present invention.

【図10】(a)、(b)はそれぞれ本発明の更に他の
実施形態を示す概略斜視図
FIGS. 10A and 10B are schematic perspective views showing still another embodiment of the present invention.

【図11】(a)は金属缶に誘導コイル組立体を取り付
けた状態を示す概略断面図 (b)はその概略側面図 (c)は金属缶に誘導コイル組立体を取り付ける前の状
態を示す概略断面図
11A is a schematic sectional view showing a state where an induction coil assembly is attached to a metal can. FIG. 11B is a schematic side view thereof. FIG. 11C is a state before attaching the induction coil assembly to the metal can. Schematic sectional view

【図12】ドラム缶内の氷結した果汁を実際に解凍した
実施例における誘導コイル、温度検出端の配置状況を示
す概略断面図
FIG. 12 is a schematic cross-sectional view showing an arrangement state of an induction coil and a temperature detecting end in an embodiment in which frozen fruit juice in a drum can is actually thawed.

【図13】図12に示す状態で解凍した時の各部の温度
変化を示すグラフ
FIG. 13 is a graph showing a temperature change of each part when thawing in the state shown in FIG. 12;

【図14】図12に示すドラム缶を室温放置した時の各
部の温度変化を示すグラフ
FIG. 14 is a graph showing a temperature change of each part when the drum shown in FIG. 12 is left at room temperature.

【符号の説明】[Explanation of symbols]

1 金属缶 1a 缶壁 2a 氷結体 2b 液体 3 誘導コイル 4 電源装置 5 温度検出端 6 制御装置 20 誘導コイル組立体 21 誘導コイル 22 コイル保持手段 23 取付具 24 マグネット 31 ドラム缶 33 誘導コイル 35a〜35f 温度検出端 DESCRIPTION OF SYMBOLS 1 Metal can 1a Can wall 2a Iced body 2b Liquid 3 Induction coil 4 Power supply device 5 Temperature detecting end 6 Control device 20 Induction coil assembly 21 Induction coil 22 Coil holding means 23 Mounting tool 24 Magnet 31 Drum can 33 Induction coil 35a to 35f Temperature Detection end

フロントページの続き (72)発明者 平松 良政 神奈川県川崎市川崎区殿町2丁目17番8号 第一高周波工業株式会社技術部内 (72)発明者 佐伯 忍 神奈川県川崎市川崎区殿町2丁目17番8号 第一高周波工業株式会社技術部内 (72)発明者 松元 信也 大阪府三島郡島本町山崎5丁目2番5号 サントリー株式会社技術開発センター内 (72)発明者 佐伯 雄史 大阪府三島郡島本町山崎5丁目2番5号 サントリー株式会社技術開発センター内 (72)発明者 紀村 益男 大阪府三島郡島本町若山台1丁目1番1号 サントリー株式会社研究センター内Continuation of the front page (72) Inventor Yoshimasa Hiramatsu 2-17-8 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Within the Technical Department of Dai-ichi High Frequency Industry Co., Ltd. No. 8 Daiichi High Frequency Industrial Co., Ltd. Engineering Department (72) Inventor Shinya Matsumoto 5-2-5 Yamazaki, Shimamoto-cho, Mishima-gun, Osaka Prefecture Inside of Suntory Limited Technology Development Center (72) Inventor, Yuji Saeki Shimamoto-cho, Mishima-gun, Osaka 5-2-5 Yamazaki, Suntory Limited Technology Development Center (72) Inventor Masio Kimura 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka Pref.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 物を、保管、運搬等のために収容した金
属缶を取り囲むように誘導コイルを配置し、該誘導コイ
ルに通電して金属缶を発熱させ、該金属缶内の収容物を
加熱することを特徴とする金属缶内収容物の加熱方法。
1. An induction coil is arranged so as to surround a metal can that stores an object for storage, transportation, and the like, and the induction coil is energized to generate heat so that the object in the metal can is heated. A method for heating an object contained in a metal can, characterized by heating.
【請求項2】 前記加熱が金属缶内収容物の取り扱い性
を良くするための加熱であることを特徴とする請求項1
記載の金属缶内収容物の加熱方法。
2. The heating according to claim 1, wherein the heating is for improving the handleability of the contents in the metal can.
The method for heating the content in the metal can as described in the above.
【請求項3】 融解可能な又は加熱により流動性が向上
する固形状の物を、保管、運搬等のために収容した金属
缶を取り囲むように誘導コイルを配置し、該誘導コイル
に通電して金属缶を発熱させ、該金属缶内の収容物を加
熱して融解或いは流動化させることを特徴とする金属缶
内収容物の加熱方法。
3. An induction coil is arranged so as to surround a metal can containing a solid material that can be melted or whose fluidity is improved by heating for storage, transportation, etc., and energizes the induction coil. A method for heating an object contained in a metal can, comprising: causing a metal can to generate heat; and heating or melting or fluidizing the object contained in the metal can.
【請求項4】 前記金属缶の外面温度をあらかじめ定め
た設定温度に維持するように前記誘導コイルに投入する
電力を制御し、その電力値によって内部の加熱状態を推
定し、加熱終了時点を判断することを特徴とする請求項
1から3のいずれか1項記載の金属缶内収容物の加熱方
法。
4. An electric power to be supplied to the induction coil is controlled so as to maintain an outer surface temperature of the metal can at a predetermined set temperature, an internal heating state is estimated based on the electric power value, and a heating end point is determined. The method for heating an object contained in a metal can according to any one of claims 1 to 3, wherein:
【請求項5】 前記金属缶の外面温度をあらかじめ定め
た設定温度に維持するように前記誘導コイルに投入する
電力を制御して通電を行い、その途中に一時的に通電を
止めて缶壁外面の温度降下に関連するファクターを測定
し、その測定値によって内部の加熱状態を推定し、加熱
終了時点を判断することを特徴とする請求項1から3の
いずれか1項記載の金属缶内収容物の加熱方法。
5. An energization is performed by controlling electric power supplied to the induction coil so as to maintain the outer surface temperature of the metal can at a predetermined set temperature, and the energization is temporarily stopped during the energization to control the outer surface of the can wall. 4. A container according to any one of claims 1 to 3, wherein a factor related to a temperature drop of the metal can is measured, an internal heating state is estimated based on the measured value, and a time point of completion of the heating is determined. How to heat things.
【請求項6】 前記金属缶の外面温度をあらかじめ定め
た設定温度に維持するように前記誘導コイルに投入する
電力を制御して通電を行い、その途中に一時的に通電を
止めて缶壁外面の温度降下に関連するファクターを測定
する動作を、間隔をあけて複数回繰り返し、複数の測定
値から収容物の異常を検出することを特徴とする請求項
1から3のいずれか1項記載の金属缶内収容物の加熱方
法。
6. The power supply to the induction coil is controlled so as to maintain the outer surface temperature of the metal can at a predetermined set temperature, and energization is performed. The operation of measuring a factor related to the temperature drop of the object is repeated a plurality of times at intervals, and an abnormality of the stored object is detected from a plurality of measured values, The method according to any one of claims 1 to 3, wherein How to heat the contents in the metal can.
【請求項7】 加熱すべき物を収容した金属缶を取り囲
むサイズのらせん状に形成された可撓性の誘導コイル
と、該らせん状の誘導コイルが伸縮することは許容する
が、最も伸ばした時に前記らせんのピッチが前記金属缶
を加熱するのに適した値となるように拘束するコイル保
持手段と、該コイル保持手段を金属缶に取り付けるため
の取付具を有する誘導コイル組立体。
7. A helically formed flexible induction coil having a size surrounding a metal can containing a material to be heated, and the helical induction coil is allowed to expand and contract, but is extended most. An induction coil assembly comprising: coil holding means for restricting the spiral pitch to a value suitable for heating the metal can at times, and a fixture for attaching the coil holding means to the metal can.
【請求項8】 前記誘導コイルが、多数の絶縁材コーテ
ィング銅線を撚り合わせ、全体を絶縁性チューブで覆っ
た構成のリッツ線、または導電性のストリップで構成さ
れていることを特徴とする請求項7記載の誘導コイル組
立体。
8. The method according to claim 1, wherein the induction coil comprises a litz wire or a conductive strip in which a large number of insulating-coated copper wires are twisted and the whole is covered with an insulating tube. Item 8. The induction coil assembly according to Item 7.
【請求項9】 前記コイル保持手段が筒状に形成された
布状物又は網状物であることを特徴とする請求項7又は
8記載の誘導コイル組立体。
9. The induction coil assembly according to claim 7, wherein the coil holding means is a cloth or a net formed in a cylindrical shape.
JP15443599A 1998-06-03 1999-06-02 Method for heating contents in metal can and induction coil assembly Expired - Fee Related JP4097359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15443599A JP4097359B2 (en) 1998-06-03 1999-06-02 Method for heating contents in metal can and induction coil assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17057198 1998-06-03
JP10-170571 1998-06-03
JP15443599A JP4097359B2 (en) 1998-06-03 1999-06-02 Method for heating contents in metal can and induction coil assembly

Publications (2)

Publication Number Publication Date
JP2000058244A true JP2000058244A (en) 2000-02-25
JP4097359B2 JP4097359B2 (en) 2008-06-11

Family

ID=26482713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15443599A Expired - Fee Related JP4097359B2 (en) 1998-06-03 1999-06-02 Method for heating contents in metal can and induction coil assembly

Country Status (1)

Country Link
JP (1) JP4097359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164221A (en) * 2016-03-15 2017-09-21 国立大学法人富山大学 Ffp thawing apparatus
CN108168192A (en) * 2018-02-13 2018-06-15 长春中际互频科技有限公司 A kind of refrigerator IH defrosting rooms and a kind of refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164221A (en) * 2016-03-15 2017-09-21 国立大学法人富山大学 Ffp thawing apparatus
CN108168192A (en) * 2018-02-13 2018-06-15 长春中际互频科技有限公司 A kind of refrigerator IH defrosting rooms and a kind of refrigerator

Also Published As

Publication number Publication date
JP4097359B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
EP2709079B1 (en) Inductive heating device for beverage can
CN105725722B (en) Cooking machine and its receipts juice control method
BRPI0709315A2 (en) method for promoting a controlled heating profile, system for heating a workpiece, method for uniform resistance heating and apparatus for uniform resistance heating and apparatus for uniform resistance heating
JP2000058244A (en) Heating method for material contained in metal can and induction coil assembly
US11576408B2 (en) Ice processing system
EP0437499B1 (en) Method and apparatus for the pasteurization of a continuous line of products
CA1201488A (en) Method and apparatus for uniform induction heating of an elongated workpiece
JP3284409B2 (en) Decompression method and device
US4433226A (en) Method and apparatus for induction heating of an elongated workpiece
EP3621458B1 (en) Apparatus and method for heating frying oil with solid-state rf energy technology
JP2009230966A (en) Cooker
US11609041B2 (en) Cooling bath for cooling a liquid
US10278410B2 (en) Food container induction heating system having power based microbial lethality monitoring
JPH10307957A (en) Induction heating device for can drink
CN1329325C (en) Pipe sealing method and its apparatus
JP7201220B2 (en) Electric heating device for fluid food material and its control method
JP7312424B2 (en) Electric heating device and method for fluid food material
KR920005549B1 (en) System for applying thermal-cure materials
JP2004071295A (en) Method of heat treatment of superconducting wire rod, and heat treatment apparatus of superconducting wire rod
JPS5844188B2 (en) beverage chiller
JPS58153132A (en) Thermocouple temperature sensor for freezing
JP2001292754A (en) Method and apparatus for thawing food
JPH06182777A (en) High-frequency heating method
JP2019169253A (en) Heating apparatus
JP2006025735A (en) Frozen meat chunk thawing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees