JP2000058093A - Fuel cell layered body and method for detecting electrolyte supplying time - Google Patents

Fuel cell layered body and method for detecting electrolyte supplying time

Info

Publication number
JP2000058093A
JP2000058093A JP10221671A JP22167198A JP2000058093A JP 2000058093 A JP2000058093 A JP 2000058093A JP 10221671 A JP10221671 A JP 10221671A JP 22167198 A JP22167198 A JP 22167198A JP 2000058093 A JP2000058093 A JP 2000058093A
Authority
JP
Japan
Prior art keywords
electrolyte
cell
fuel cell
temperature
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10221671A
Other languages
Japanese (ja)
Inventor
Katsuya Okae
功弥 岡江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10221671A priority Critical patent/JP2000058093A/en
Publication of JP2000058093A publication Critical patent/JP2000058093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a battery at low cost, while detecting a shortage of the electrolyte with a simple structure and while facilitating the assembling of a fuel cell by providing a temperature sensor in the only unit cell positioned at a central part of at least any one of the cell blocks. SOLUTION: A temperature sensor 15a is provided in two block central unit cells 1A. Since these unit cells are laminated at a central part of a cell block 13, the distance from each cooling plate 12 is the longest, and the operation temperature becomes higher than that of other unit cell. Scattered quantity of the electrolyte from a unit cell becomes larger, higher the temperature becomes, and the change of the cell temperature of the block central unit cell 1A having the highest cell temperature with the lapse of time can be monitored. The shortage of the electrolyte can be surely, comprehended at an early time without providing a temperature sensor in all unit cells, and the electrolyte supplying time can be detected. The temperature detecting unit of the temperature sensor 15A to be provided is provided at a position, at which the electrolyte is scattered at the highest speed within the block central unit cell 1A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アノードとカソー
ド間に電解質を含浸させたマトリックスを有する燃料電
池に関し、特にマトリックスからの電解質飛散量のセル
温度依存性に着目して、電解質補給のタイミングを把握
し、燃料電池積層体の全ての単位セルにおける電解質不
足を予防し、その発電特性および寿命を向上するように
した燃料電池積層体及び電解質補給時期検知方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell having a matrix impregnated with an electrolyte between an anode and a cathode. In particular, the present invention focuses on the cell temperature dependence of the amount of electrolyte scattered from the matrix, and adjusts the timing of electrolyte replenishment. The present invention relates to a fuel cell stack and an electrolyte replenishment timing detecting method which grasps and prevents electrolyte shortage in all unit cells of the fuel cell stack, and improves the power generation characteristics and life thereof.

【0002】[0002]

【従来の技術】図4は、燃料電池の基本構成を示す要部
の分解斜視図である。図に見られるように、電解質を保
持した平板状のマトリックス2の一方の主面に燃料極3
を、もう一方の主面に酸化剤極4を密着して配して単位
セル1が形成されており、燃料極3の外面には、燃料ガ
ス流路7を備えたガス透過性の多孔質基材5が、また酸
化剤極4の外面には、酸化剤ガス流路8を備えたガス透
過性の多孔質基材6が配されている。この構成におい
て、燃料ガス流路7に高濃度の水素ガスを含む燃料ガス
を通流して燃料極3へ供給し、酸化剤ガス流路8に酸素
を含む酸化剤ガスを通流して酸化剤極4へ供給すれば、
電気化学反応により電気エネルギーが得られることとな
る。しかしながら、1個の単位セル1で得られる発電電
圧は1Vに満たない低い電圧であるため、複数の単位セ
ル1をセパレータ9を介在しながら積層して電気的に直
列接続とし、発生電圧を上げる方法が採られている。
2. Description of the Related Art FIG. 4 is an exploded perspective view of a main part showing a basic structure of a fuel cell. As shown in the figure, an anode 3 is provided on one main surface of a flat matrix 2 holding an electrolyte.
A unit cell 1 is formed by closely disposing an oxidant electrode 4 on the other main surface, and a gas-permeable porous member having a fuel gas flow path 7 is formed on the outer surface of the fuel electrode 3. A base material 5 and a gas-permeable porous base material 6 having an oxidant gas flow path 8 are arranged on the outer surface of the oxidant electrode 4. In this configuration, the fuel gas containing high-concentration hydrogen gas flows through the fuel gas flow path 7 and is supplied to the fuel electrode 3, and the oxidant gas containing oxygen flows through the oxidizing gas flow path 8 and the oxidant electrode If you supply to 4,
Electric energy is obtained by the electrochemical reaction. However, since the generated voltage obtained by one unit cell 1 is a low voltage of less than 1 V, a plurality of unit cells 1 are stacked with a separator 9 interposed therebetween so as to be electrically connected in series to increase the generated voltage. The method has been adopted.

【0003】図5に従来の燃料電池積層体を示す。単位
セル1を複数個積層したものをセルブロック13と呼
び、発電に伴う反応熱を除去する冷却板12を介してセ
ルブロック13を複数個積層して燃料電池積層体10が
形成されている。単位セル1の温度は、通常、冷却板1
2若しくは冷却管内に設けた温度センサー15の測定値
から推定されている。
FIG. 5 shows a conventional fuel cell stack. A stack of a plurality of unit cells 1 is called a cell block 13, and a fuel cell stack 10 is formed by stacking a plurality of cell blocks 13 via a cooling plate 12 that removes reaction heat accompanying power generation. The temperature of the unit cell 1 is usually
2 or is estimated from the measured value of the temperature sensor 15 provided in the cooling pipe.

【0004】上述のような構成の燃料電池積層体におい
ては、各単位セル1中の電解質は、燃料ガスおよび酸化
剤ガスの流れと共に徐々に飛散し、単位セル1中に存在
する量が減少していく。マトリックス2中の電解質の減
少は、燃料ガスと酸化剤ガスのガスシール性を低下さ
せ、直接反応によるセルの損傷を起こしてしまったり、
最悪の場合は爆発を生じることにもなりかねない。
In the fuel cell stack having the above-described structure, the electrolyte in each unit cell 1 gradually scatters with the flow of the fuel gas and the oxidizing gas, and the amount of the electrolyte present in the unit cell 1 decreases. To go. The decrease in the electrolyte in the matrix 2 lowers the gas sealing property between the fuel gas and the oxidizing gas, causing damage to the cell due to a direct reaction,
In the worst case, it could cause an explosion.

【0005】図6に単位セル1からの電解質飛散量とセ
ル温度との相関を示す。図6に示すように、電解質飛散
量はセル温度が高くなる程多くなる。燃料電池の負荷が
一定の場合は、セル温度と運転時間から電解質飛散量を
ある程度予測することが可能だが、通常燃料電池の運転
には様々な負荷変動が伴い、それに従って各単位セルの
温度も変化するため、確実に電解質補給時期を検知する
ことは困難であった。また、冷却板からの距離によって
各単位セルのセル温度に差があるので、図7に示すよう
に電解質飛散量は単位セル毎に異なり、従って、セルブ
ロック若しくは電池積層体全体の発電電圧が低下したと
きに電解質の補給を行う従来の方法では、電圧の低下を
検知して補給を行った時には既に最も飛散量の多い単位
セルにおいて、燃料ガスと酸化剤ガスの直接反応による
回復不能な電極の損傷が進行している場合が多かった。
FIG. 6 shows the correlation between the amount of electrolyte scattered from the unit cell 1 and the cell temperature. As shown in FIG. 6, the amount of scattered electrolyte increases as the cell temperature increases. When the load of the fuel cell is constant, it is possible to predict the amount of scattered electrolyte to some extent from the cell temperature and the operation time.However, the operation of the fuel cell usually involves various load fluctuations, and the temperature of each unit cell accordingly increases. Therefore, it was difficult to reliably detect the electrolyte supply time. Further, since the cell temperature of each unit cell varies depending on the distance from the cooling plate, the amount of scattered electrolyte differs for each unit cell as shown in FIG. 7, and therefore, the power generation voltage of the cell block or the entire battery stack decreases. In the conventional method of replenishing the electrolyte at the time of the replenishment, when the replenishment is performed by detecting the voltage drop, the unrecoverable electrode due to the direct reaction between the fuel gas and the oxidizing gas is applied to the unit cell already having the largest scattering amount. Damage was often in progress.

【0006】さらに、このような電極の損傷を防ぐた
め、早めに電解質補給を行うと、ある単位セルでは逆に
セル内の電解質が過剰な状態となり、このため、燃料ガ
スや酸化剤ガスの電極内における拡散性が低下し、セル
特性の低下を招くこともあった。このように、長期間に
わたる燃料電池の正常な発電のためには、適格な電解質
の補給時期の把握が必要不可欠である。
Further, if electrolyte is replenished at an early stage in order to prevent such damage to the electrodes, the electrolyte in the unit cell will be excessive in some unit cells, and consequently the fuel gas or oxidizing gas electrode In some cases, the diffusivity in the inside is reduced, and the cell characteristics may be reduced. As described above, for normal power generation of the fuel cell over a long period of time, it is indispensable to know the appropriate electrolyte supply time.

【0007】特開平5−251103号公報には、燃料
電池の電解質補給時期の監視方法として、各単位セルの
電極基板に設けられたガス流路となる溝部に、温度測定
端子例えば熱電対の端子を挿入しておき、各単位電池の
温度を監視することにより、間接的にマトリックス内の
電解質量を推定する方法が開示されている。すなわち、
電解質がある量以下に減少すると電解質層を通じて燃料
ガス又は酸化剤ガスが対極に漏洩するようになり、燃料
ガスと酸化剤ガスの直接反応によりセル温度が上昇し始
めるので、間接的にマトリックス内の電解質量を推定す
ることが可能であるというものである。
Japanese Patent Application Laid-Open No. Hei 5-251103 discloses a method for monitoring the electrolyte supply timing of a fuel cell, in which a temperature measuring terminal, for example, a thermocouple terminal is provided in a groove serving as a gas flow path provided in an electrode substrate of each unit cell. And a method of indirectly estimating the electrolytic mass in the matrix by monitoring the temperature of each unit cell is disclosed. That is,
When the electrolyte decreases below a certain amount, the fuel gas or the oxidizing gas leaks to the opposite electrode through the electrolyte layer, and the cell temperature starts to increase due to the direct reaction between the fuel gas and the oxidizing gas. It is possible to estimate the electrolytic mass.

【0008】このような方法においては、上述のセルブ
ロック若しくは電池積層体全体の電圧低下を測定する方
法とは異なり、各単位セルの電解質残量にバラツキが生
じていても、各単位セル全ての電解質残量が把握できる
ので、最も電解質飛散量の多い単位セルが燃料ガスと酸
化剤ガスの直接反応による損傷を受ける前に電解質補給
のタイミングを検知することができる。
[0008] In such a method, unlike the above-described method of measuring the voltage drop of the cell block or the entire battery stack, even if the remaining amount of the electrolyte in each unit cell varies, all of the unit cells are not changed. Since the remaining amount of the electrolyte can be grasped, the timing of replenishing the electrolyte can be detected before the unit cell having the largest amount of the scattered electrolyte is damaged by the direct reaction between the fuel gas and the oxidizing gas.

【0009】[0009]

【発明が解決しようとする課題】しかし、このように全
ての単位セルの温度を監視する方法では、燃料電池積層
体を構成する数十から数百の単位セルの全てに温度測定
端子を設けなければならず、組立工程の増加及び高コス
ト化を招くことになる。また、任意の一部の単位セル温
度のみを測定することにより電解質補給時期を検知する
のでは、各単位セルの電解質残量の差異により電解質補
給時期を検知する前に、温度監視をしていない他のいず
れかの単位セルで電解質不足による損傷を生じてしまう
可能性がある。
However, in such a method of monitoring the temperatures of all the unit cells, temperature measuring terminals must be provided in all of the tens to hundreds of unit cells constituting the fuel cell stack. This leads to an increase in the number of assembly steps and an increase in cost. Further, by detecting the electrolyte replenishment time by measuring only a part of the unit cell temperature, the temperature is not monitored before the electrolyte replenishment time is detected due to the difference in the remaining amount of the electrolyte in each unit cell. Any other unit cell may be damaged by electrolyte shortage.

【0010】そこで、本発明においては、全ての単位セ
ルに温度測定端子を設けることなく簡易な構成で、しか
も、何れの単位セルにおいてもマトリックス層中の電解
質不足により燃料ガスと酸化剤ガスの直接反応が引き起
こす電極の損傷等を生じる前に、電解質補給のタイミン
グを検知する方法を提供することを目的とする。
Therefore, in the present invention, all the unit cells have a simple structure without providing a temperature measuring terminal, and in any of the unit cells, the fuel gas and the oxidizing gas are not directly exchanged due to lack of electrolyte in the matrix layer. An object of the present invention is to provide a method for detecting the timing of electrolyte replenishment before the reaction causes electrode damage or the like.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、複数の単位セルを積層して形成されるセ
ルブロックを、冷却板を介在させて積層形成される燃料
電池積層体において、少なくともいずれか1のセルブロ
ックの略中央に位置する単位セルに温度センサーを設け
ることとした。これにより、セルブロックを構成する複
数の単位セルのうち、最もセル温度が高く電解質飛散速
度の速い中央部の単位セルのみを監視することとなるの
で、全ての単位セルに温度センサーを設けなくても電解
質不足の検知が可能になるとともに、燃料電池の組立が
容易で、かつ低コストの燃料電池積層体を提供できる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a fuel cell stack in which a plurality of unit cells are stacked and a cell block is stacked with a cooling plate interposed therebetween. , A temperature sensor is provided in a unit cell located substantially at the center of at least one of the cell blocks. With this, among the plurality of unit cells constituting the cell block, only the central unit cell having the highest cell temperature and the fastest electrolyte scattering speed will be monitored, so that it is not necessary to provide a temperature sensor for all unit cells. In addition, it is possible to detect the shortage of the electrolyte, and to provide a fuel cell stack that is easy to assemble and that is low in cost.

【0012】さらに、前記温度センサーが配置される単
位セルのマトリックスへの電解質含浸量を、他の単位セ
ルのマトリックスへの電解質含浸量よりも少なくするこ
とにより、各単位セルの電解質飛散速度にバラツキが生
じても温度センサーが設置された単位セルが他のセルよ
りも確実に早い時期に電解質不足となるため、早期かつ
確実な電解質補給時期検知が可能となり、より信頼性の
高い燃料電池積層体の提供が可能となる。
Further, the amount of electrolyte impregnated in the matrix of the unit cell in which the temperature sensor is arranged is made smaller than the amount of electrolyte impregnated in the matrix of another unit cell, so that the electrolyte scattering speed of each unit cell varies. Even when the temperature sensor is installed, the unit cell in which the temperature sensor is installed becomes insufficient in electrolyte earlier than other cells, so that early and reliable detection of electrolyte supply timing is possible, and a more reliable fuel cell stack Can be provided.

【0013】さらに、前記温度センサーの温度検知部
を、温度センサーが配置される単位セル面内の電解質飛
散速度の最も速い部分に位置させることにより、より早
期に電解質補給時期の検知が可能となる。
Further, by locating the temperature detecting portion of the temperature sensor at the portion where the electrolyte scatter speed is fastest in the unit cell plane in which the temperature sensor is disposed, it is possible to detect the electrolyte supply time earlier. .

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0015】[0015]

【実施例1】本発明の一実施例を図1に示して説明す
る。図1は本発明を適用した燃料電池積層体の模式図で
ある。2箇所のブロック中央単位セル1Aに、温度セン
サー15Aをそれぞれ設置する。これらの単位セルは、
セルブロック13内の積層位置が中央にあるため各冷却
板12からの距離が最も大きく、運転温度が他の単位セ
ルに比べ高くなる。前述の通り、単位セルからの電解質
飛散量は温度が高い程多くなるから、最もセル温度の高
いブロック中央単位セル1Aのセル温度の経時変化を監
視することで、最初に電解質不足を生じる単位セルのみ
を監視でき、従って、全ての単位セルに温度センサーを
設けることなくかつ、電解質不足を早期に確実に把握
し、電解質の補給時期を検知することが可能となった。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of a fuel cell stack to which the present invention is applied. A temperature sensor 15A is installed in each of the two block central unit cells 1A. These unit cells are
Since the stacking position in the cell block 13 is at the center, the distance from each cooling plate 12 is the longest, and the operating temperature is higher than other unit cells. As described above, the amount of electrolyte scattered from the unit cell increases as the temperature increases, and therefore, by monitoring the time-dependent change in the cell temperature of the block central unit cell 1A having the highest cell temperature, the unit cell in which the electrolyte shortage occurs first Therefore, it is possible to monitor only the temperature, and to reliably detect the shortage of the electrolyte at an early stage without providing the temperature sensors in all the unit cells, and to detect the supply time of the electrolyte.

【0016】なお、本実施例では、燃料電池積層体10
を構成する複数のセルブロック13のうち、燃料電池積
層体10の中央付近のセルブロックに属するブロック中
央単位セル1Aを2個選択して温度センサー15Aをそ
れぞれ設けたが、各セルブロック13のブロック中央単
位セル1Aにそれぞれ設けることも可能である。さら
に、設置される温度センサー15Aの温度検知部をブロ
ック中央単位セル1A面内で最も電解質飛散速度の早い
位置に設置することが望ましい。
In this embodiment, the fuel cell stack 10
Among the plurality of cell blocks 13 constituting the above, two block central unit cells 1A belonging to a cell block near the center of the fuel cell stack 10 are selected and the temperature sensors 15A are provided, respectively. It is also possible to provide each in the central unit cell 1A. Further, it is desirable to install the temperature detecting portion of the installed temperature sensor 15A at a position where the electrolyte scattering speed is the fastest in the plane of the block central unit cell 1A.

【0017】例えば、燃料ガスと酸化剤ガスが図2に示
すような方向に通流される燃料電池においては、これま
での研究から燃料ガスと酸化剤の入口部付近Aとセル面
内で最も温度の高い部位Bとの中間付近Cで電解質飛散
速度が最も速いことを把握しており、早期の電解質補給
時期検知の観点から、温度センサー15Bはこの位置に
設置させることが好ましい。
For example, in a fuel cell in which the fuel gas and the oxidant gas flow in the directions as shown in FIG. It is known that the electrolyte scattering speed is the highest in the vicinity C between the region B and the region B where the temperature is high, and it is preferable to install the temperature sensor 15B at this position from the viewpoint of early detection of the electrolyte supply time.

【0018】[0018]

【実施例2】次に、本発明第2の実施例に係る構成につ
いて説明する。本構成では、実施例1の構成に加えて、
温度センサーを挿入するブロック中央単位セル1Aのう
ち少なくともいずれか1つの単位セルのマトリックスに
含浸させる電解質の量を他の単位セルのマトリックスに
含浸させる電解質の量よりも少なくすることとする。
Embodiment 2 Next, a configuration according to a second embodiment of the present invention will be described. In this configuration, in addition to the configuration of the first embodiment,
The amount of the electrolyte impregnated in the matrix of at least one of the unit cells in the block central unit cell 1A into which the temperature sensor is inserted is made smaller than the amount of the electrolyte impregnated in the matrix of the other unit cells.

【0019】各セルブロック13内のブロック中央単位
セル1Aの温度はほぼ同じであるが、単位セル内の電解
質が不足する時期に若干のばらつきが生じる可能性があ
る。そこで、温度センサー15Aが設置される中央ブロ
ック単位セル1Aのうち少なくとも1つの単位セルにつ
いては、燃料電池積層体10の製造時にマトリックス2
(図4参照)への電解質含浸量を他の単位セルよりも少
なくしておけば、温度センサー15Aを設けていない他
の各ブロック中央単位セル1A間で電解質不足となる時
期にばらつきが生じていても、図3に示すように、温度
センサー15Aにより監視されているブロック中央単位
セル1Aが他のブロック中央単位セル1Aに先駆けて最
も早く電解質不足の状況になるので、いずれかの単位セ
ル1において電解質不足を生じる前に確実に電解質補給
の時期を検知することが可能となる。
Although the temperature of the block central unit cell 1A in each cell block 13 is almost the same, there is a possibility that a slight variation occurs when the electrolyte in the unit cell runs short. Therefore, at least one unit cell of the central block unit cell 1A in which the temperature sensor 15A is installed is provided with the matrix 2 when the fuel cell stack 10 is manufactured.
If the amount of electrolyte impregnated into (see FIG. 4) is smaller than that of the other unit cells, there is a variation in the timing of electrolyte shortage among the other block central unit cells 1A without the temperature sensor 15A. However, as shown in FIG. 3, since the block central unit cell 1A monitored by the temperature sensor 15A is in the shortage state of the electrolyte earlier than the other block central unit cells 1A, any one of the unit cells 1 In this case, it is possible to reliably detect the time of electrolyte supply before the electrolyte shortage occurs.

【0020】また、セルブロック13内の各単位セル1
の積層方向の温度分布は、燃料電池積層体10の設計条
件と運転条件より予想可能であり、従って、電解質補給
にあたっては、セルブロック13内温度分布に応じてセ
ル温度の高い積層位置にある単位セルには多めに、セル
温度の低い積層位置にある単位セルには少なめに電解質
を補給するとよい。
Each unit cell 1 in the cell block 13
The temperature distribution in the stacking direction can be predicted from the design conditions and operating conditions of the fuel cell stack 10, and therefore, when replenishing the electrolyte, the unit located at the stacking position where the cell temperature is high according to the temperature distribution in the cell block 13 It is advisable to replenish the cell with a relatively large amount of electrolyte and the unit cell in the stacking position with a low cell temperature with a small amount of electrolyte.

【0021】なお、上記の実施例1および2の燃料電池
積層体の電解質補給にあたっては、一定の運転条件下で
セル温度が図3に示すような温度上昇を始め、予め定め
られた許容値を越えた時点を電解質補給時期と判断して
電解質の補給を行った。具体的には、温度センサーの検
出信号を燃料電池発電装置の制御部へ送り、検出値が予
め設定された上限値を越えた場合に、燃料電池発電装置
の制御画面に警報を出力し、警報出力時点を電解質補給
時期と判断して電解質補給を行った。
In replenishing the electrolyte of the fuel cell stacks of Examples 1 and 2, the cell temperature starts increasing as shown in FIG. 3 under a certain operating condition, and a predetermined allowable value is set. It was judged that it was time to replenish the electrolyte when it exceeded, and the replenishment of the electrolyte was performed. Specifically, the detection signal of the temperature sensor is sent to the control unit of the fuel cell power generation device, and when the detection value exceeds a preset upper limit, an alarm is output to the control screen of the fuel cell power generation device, and the alarm is output. The output time was determined as the electrolyte replenishment time, and the electrolyte was replenished.

【0022】また、更にセル温度が上昇し、前記上限値
より高い温度に予め設定された第2の上限値を超えた場
合には、電池の損傷を防ぐために発電を停止させること
としている。
Further, when the cell temperature further rises and exceeds a second upper limit set in advance to a temperature higher than the upper limit, power generation is stopped in order to prevent damage to the battery.

【0023】[0023]

【発明の効果】以上のとおり、本発明は、複数の単位セ
ルを積層して形成されるセルブロックを、冷却板を介在
させて複数個積層して形成される燃料電池積層体におい
て、少なくともいずれか1のセルブロックの略中央に位
置する単位セルに温度センサーを設けることとしたこと
により、全ての単位セルに温度センサーを設けることな
く簡易な構成で電解質不足を検知可能とし、燃料電池の
組立が容易で、かつ低コストの燃料電池積層体の提供を
することができた。
As described above, the present invention relates to a fuel cell stack formed by stacking a plurality of unit blocks formed by stacking a plurality of unit cells with a cooling plate interposed therebetween. By providing a temperature sensor in a unit cell located substantially at the center of one of the cell blocks, it is possible to detect electrolyte shortage with a simple configuration without providing a temperature sensor in all unit cells, and assemble a fuel cell. , And a low-cost fuel cell stack could be provided.

【0024】また、前記温度センサーが配置される単位
セルのマトリックスへの電解質含浸量を、他の単位セル
のマトリックスへの電解質含浸量よりも少なくすること
により、早期かつ確実な電解質補給時期検知が可能とな
り、より信頼性の高い燃料電池積層体の提供が可能とな
った。さらに、前記温度センサーの温度検知部を、温度
センサーが配置される単位セル面内の電解質飛散速度の
最も速い部分に位置させることにより、より早期に電解
質補給時期の検知が可能となった。
Further, by making the amount of electrolyte impregnated in the matrix of the unit cell in which the temperature sensor is arranged smaller than the amount of electrolyte impregnated in the matrix of the other unit cells, early and reliable detection of the electrolyte supply time can be achieved. This has made it possible to provide a more reliable fuel cell stack. Further, by locating the temperature detecting section of the temperature sensor at the portion where the electrolyte scatter speed is fastest in the unit cell plane where the temperature sensor is disposed, it is possible to detect the electrolyte supply time earlier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る燃料電池積層体の模
式図
FIG. 1 is a schematic view of a fuel cell stack according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る燃料電池積層体の単
位セルに挿入された温度センサーの位置を示す図
FIG. 2 is a diagram showing a position of a temperature sensor inserted into a unit cell of the fuel cell stack according to the embodiment of the present invention.

【図3】本発明の実施例である燃料電池積層体の単位セ
ルの温度経時変化を示す図
FIG. 3 is a diagram showing a time-dependent change in temperature of a unit cell of a fuel cell stack according to an embodiment of the present invention.

【図4】燃料電池の基本構成を示す要部の分解斜視図FIG. 4 is an exploded perspective view of a main part showing a basic configuration of the fuel cell.

【図5】従来の燃料電池積層体の模式図FIG. 5 is a schematic view of a conventional fuel cell stack.

【図6】従来の燃料電池積層体の単位セルの温度経時変
化を示す図
FIG. 6 is a graph showing a change over time in temperature of a unit cell of a conventional fuel cell stack.

【図7】燃料電池の発電時間と単位セル温度との関係を
示す図
FIG. 7 is a diagram showing a relationship between a power generation time of a fuel cell and a unit cell temperature.

【符号の説明】[Explanation of symbols]

1 単位セル 2 マトリックス 3 燃料極 4 酸化剤極 5 燃料電極側多孔質基材 6 酸化剤極側多孔質基材 7 燃料ガス流路 8 酸化剤ガス流路 9 セパレータ 10 燃料電池積層体 12 冷却板 13 セルブロック 14 締め付け板 15,15A 温度センサー 8 DESCRIPTION OF SYMBOLS 1 Unit cell 2 Matrix 3 Fuel electrode 4 Oxidant electrode 5 Fuel electrode side porous base material 6 Oxidant electrode side porous base material 7 Fuel gas flow path 8 Oxidant gas flow path 9 Separator 10 Fuel cell stack 12 Cooling plate 13 Cell block 14 Clamping plate 15, 15A Temperature sensor 8

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数の単位セルを積層して形成されるセル
ブロックを、冷却板を介在させて複数個積層して形成さ
れる燃料電池積層体において、少なくともいずれか1つ
のセルブロックの略中央に位置する単位セルに温度セン
サーを設けてなることを特徴とする燃料電池積層体。
1. A fuel cell stack formed by stacking a plurality of cell blocks formed by stacking a plurality of unit cells with a cooling plate interposed therebetween, at least substantially at the center of at least one of the cell blocks. A fuel cell stack comprising a temperature sensor provided in a unit cell located in the fuel cell stack.
【請求項2】前記温度センサーが配置される単位セルの
マトリックスへの電解質含浸量が、他の単位セルのマト
リックスへの電解質含浸量よりも少ないことを特徴とす
る請求項1記載の燃料電池積層体。
2. The fuel cell stack according to claim 1, wherein the amount of electrolyte impregnated in the matrix of the unit cell in which the temperature sensor is disposed is smaller than the amount of electrolyte impregnated in the matrix of another unit cell. body.
【請求項3】前記温度センサーの温度検知部を、温度セ
ンサーが配置される単位セル面内の電解質飛散速度の最
も速い部分に位置させることを特徴とする請求項1又は
2記載の燃料電池積層体。
3. The fuel cell stack according to claim 1, wherein the temperature detecting section of the temperature sensor is located at a portion of the unit cell where the temperature sensor is disposed, where the electrolyte scatters at the highest speed. body.
【請求項4】請求項1乃至3のいずれかに記載の燃料電
池積層体において、前記温度センサーにより検知された
セル温度のいずれかが、一定の運転条件下において既定
値以上に上昇した時点を電解質補給時期と判断すること
を特徴とする燃料電池積層体の電解質補給時期検知方
法。
4. The fuel cell stack according to claim 1, wherein a time when any one of the cell temperatures detected by the temperature sensor rises above a predetermined value under a certain operating condition. A method for detecting an electrolyte replenishment time of a fuel cell stack, characterized by judging an electrolyte replenishment time.
JP10221671A 1998-08-05 1998-08-05 Fuel cell layered body and method for detecting electrolyte supplying time Pending JP2000058093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10221671A JP2000058093A (en) 1998-08-05 1998-08-05 Fuel cell layered body and method for detecting electrolyte supplying time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10221671A JP2000058093A (en) 1998-08-05 1998-08-05 Fuel cell layered body and method for detecting electrolyte supplying time

Publications (1)

Publication Number Publication Date
JP2000058093A true JP2000058093A (en) 2000-02-25

Family

ID=16770453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10221671A Pending JP2000058093A (en) 1998-08-05 1998-08-05 Fuel cell layered body and method for detecting electrolyte supplying time

Country Status (1)

Country Link
JP (1) JP2000058093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820947B2 (en) * 1999-02-01 2011-11-24 モトローラ モビリティ インコーポレイテッド Integrated sensor and monitoring method for monitoring a fuel cell membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820947B2 (en) * 1999-02-01 2011-11-24 モトローラ モビリティ インコーポレイテッド Integrated sensor and monitoring method for monitoring a fuel cell membrane

Similar Documents

Publication Publication Date Title
EP1450429B1 (en) Fuel cell stack
CN101512816B (en) Fuel cell system and method of monitoring hydrogen concentration in the anode and purging the anode with hydrogen-rich gas
US7087151B2 (en) Hydrogen sensor for use in battery overcharge/overdischarge detector and hydrogen leakage detector
JPH0927336A (en) Fuel cell stack diagnostic method
WO2006134671A1 (en) Fuel cell system designed to ensure stability of operation
US20020076590A1 (en) Method and apparatus for a fuel cell based fuel sensor
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
JP4011429B2 (en) Fuel cell system including gas sensor and fuel cell vehicle including gas sensor
JP2007220559A (en) Fuel cell system
KR101283022B1 (en) Fuel cell stack
JP4639574B2 (en) Solid oxide fuel cell
JP2000058093A (en) Fuel cell layered body and method for detecting electrolyte supplying time
JP2006278246A (en) Control method of fuel cell stack
JP5078573B2 (en) Fuel cell system
JP4926372B2 (en) Method for measuring current distribution of stacked fuel cell, stacked fuel cell, and operation method of stacked fuel cell
JP2005123162A (en) Current measurement device
JP2598014B2 (en) Crossover detection method for stacked fuel cells
JP4585767B2 (en) Fuel cell monitoring device
JP2011100564A (en) Fuel cell system
JP2007141721A (en) Current measurement device
JPH07249423A (en) Fuel cell power generating device
JPH0456074A (en) Sensor fitting device for measuring fuel cell
JPH0945352A (en) Fuel cell monitoring device
JP2002022700A (en) Hydrogen sensor, overcharge/overdischarge detector of battery and hydrogen gas leakage detector of fuel battery
JP2006114440A (en) Fuel cell